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1. Introduction

Groups of birational transformations of algebraic varieties, i.e. transformations
given locally by quotients of polynomials, have a special place in algebraic geometry
as the classification of algebraic varieties is up to birational transformations instead
of isomorphisms (given locally by polynomials). One of the richest and interesting
ones is the Cremona group, i.e., the group of birational transformations of the
projective space.

Even if these groups are coming from algebraic geometry, geometric group the-
oretic methods have been particularly powerful in order to study Cremona groups
of rank 2 (see Subsection 3.4). Nevertheless, until recently, these methods could
not be used to study Cremona groups of higher ranks as no (non-trivial) action on
geometric spaces where known.
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The aim of this survey is to introduce gently recent constructions ([LU21],
[GLU24], [LPU24], [CdC19]) of actions of Cremona groups on median graphs (or
CAT(0) cube complexes) to both algebraic geometers and geometric group theorists,
as well as explaining which kind of results can be obtained from these actions.

On the other hand, having examples of groups that are huge (in the sense for
instance that they are not finitely generated) and acting on geometrical objects not
locally compact or of infinite dimension gives a motivation to try to extend the
scope of classical results of geometric group theory.

Let us illustrate this briefly on a specific question that will be of interest along
this survey. Some birational transformations are conjugate (by a birational map)
to an automorphism of a variety; they are called regularizable. One of the question
that has lead to these constructions of median graphs is the following.

Question 1.1. Let G be a finitely generated subgroup of Bir(X) such that
for any g ∈ G, g is regularizable. Is G regularizable, i.e., do there exist a variety
Y and a birational map ϕ : Y 99K X such that G is conjugated to a subgroup of
automorphisms of Y : ϕ−1Gϕ ⊂ Aut(Y )?

As we will see in Section 4, the plane Cremona group acts on a median graph,
called the blow-up graph. Moreover, the Cremona transformations inducing a el-
liptic isometries on this graph, namely the ones fixing a vertex, are exactly the
Cremona transformations that are regularizable. Hence, from a geometric group
theoretic point of view, the question can be rephrased as follows: if a finitely gen-
erated group acts on a median graph purely elliptically, does the entire group fix a
same vertex. This is a natural question from the theory of median graphs and sev-
eral works have been done in this direction (see Subsection 2.4). The answer to the
above question is no in general, but it has been answered positively by [GLU24]
with the extra condition that the median graph is without infinite cubes. This has
been motivated by the study of the action of the Neretin group and on the Cremona
group over finite fields acting on median graphs without infinite cubes.

This expository article has been built on a mini-course given for early ca-
reer mathematicians working in geometric group theory at “Riverside workshop on
geometric group theory” in March 2023 and organized by Matthew Durham and
Thomas Koberda. It also includes proofs or idea of proofs when considered better
for the understanding. Everything in this survey can be found either in the classical
literature or in the references given, except the construction of the rational blow-up
graph constructed in 4.2.

Acknowledgements. The author would like to thank warmly Matthew Durham
and Thomas Koberda to have organized this nice workshop, as well as the referees
and Serge Cantat for their careful reading and comments that helped to strongly
improve this survey. Finally, the author would like to thank strongly her co-authors
Anthony Genevois and Christian Urech whose many joint works are presented here
and are the heart of this survey. She thanks them also for the several discussions
and references given.

Organization of the survey. In order to make it the simplest possible for
geometric group theorists, the scope of the constructions has been narrowed com-
pared to the original articles. For instance, whenever possible, the constructions
will be done in the context of quasi-projective varieties over algebraically closed
fields. Nevertheless, one should keep in mind that these restrictions are only done
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to remove a bit of technicality but that one of the strengths of these constructions
is that they allow to prove results for groups of birational transformations over
arbitrary fields.

Section 2 is an introduction to median geometry. A large part of this section
is inspired by the book [Gen23b]. Subsection 2.4 is dedicated to purely elliptic
actions on median graphs. Section 3, largely inspired by the book [Lam21], intro-
duces Cremona groups and is principally addressed to non algebraic geometers. A
small state of the art on geometric group theoretic aspects of Cremona groups can
be found in Subsection 3.4. In Section 4, we present several recent constructions
of actions of groups of birational transformations of surfaces on median graphs
([LU21], [GLU24], [LPU24]) with some results that can be obtained from those
actions. In Subsections 4.2 and 4.3 we answer positively Question 1.1 respectively
for Cremona groups of rank 2 over finite fields and for the Jonquières group. Finally,
in Section 5 we present the construction of actions of groups of birational transfor-
mations of varieties of any dimension on median graphs, and some results that can
be obtained, as well as a comparison with the related construction of [CdC19] and
[Cor20] in Subsubsection 5.1.5.

2. Median geometry

In this Section we introduce basic material of median geometry with an accent
in Subsection 2.4 on purely elliptic actions.

2.1. CAT(0) cube complexes vs median graphs. In this subsection, we
introduce the notions of CAT(0) cube complexes and median graphs and see how
they are related. We then justify our choice of using the median vocabulary, which
emphasis the combinatorial aspect rather than the CAT(0) one. There exists a
large literature on this topic. You can find this material for instance in [BH99],
[Sag14], [Hag19], [Gen23b].

