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1 Introduction
This note is devoted to propose a general way to visualize a clustering derived from a

mixture model in any context. It is different from the proposal of Biernacki and Marbac
(2017). It aims to be clearer, simpler, easier to be computed and more relevant. It simply
makes use of the conditional probabilities tik for an observation i, i = 1, . . . , n to belong
to cluster k, k = 1, . . . , K. It consists essentially of a representation by multidimensional
scaling (MDS) of the mixture component distributions.

2 The proposition
From the K conditional distributions of belonging to one of the mixture components

knowing the observations, it is possible to compute the symmetrized Kullback-Leibler
distance between each couple of components. For (k, k′) ∈ 1, . . . , K2, it is
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From this table of distances, it is easy to get a representation in R2 of the clusters
C1, . . . , CK by MDS, using an efficient MDS function in R. Obviously, each cluster k
receives the weight πk, namely the mixing proportion of the component k , when running
the MDS function.

Some numerical problems can appear in the computation of the distances dkk′ when
(i) tik ≈ 0 and when (ii) both tik and tik′ ≈ 0. The case (i) can be answered by imposing a
lower bound, say ε to tik. I think that this lower bound could be associated to the smaller
non-zero conditional probability that can be numerically computed. (Clearly, this point
has to be made more precise.) The case (ii) can be answered by putting tik

tik+tik′
log tik

tik′
= 0.

It is also possible to represent the observations on the MDS graph as illustrative
elements on the map representing the clusters as K points C1, . . . , CK . (There is in R
a MDS function which allows to represent illustrative elements on the computed maps.)
In that purpose, there is the need to define the distances between an observation i, i =
1, . . . , n and the clusters Ck, k = 1, . . . , K. These distances could be defined as follows
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namely the mean of the contribution of i to the distance dkk′ , k′ = 1, . . . , K and k′ 6= k.
But this way of defining dik is somewhat cumbersome and the first experiments are

not encouraging at all. Thus we propose an alternative and simpler way of defining dik.
First notice that (1) can be written
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The key is to define dik as dikk′ , with k′ = i and thus with tik′ = 1. It leads to
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3 The suggested representation
We think that a good way to represent the clusters and the observations on the MDS

map could be to represent the clusters C1, . . . , CK with big points of different colours and
the observations i, i = 1, . . . , n with smaller points of the same color than the cluster k(i)
such that k(i) = maxk tik.

No doubtful and maybe misleading confidence regions or levels, but the mixing of
colours will indicate the degree of component overlap. An last but not least, such graphical
representations will take advantage from the contribution indices of factor analysis.
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