
   

 
Abstract: This paper presents an adaptive 'rock, scissors and 
paper' artificial player. The artificial player is based on an 
adaptive neural network algorithm. The hypothesis is that 
human players do not adopt the optimal playing strategy, i.e. 
to use random moves, and that the artificial player could 
exploit this and adopt a winning strategy. To test this 
hypothesis a WAP-based and a web-based version of the 
artificial player was made available to the general public. A 
total of about 3000 human players have played against the 
artificial player, to date. Several different training strategies 
are evaluated, and the results show that efficient algorithms 
can be constructed. The best result being 72% won games for 
the artificial player and 28% won by human players. The 
paper also identifies future interesting issues for both game 
developers as well as researchers within Human Computer 
Interaction.  
 

I. PURPOSE 
 
The purpose of this paper is to show that adaptive 
techniques (in this case an artificial neural network) can be 
implemented in automated game players to allow them learn 
the strategy of the opponent and use this to adopt a winning 
strategy. Naturally this requires capability to change 
strategy if the opponent changes strategy. 
 
The game we have chosen here is 'rock, scissors and paper'; 
a simple game where two players use their hands and 
simultaneously show the sign for either rock, scissors or 
paper. The rules of the game is that rock beats scissors, 
scissors beats paper and paper beats rock. In the 
simulations presented here a game consists of a number of 
plays. The winner of a game is the player who first gets to 
ten won individual plays.  
 
The optimal strategy for a player, who does not know the 
strategy of its opponent, is to play according to a random 
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strategy, resulting in about 1/3 lost, 1/3 won and 1/3 drawn 
plays. This means that the optimal strategy here would 
result in 50% won games (i.e., first to ten won plays) and 
50% lost games. However, the hypothesis here is that 
human players quite often adopt other strategies. Sometimes 
these strategies might be intended (e.g., the player is trying 
to win) and sometimes they might be not (e.g., the player is 
trying to adopt a random strategy but fails). Regardless of 
reason, the hypothesis is that an adaptive artificial player 
can discover this an exploit it in order to win. 
 

II. METHOD 
 
The method used here, to implement the adaptive capability 
of the artificial player, is a neural network. The general 
neural network consists of a number of input units. These 
send activation in a feed-forward fashion (possibly via some 
intermediate, or 'hidden' units) to a number of output units 
using some weighted connections, see figure 1. 
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Figure 1: A simplified version of a neural network.  
 
The activation of an output unit (netj) is calculated using the 
algorithm netj = Σ(Ii x Wij). The output (Oj) of the output 
unit is then calculated by applying some function on the unit 
activation, i.e., Oj = f(netj). The key component of neural 
networks is the learning algorithm. An error (E) is 
calculated for each output unit, given a known combination 
of input (I) and its corresponding target output (T), 
according to the simple algorithm Ej = Tj - Oj. The error is 
then used to calculate the change of the weights (∆W), 
according to the algorithm ∆wij = η x Ej x Ii, where η is a 
parameter called a learning rate and can be used to control 
the amount of learning for individual situations. It can in 
fact also be an adaptive parameter which is large in the 
beginning of a training session and lowered the closer to the 
optimal weight setting the algorithm gets (i.e., the lower the 
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total error for all units for all training examples gets). The 
starting point for training is normally a set of randomly 
generated weights. 
 
This is the simplest form of neural networks. More complex 
networks include those with an intermediate layer of units, 
so called hidden units, whose function is to allow more 
complex functions from input to output. For a more 
extensive presentation of simple and more complex artificial 
neural network algorithms, see Rumelhart, Hinton and 
Williams (1986). The, in this case, important aspect of these 
algorithms is their 'model freedom', i.e., that they do not 
require a designer to implement or program a model, 
instead it is the job of the algorithms to develop a model 
given some data. New data can always be used to 
continuously refine the model. 
 
The nature of the problem addressed here is that temporal 
context is important, i.e., to predict the opponent's next 
move (in order to counter it) one have to take previous 
moves (both own and opponent's) into account. This can be 
implemented by using different artificial neural network 
algorithms, e.g., Elman's (1990) Simple Recurrent Network, 
Jordan (1986) nets, or some sort of tapped delay neural 
network (TDNN), see figure 2.  
 
