

Abstract: This paper presents an adaptive 'rock, scissors and
paper' artificial player. The artificial player is based on an
adaptive neural network algorithm. The hypothesis is that
human players do not adopt the optimal playing strategy, i.e.
to use random moves, and that the artificial player could
exploit this and adopt a winning strategy. To test this
hypothesis a WAP-based and a web-based version of the
artificial player was made available to the general public. A
total of about 3000 human players have played against the
artificial player, to date. Several different training strategies
are evaluated, and the results show that efficient algorithms
can be constructed. The best result being 72% won games for
the artificial player and 28% won by human players. The
paper also identifies future interesting issues for both game
developers as well as researchers within Human Computer
Interaction.

I. PURPOSE

The purpose of this paper is to show that adaptive
techniques (in this case an artificial neural network) can be
implemented in automated game players to allow them learn
the strategy of the opponent and use this to adopt a winning
strategy. Naturally this requires capability to change
strategy if the opponent changes strategy.

The game we have chosen here is 'rock, scissors and paper';
a simple game where two players use their hands and
simultaneously show the sign for either rock, scissors or
paper. The rules of the game is that rock beats scissors,
scissors beats paper and paper beats rock. In the
simulations presented here a game consists of a number of
plays. The winner of a game is the player who first gets to
ten won individual plays.

The optimal strategy for a player, who does not know the
strategy of its opponent, is to play according to a random

1Department of Computer Science, University of Skövde,
P.O. Box 408, 541 28 Skövde, Sweden, Tel. +46 500 44 83
37, Fax +46 500 44 83 99, lars.niklasson@ida.his.se,
henrik.engstrom@ida.his.se

2Department of Business and Informatics, University of
Borås, Sweden, ulf.johansson@hb.se

strategy, resulting in about 1/3 lost, 1/3 won and 1/3 drawn
plays. This means that the optimal strategy here would
result in 50% won games (i.e., first to ten won plays) and
50% lost games. However, the hypothesis here is that
human players quite often adopt other strategies. Sometimes
these strategies might be intended (e.g., the player is trying
to win) and sometimes they might be not (e.g., the player is
trying to adopt a random strategy but fails). Regardless of
reason, the hypothesis is that an adaptive artificial player
can discover this an exploit it in order to win.

II. METHOD

The method used here, to implement the adaptive capability
of the artificial player, is a neural network. The general
neural network consists of a number of input units. These
send activation in a feed-forward fashion (possibly via some
intermediate, or 'hidden' units) to a number of output units
using some weighted connections, see figure 1.

Input (I)

Output (O)

Weights (W)

Figure 1: A simplified version of a neural network.

The activation of an output unit (netj) is calculated using the
algorithm netj = Σ(Ii x Wij). The output (Oj) of the output
unit is then calculated by applying some function on the unit
activation, i.e., Oj = f(netj). The key component of neural
networks is the learning algorithm. An error (E) is
calculated for each output unit, given a known combination
of input (I) and its corresponding target output (T),
according to the simple algorithm Ej = Tj - Oj. The error is
then used to calculate the change of the weights (∆W),
according to the algorithm ∆wij = η x Ej x Ii, where η is a
parameter called a learning rate and can be used to control
the amount of learning for individual situations. It can in
fact also be an adaptive parameter which is large in the
beginning of a training session and lowered the closer to the
optimal weight setting the algorithm gets (i.e., the lower the

An Adaptive 'Rock, Scissors and Paper' Player
Based on a Tapped Delay Neural Network

Lars Niklasson1, Henrik Engström1 and Ulf Johansson2

total error for all units for all training examples gets). The
starting point for training is normally a set of randomly
generated weights.

This is the simplest form of neural networks. More complex
networks include those with an intermediate layer of units,
so called hidden units, whose function is to allow more
complex functions from input to output. For a more
extensive presentation of simple and more complex artificial
neural network algorithms, see Rumelhart, Hinton and
Williams (1986). The, in this case, important aspect of these
algorithms is their 'model freedom', i.e., that they do not
require a designer to implement or program a model,
instead it is the job of the algorithms to develop a model
given some data. New data can always be used to
continuously refine the model.

The nature of the problem addressed here is that temporal
context is important, i.e., to predict the opponent's next
move (in order to counter it) one have to take previous
moves (both own and opponent's) into account. This can be
implemented by using different artificial neural network
algorithms, e.g., Elman's (1990) Simple Recurrent Network,
Jordan (1986) nets, or some sort of tapped delay neural
network (TDNN), see figure 2.

Figure 2: A TDNN. Instead of using only a single input
pattern to produce an output pattern, a history of delayed
input patterns are used to produce one output.