 
 
 
 
 
 
 

 
Figure 2: A TDNN. Instead of using only a single input 
pattern to produce an output pattern, a history of delayed 
input patterns are used to produce one output.  
 
For a TDNN the main design decision is how many delayed 
inputs that are needed to capture the context needed to solve 
the problem at hand. This is often an ad hoc decision, which 
needs experimentation to be fully understood.  
 
In the simulations present here an automated player based 
on a TDNN is used. The main motivation for this is its 
simplicity. TDNNs have previously shown to be useful for 
solving many different types of sequentially or temporally 
structured problems, e.g., for text-to-speech conversion 
(Sejnowski and Rosenberg, 1987) and predicting the impact 
of advertising (Johansson and Niklasson, 2001). 
  
Five tapped delays are used, each representing the opponent 
and the automated player's five previous moves (see figure 
3). In each time step, both players' moves are represented, 
by using one unit for each possible move. Therefore, 30 
input units are used (five time steps, three possible moves 
for each of the players). The target is to predict the 

opponent's next move in order to make the opposite winning 
move. 
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varies depending on time of day and net service provider. In 
Sweden the hour rate is typically somewhere between $3-
$40. It is here believed that the impact of this cost is 
neglectable as a game takes less than 3 minutes to play. 
Actually the cost may have a positive effect in that it 
prevents players to spend unreasonable amount of time 
trying to win a game. 
 
A WAP browser can be seen as a reduced WWW browser 
with no advanced scripting functionality, applets or plug-
ins. The screen is normally monochrome with 
approximately 100*60 pixels. This implies that a game 
implementation cannot put any application logic in clients. 
The graphic capabilities of the clients are also a limiting 
factor. The most commonly supported WAP-version in 
mobile phones is WAP 1.1. The mobile phone clients 
communicate with stationary servers through a gateway 
which is typically managed by the net service provider. 
Information is sent to the clients formatted in WML (WML 
1.1) which can be seen as a specialised subset of HTML. 
Figure 4 illustrates components of the WAP programming 
model.  
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Figure 4. Components of the WAP programming model 
(From WAP 1.1). 
 
The primary design goals for the application have been to 
give players quick interaction and flexible control. An 
initial exploration of the WAP technology showed that it 
was relatively immature. Different clients and gateways 
gave notably different result. Therefore the choice here was 
to use the simplest technique with a minimum of 
functionality in the clients. This means that everything has 
to be handled by the server. A dedicated game server in 
Java, which interacts with clients by sending simple WML-
pages, was developed. The game-server is main-memory 
based which makes it relatively fast. Each new player is 
assigned a unique session with own weights.  
 
A new session is initiated whenever a client is making a 
request to the following WAP address1: 
 

  http://www.ida.his.se:2002 
 
After the weights have been initialised and the computer has 
chosen its first move, the player will be asked to select a 
move. Figure 5 shows an example on how this may look in a 
WAP browser.  
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Figure 5: An example on how a player selects a move in a 
WAP browser. 
 
When the player selects one of the links a request is sent to 
the server which will memorise the move and use it for the 
training of the network and to update the score. The 
response sent back to the client (figure 6) contains the result 
of the play together with the player’s moves. 
 

 
 
Figure 6: An example on how the result is presented. 

 
When a game is completed the score of the game is 
recorded in the server and the player is offered a new game. 
If a player is inactive for 10 minutes the session is removed 
which means it will no longer be possible to identify this 
player or reuse the associated weights. 
 
It is important to note that the server predicts the move of 
the opponent (which will be used to select a winning move) 
before the human player makes his/her move. It would 
obviously be possible for the server to cheat. An alternative 
solution is to include the computer move in the first page 
(figure 5) and hide the result in a card which is shown 
whenever the player makes his/her move. This, however, 
requires more advanced functions of WML (using decks of 
cards) which does not work properly in all browsers. 
Moreover, it would make it possible for human players to 
cheat which could introduce errors into the results. 

IV. RESULTS FOR SOME INITIAL SIMULATIONS 
 
Some initial simulations uncovered a problem with the 
learning part of the approach. The artificial player could be 
played to a position where the human could exploit the 
situation. The problem was that the artificial player always 
learned, irrespectively if it was winning or loosing. This 
meant that it was enforcing a winning move even stronger, 
which made its future moves predictable.  
 