For a TDNN the main design decision is how many delayed
inputs that are needed to capture the context needed to solve
the problem at hand. This is often an ad hoc decision, which
needs experimentation to be fully understood.

In the simulations present here an automated player based
on a TDNN is used. The main motivation for this is its
simplicity. TDNNs have previously shown to be useful for
solving many different types of sequentially or temporally
structured problems, e.g., for text-to-speech conversion
(Sejnowski and Rosenberg, 1987) and predicting the impact
of advertising (Johansson and Niklasson, 2001).

Five tapped delays are used, each representing the opponent
and the automated player's five previous moves (see figure
3). In each time step, both players' moves are represented,
by using one unit for each possible move. Therefore, 30
input units are used (five time steps, three possible moves
for each of the players). The target is to predict the

opponent's next move in order to make the opposite winning
move.

Figure 3: The TDNN used to exploit the
of the game. Each move for a player is
units (rock, scissors and paper). Here, th
moves for both players are used to pred
the opponent.

The output units are linear units, i.e., th
the same as the activation for the unit. I
predicted move of the opponent is the m
the unit with the highest activation (ofte
winner-take-all strategy). In figure 3 the
has the highest activation and its associ
rock) is therefore chosen as the predicte
opponent. The artificial player then sele
move (here paper) and displayed at the
human opponent uses the interface and
the chosen move. The opponent's move
target output pattern, and the weights ar
to the neural network training algorithm
After this each of the inputs in the tappe
the next delay position in the input buff
moves of the artificial and human playe
first position in the delay buffer. The ne
to predict the next move and repeat the

III. IMPLEMENTATIONAL D

The primary goal with the implementati
large group of people to play in order to
data. The game has limited attraction va
implies that there should be as few obst
those willing to play. The first choice w
game as a web application. However, it
people to the web-site. This resulted in
WAP-based game-engine. WAP (WAP
which enables mobile phones to access
number of service providers for WAP b
lower than for traditional web browsers
that this makes it easier to get visibility.
be attractive for people, e.g. travellers,
time. It is believed that this is one expla
are willing to spend so much time playi
simple games built into mobile phones.

A potential drawback with the WAP sol
have to pay a per-minute fee when they

opponent's predicted move at (t)

))

trainable weights

output at time (t)

trainable weights
moves at (t-5
moves at (t-1
 sequential nature
represented by three
e five previous

ict the next move of

e output of a unit is
n each time step the
ove represented by
n referred to as a
 leftmost output unit

ated move (here
d move of the
cts the opposite
same time as the
clicks the symbol for
 is then used as the
e updated according
 presented earlier.
d delay is shifted to

er, and the last
rs are stored in the
twork is now ready
input at time (t-n)
 input at time (t-1)

process.

ETAILS

on is to attract a
 collect empirical
lue by itself, which
acles as possible for
as to provide the
 was hard to attract
the development of a
 1.1) is a technique
the Internet. The
rowsers is much
 and it was assumed
 Also, the game can
who want to kill
nation why people
ng the relative

ution is that players
 are on-line. The fee

varies depending on time of day and net service provider. In
Sweden the hour rate is typically somewhere between $3-
$40. It is here believed that the impact of this cost is
neglectable as a game takes less than 3 minutes to play.
Actually the cost may have a positive effect in that it
prevents players to spend unreasonable amount of time
trying to win a game.

A WAP browser can be seen as a reduced WWW browser
with no advanced scripting functionality, applets or plug-
ins. The screen is normally monochrome with
approximately 100*60 pixels. This implies that a game
implementation cannot put any application logic in clients.
The graphic capabilities of the clients are also a limiting
factor. The most commonly supported WAP-version in
mobile phones is WAP 1.1. The mobile phone clients
communicate with stationary servers through a gateway
which is typically managed by the net service provider.
Information is sent to the clients formatted in WML (WML
1.1) which can be seen as a specialised subset of HTML.
Figure 4 illustrates components of the WAP programming
model.

Client

Lars kan
inte läsa
detta!

Gateway Server

Figure 4. Components of the WAP programming model
(From WAP 1.1).

The primary design goals for the application have been to
give players quick interaction and flexible control. An
initial exploration of the WAP technology showed that it
was relatively immature. Different clients and gateways
gave notably different result. Therefore the choice here was
to use the simplest technique with a minimum of
functionality in the clients. This means that everything has
to be handled by the server. A dedicated game server in
Java, which interacts with clients by sending simple WML-
pages, was developed. The game-server is main-memory
based which makes it relatively fast. Each new player is
assigned a unique session with own weights.

A new session is initiated whenever a client is making a
request to the following WAP address1:

 http://www.ida.his.se:2002

After the weights have been initialised and the computer has
chosen its first move, the player will be asked to select a
move. Figure 5 shows an example on how this may look in a
WAP browser.

1 An HTML version is available at:
http://www.ida.his.se/ida/~henrik/rsp/

Figure 5: An example on how a player selects a move in a
WAP browser.

When the player selects one of the links a request is sent to
the server which will memorise the move and use it for the
training of the network and to update the score. The
response sent back to the client (figure 6) contains the result
of the play together with the player’s moves.

Figure 6: An example on how the result is presented.

When a game is completed the score of the game is
recorded in the server and the player is offered a new game.
If a player is inactive for 10 minutes the session is removed
which means it will no longer be possible to identify this
player or reuse the associated weights.

It is important to note that the server predicts the move of
the opponent (which will be used to select a winning move)
before the human player makes his/her move. It would
obviously be possible for the server to cheat. An alternative
solution is to include the computer move in the first page
(figure 5) and hide the result in a card which is shown
whenever the player makes his/her move. This, however,
requires more advanced functions of WML (using decks of
cards) which does not work properly in all browsers.
Moreover, it would make it possible for human players to
cheat which could introduce errors into the results.

IV. RESULTS FOR SOME INITIAL SIMULATIONS

Some initial simulations uncovered a problem with the
learning part of the approach. The artificial player could be
played to a position where the human could exploit the
situation. The problem was that the artificial player always
learned, irrespectively if it was winning or loosing. This
meant that it was enforcing a winning move even stronger,
which made its future moves predictable.

Instead a new approach was tested. This was to use different
learning rates for different situations. The learning rate was
set to 0.01 if the artificial player won the move, it was set to

0.2 if the move was a draw and 0.5 if the artificial player
lost. The hypothesis was that it was little point in changing a
winning strategy. After this change, the network became
very hard to beat if one really tried.

The potential of the adaptive player to detect different
strategies was tested against some pre-defined strategies.
The adaptive player was tested against a random player with
same distribution over the different moves and a random
player with a biased distribution over the different moves.
Neither of these take into account the temporal context of
the game, i.e., the previous moves of the players. Therefore
a simulation was conducted were the adaptive player was
played against a strategy always using the move of the
adaptive player at time (t) as the opposing move at time
(t+1). The idea was to investigate if and how fast the
adaptive player could discover this and adopt a winning
strategy. To evaluate how much contextual data that was
needed to capture this, two data sets were used; one where a
play was decided to continue until any of the two players
had won 10 individual plays, and one which continued until
any of them had won 20 plays.

The artificial player was also made available on the Internet
and WAP. To date 2887 games have played against the
automated player. These games have been divided into two
different sets. The first set contains 2526 games and the
second 362. The reason for this division is a change of
training strategy of the artificial player.

Using the set-up suggested here, a ten-wins game appeared
to be too short, when playing against a human, to give the
network an advantage for fully exploiting the strategy of the
opponent. The artificial player therefore wins about 50% of
these games, which is as good (or bad) as a random
strategy. However, an option to play a second successive
game is also possible. This means that the artificial can use
the trained network from the first session as the starting
point for the second game, rather than a new set of random
weights. The result for the second successive game is
always significantly higher compared to the first game.

A. Results against a random player
To analyse the behaviour of the artificial player, a set of
simulations were conducted where it played against other
automated players. The first experiment was to play against
a truly random player. As expected, the artificial player
cannot utilize this2. The random player will win 50% of the
games also when several successive games are played using
the same network.
In a variation of the random player, the same sequence of
random moves was iterated. The result shows that an
artificial player is able to utilise these patterns, even with
relatively long cycles. With 20 moves in the cycle, the

2 Actually, as the opponent’s moves are based on a psuedo-
random distribution it would be possible for an opponent to
utilize this.

artificial player won on average 57% of the first games and
89% of the second games. It is notable that the performance
is highly dependant on the generated sequence.

B. Results against a biased random player
The second experiment was to play against a random player
which picked its move from a skew distribution where
paper was picked with a different probability than rock and
scissors (which were picked with equal probability). Figure
7 shows the percentage wins for the artificial player as a
function of the probability for paper.

0.00%

25.00%

50.00%

75.00%

100.00%

0 0.33 0.66 0.99
Probability for 'paper'

A
rt

ifi
ci

al
 p

la
ye

r w
in

s

Figure 7: The performance of the artificial player against a
skew random player.

Each point on the curve in figure 7 corresponds to 1000
non-successive games. With successive games, the artificial
player continues to improve and the result gets slightly
better.

C. Results against the mimic-approach
In all experiments up to now the automated opponent has
been ignoring the actions of the artificial player. A mimic
player was developed which, in contrast to the other
automated players, uses the opponent’s moves as input. The
mimic player selects a move under the assumption that the
opponent will repeat its previous move. This strategy
showed to be trivial for the artificial player to defeat. It won
1000 out of 1000 games during experiments.