Instead a new approach was tested. This was to use different 
learning rates for different situations. The learning rate was 
set to 0.01 if the artificial player won the move, it was set to 



0.2 if the move was a draw and 0.5 if the artificial player 
lost. The hypothesis was that it was little point in changing a 
winning strategy. After this change, the network became 
very hard to beat if one really tried. 
 
The potential of the adaptive player to detect different 
strategies was tested against some pre-defined strategies. 
The adaptive player was tested against a random player with 
same distribution over the different moves and a random 
player with a biased distribution over the different moves. 
Neither of these take into account the temporal context of 
the game, i.e., the previous moves of the players. Therefore 
a simulation was conducted were the adaptive player was 
played against a strategy always using the move of the 
adaptive player at time (t) as the opposing move at time 
(t+1). The idea was to investigate if and how fast the 
adaptive player could discover this and adopt a winning 
strategy. To evaluate how much contextual data that was 
needed to capture this, two data sets were used; one where a 
play was decided to continue until any of the two players 
had won 10 individual plays, and one which continued until 
any of them had won 20 plays. 
 
The artificial player was also made available on the Internet 
and WAP. To date 2887 games have played against the 
automated player. These games have been divided into two 
different sets. The first set contains 2526 games and the 
second 362. The reason for this division is a change of 
training strategy of the artificial player.  
 
Using the set-up suggested here, a ten-wins game appeared 
to be too short, when playing against a human, to give the 
network an advantage for fully exploiting the strategy of the 
opponent. The artificial player therefore wins about 50% of 
these games, which is as good (or bad) as a random 
strategy. However, an option to play a second successive 
game is also possible. This means that the artificial can use 
the trained network from the first session as the starting 
point for the second game, rather than a new set of random 
weights. The result for the second successive game is 
always significantly higher compared to the first game. 

A. Results against a random player 
To analyse the behaviour of the artificial player, a set of 
simulations were conducted where it played against other 
automated players. The first experiment was to play against 
a truly random player. As expected, the artificial player 
cannot utilize this2. The random player will win 50% of the 
games also when several successive games are played using 
the same network. 
In a variation of the random player, the same sequence of 
random moves was iterated. The result shows that an 
artificial player is able to utilise these patterns, even with 
relatively long cycles. With 20 moves in the cycle, the 
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utilize this. 

artificial player won on average 57% of the first games and 
89% of the second games. It is notable that the performance 
is highly dependant on the generated sequence.  

B. Results against a biased random player 
The second experiment was to play against a random player 
which picked its move from a skew distribution where 
paper was picked with a different probability than rock and 
scissors (which were picked with equal probability). Figure 
7 shows the percentage wins for the artificial player as a 
function of the probability for paper. 
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Figure 7: The performance of the artificial player against a 
skew random player. 
 
Each point on the curve in figure 7 corresponds to 1000 
non-successive games. With successive games, the artificial 
player continues to improve and the result gets slightly 
better. 

C. Results against the mimic-approach 
In all experiments up to now the automated opponent has 
been ignoring the actions of the artificial player. A mimic 
player was developed which, in contrast to the other 
automated players, uses the opponent’s moves as input. The 
mimic player selects a move under the assumption that the 
opponent will repeat its previous move. This strategy 
showed to be trivial for the artificial player to defeat. It won 
1000 out of 1000 games during experiments. 

D. Results against human players 
The results for the 2526 games of the first set was that the 
artificial player won 49% of the 2194 games where the 
starting point for the artificial player was the set of random 
weights. In 332 cases the human player decided to play a 
second successive game. This increase in training data 
meant that the artificial player won 66% of these second 
games.  
 
The result so far shows that the network can exploit the 
apparent strategy of the human players (given sufficient 
amount of background data). However, some design 
decisions could possibly be changed to further improve the 
results. Therefore a second set of simulations were 
conducted. 



V. RESULTS FOR AN EXTENDED APPROACH 
 
The hypothesis was that the starting point for the network 
was not the optimal one. To this point the starting point was 
to use randomly generated weights. Which naturally meant 
that the first predicted move was randomly chosen. 
However, this might not lead to generating sets of randomly 
chosen moves. It could mean that biased sequences of 
moves were generated.  
 
In order to test this hypothesis a change in the playing 
strategy was made. Instead of only starting from a set of 
random weights, the artificial player was played against 
another automated player. The idea being that a random 
play would develop, which would be a very good starting 
point when playing against a human player. The number of 
artificial against random player pre-game moves was 
decided to 100.  

A. Results against a random player 
As expected, there was no improvement in performance 
when the artificial player was faced with a random player. 
The explanation to this is that the random player is not 
affected by the behaviour of the opponent. 

B. Results against a biased random player 
Again, there is no improvement in performance. 

C. Results against the mimic-approach 
The artificial player is superior over the mimic player also 
in the extended version. 

D. Results against human players 
After this change the artificial player was once again made 
available on the web and WAP. Over a period of time 361 
new games were played. After the extended training 
approach, the artificial now won about 55% of the first 10 
winning-moves sets. As in the first simulation, those players 
who went on to play a second successive game, lost to an 
even larger degree; namely 72% of the games won by the 
artificial player and only 28% won by the human player. It 
deserves however, to be pointed out that the number of 
games here is only 29 which means that the result should be 
considered somewhat uncertain as yet. 

VI. DISCUSSION 
 
The hypothesis for the work presented here was that an 
adaptive algorithm can exploit the strategy of a human 
player playing an, in essence random, game. The best result 
so far is one where the artificial player wins about 55% of 
the games played against human players, with an even better 
performance (73% won games) when a player plays a 
second successive game (giving the network more training 
data).  
 

Several extensions to this basic set-up are possible. The 
simple type of neural network used here allows only simple 
linear associations between the input and output. A natural 
extension would be to test a network with hidden units, 
allowing also non-linear associations between inputs and 
outputs. One potential problem is however the limited 
amount of data, which supports the simple solution used 
here. Other extensions include using longer tapped delays, 
allowing modelling of more complex mappings. However, 
this also suffers from the problem with limited data for 
training. Instead one could test to use recurrent networks 
and let them learn the length of the 'important' delay. This 
naturally could be different for different human players. 
 
This sort of simulations can also be of interest for 
researchers within Human Computer Interaction (HCI). It 
would be very interesting to see if there is any difference in 
the human strategy when playing against a human compared 
to an artificial system. This could easily be explored by 
comparing different sets of human players, some playing 
'directly' against the artificial system, and some playing 
against a human using the moves suggested by the artificial 
system. 
 
For the community interested in developing computer 
games, the adaptive capability appears invaluable. The fact 
that about 3000 individuals pay good money to use a WAP 
phone and interact with an extremely simple interface to 
play an essentially random game should alert the game 
designers that the adaptive capability is needed in computer 
games of the 21st century. 

VII. ACKNOWLEDGEMENTS 
 
This research is supported by the foundation of knowledge 
and competence development, Sweden, under contract 
1507/97. 

VIII. REFERENCES 
 
[1] Rumelhart, D. E., Hinton, G. E. and Williams, R. J.,  Learning 
Internal Representations by Error Propagation, Parallel Distributed 
Processing -volume 1, MIT Press, 1986, pp 318 - 362. 
[2] Jordan, M. I., Serial Order: A parallel distributed processing 
approach, Tech. Report No 8604, University if California, Institute for 
Cognitive Science, 1986. 
[3] Elman, J, Finding Structure in Time, Cognitive Science, 14, 1990, 
pp 179 - 221. 
[4] Senjowski, T. J. and Rosenberg, C.R., Parallel Networks that 
learn to pronounce English text, Complex Systems, 1, 1987, pp 145-168. 
[5] Johansson, U. and Niklasson, L., Predicting the impact of 
advertising - a neural network approach, The International Joint 
Conference on Neural Networks, 2001 
[6] WAP 1.1, “Wireless Application Protocol Architecture 
Specification”, 1998, http://www1.wapforum.org/tech/documents/SPEC-
WAPArch-19980430.pdf 
[7] WML 1.1, “Wireless Application Protocol Wireless Markup 
Language Specification Version 1.1”, 
http://www1.wapforum.org/tech/documents/SPEC-WML-19990616.pdf 