D. Results against human players
The results for the 2526 games of the first set was that the
artificial player won 49% of the 2194 games where the
starting point for the artificial player was the set of random
weights. In 332 cases the human player decided to play a
second successive game. This increase in training data
meant that the artificial player won 66% of these second
games.

The result so far shows that the network can exploit the
apparent strategy of the human players (given sufficient
amount of background data). However, some design
decisions could possibly be changed to further improve the
results. Therefore a second set of simulations were
conducted.

V. RESULTS FOR AN EXTENDED APPROACH

The hypothesis was that the starting point for the network
was not the optimal one. To this point the starting point was
to use randomly generated weights. Which naturally meant
that the first predicted move was randomly chosen.
However, this might not lead to generating sets of randomly
chosen moves. It could mean that biased sequences of
moves were generated.

In order to test this hypothesis a change in the playing
strategy was made. Instead of only starting from a set of
random weights, the artificial player was played against
another automated player. The idea being that a random
play would develop, which would be a very good starting
point when playing against a human player. The number of
artificial against random player pre-game moves was
decided to 100.

A. Results against a random player
As expected, there was no improvement in performance
when the artificial player was faced with a random player.
The explanation to this is that the random player is not
affected by the behaviour of the opponent.

B. Results against a biased random player
Again, there is no improvement in performance.

C. Results against the mimic-approach
The artificial player is superior over the mimic player also
in the extended version.

D. Results against human players
After this change the artificial player was once again made
available on the web and WAP. Over a period of time 361
new games were played. After the extended training
approach, the artificial now won about 55% of the first 10
winning-moves sets. As in the first simulation, those players
who went on to play a second successive game, lost to an
even larger degree; namely 72% of the games won by the
artificial player and only 28% won by the human player. It
deserves however, to be pointed out that the number of
games here is only 29 which means that the result should be
considered somewhat uncertain as yet.

VI. DISCUSSION

The hypothesis for the work presented here was that an
adaptive algorithm can exploit the strategy of a human
player playing an, in essence random, game. The best result
so far is one where the artificial player wins about 55% of
the games played against human players, with an even better
performance (73% won games) when a player plays a
second successive game (giving the network more training
data).

Several extensions to this basic set-up are possible. The
simple type of neural network used here allows only simple
linear associations between the input and output. A natural
extension would be to test a network with hidden units,
allowing also non-linear associations between inputs and
outputs. One potential problem is however the limited
amount of data, which supports the simple solution used
here. Other extensions include using longer tapped delays,
allowing modelling of more complex mappings. However,
this also suffers from the problem with limited data for
training. Instead one could test to use recurrent networks
and let them learn the length of the 'important' delay. This
naturally could be different for different human players.

This sort of simulations can also be of interest for
researchers within Human Computer Interaction (HCI). It
would be very interesting to see if there is any difference in
the human strategy when playing against a human compared
to an artificial system. This could easily be explored by
comparing different sets of human players, some playing
'directly' against the artificial system, and some playing
against a human using the moves suggested by the artificial
system.

For the community interested in developing computer
games, the adaptive capability appears invaluable. The fact
that about 3000 individuals pay good money to use a WAP
phone and interact with an extremely simple interface to
play an essentially random game should alert the game
designers that the adaptive capability is needed in computer
games of the 21st century.

VII. ACKNOWLEDGEMENTS

This research is supported by the foundation of knowledge
and competence development, Sweden, under contract
1507/97.

VIII. REFERENCES

[1] Rumelhart, D. E., Hinton, G. E. and Williams, R. J., Learning
Internal Representations by Error Propagation, Parallel Distributed
Processing -volume 1, MIT Press, 1986, pp 318 - 362.
[2] Jordan, M. I., Serial Order: A parallel distributed processing
approach, Tech. Report No 8604, University if California, Institute for
Cognitive Science, 1986.
[3] Elman, J, Finding Structure in Time, Cognitive Science, 14, 1990,
pp 179 - 221.
[4] Senjowski, T. J. and Rosenberg, C.R., Parallel Networks that
learn to pronounce English text, Complex Systems, 1, 1987, pp 145-168.
[5] Johansson, U. and Niklasson, L., Predicting the impact of
advertising - a neural network approach, The International Joint
Conference on Neural Networks, 2001
[6] WAP 1.1, “Wireless Application Protocol Architecture
Specification”, 1998, http://www1.wapforum.org/tech/documents/SPEC-
WAPArch-19980430.pdf
[7] WML 1.1, “Wireless Application Protocol Wireless Markup
Language Specification Version 1.1”,
http://www1.wapforum.org/tech/documents/SPEC-WML-19990616.pdf