2.1.1. Cube complexes. A face of an Euclidean cube C is the convex hull of a
non-empty subset of the set of vertices of the cube C. A cube complex C is a union
of finite dimensional Euclidean unit cubes glued together by isometries between
some faces. We denote by C0 its vertex set. The cube complex is said of finite
dimension if it admits a global bound on the dimension of its cubes (in this case,
its dimension is the maximal dimension of its cubes), otherwise it is of infinite
dimension. It is locally compact if any vertex belongs to only finitely many edges.
If no vertex of C belongs to an increasing sequence of cubes (Ci)1≤i≤n, meaning
that the dimension of Ci is i and Ci is a face of Ci+1, then it is said locally of finite
dimension. Otherwise, the cube complex contains an infinite cube meaning a copy
of the graph whose vertices are the finitely supported sequences in {0, 1}I , for some
infinite set I, and whose edges connect two sequences whenever they differ on a
single coordinate.

From now on, we assume cube complexes to be connected. A path, in the
1-skeleton of a cube complex C, between two vertices x, y ∈ C0 is a sequence of
vertices of C, p = (x0 = x, x1, . . . , xn = y), such that two consecutive vertices are
adjacent, i.e., connected by an edge. The integer n is called the length of this path,
and it is denoted by L(p). A string between two points x, y ∈ C is a sequence of
points of C, s = (x0 = x, x1, . . . , xn = y), such that two consecutive points xi, xi+1

belong to a common Euclidean cube. The integer n is called the size of the string,
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(b) Link of v.

Figure 1. Example of a flag link.

and it is denoted by S(s). Note that the Euclidean distance |xi+1 − xi| between
two successive points is well defined. The length L of this string will be the sum of
the Euclidean distances between all pairs of consecutive points of this string:

L(s) :=

n−1∑
i=0

|xi+1 − xi|.

(Connected) cube complexes can be endowed with several natural metrics. Let us
introduce the most classical ones. Let C be a (connected) cube complex.

• The one usually used is the graph-metric with the convention that any
edge of the cube complex is isometric to the Euclidean interval [0, 1]. It is
denoted by d. The graph-metric between two vertices x, y ∈ C0 is defined
as the infinimum of the lengths of all paths between x and y:

d(x, y) := inf{L(p) | p is a path between x and y}.
• The Euclidean metric is the one that will justify the name of CAT(0)

cube complex even if in practice it is not so easy to deal with this metric.
The Euclidean distance between two points x and y of C is defined as the
infinimum of the lengths of all strings between x and y:

dEuc(x, y) := inf{L(s) | s is a string between x and y}.
• The d∞ metric is the minimal size of all the strings between x and y:

d∞(x, y) := min{S(s) | s is a string between x and y}.

For instance, in Figure 1a, d(u, x4) = 4, dEuc(u, x4) =
√

3 + 1 and d∞(u, x4) = 2.
In a metric space (X,d), a geodesic between two points x, y ∈ X, is a contin-

uous path γ : [0,d(x, y)] → X realizing the distance between x and y: γ(0) = x,
γ(d(x, y)) = y and for all t1, t2 ∈ [0,d(x, y)], d(γ(t1), γ(t2)) = |t1 − t2|. For in-
stance, in Figure 1a, the respective paths in the 1-skeleton of the cube complex
(u, u1, x3, v, x4) and (u, u2, x1, v, x4) are geodesics between u and x4 for the graph-
metric, while they are not geodesics for the Euclidean metric. On the other hand,
for the Euclidean metric, the diagonal [u, v] of the cube union [v, x4] is a geodesic.

2.1.2. CAT(0) metric spaces. A metric space (X,d) is geodesic if any pair of
points can be joined by a geodesic. In such a space a geodesic triangle T will be the
data of a triple of points x1, x2, x3 ∈ X together with a choice of three geodesics
[xi, xj ] for 1 ≤ i < j ≤ 3. A comparison triangle T̄ in R2 is a triangle x̄1x̄2x̄3 of

R2 whose sides have the same lengths as the ones of T : |x̄i − x̄j | = d(xi, xj) for
1 ≤ i < j ≤ 3. Hence to any point p of T , there exists a unique comparison point
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Figure 2. Example of a non-flag link.

p̄ on T̄ defined as follows: p̄ ∈ [x̄i, x̄j ] and |p̄ − x̄i| = d(p, xi) where 1 ≤ i < j ≤ 3
are such that p ∈ [xi, xj ].

Definition 2.1. A geodesic metric space (X,d) is a CAT(0) space if for any
geodesic triangle T and for any pairs of points p1, p2 ∈ T , the following inequality
holds:

d(p1, p2) ≤ |p̄1 − p̄2|,
where p̄1 and p̄2 are the comparison points in T̄ of p1 and p2.

A CAT(0) cube complex is a cube complex that is a CAT(0) metric space when
endowed with the Euclidean metric. They first appeared in [Gro87] as a nice
family of examples of CAT(0) spaces. Since then, they have been largely studied
on their own. Indeed, they are powerful tools to study groups even if their CAT(0)
geometry is rarely used (see for instance [Gen23d]). In general, checking whether
a geodesic metric space is CAT(0) or not can be very difficult, nevertheless there
exists a nice combinatorial criterion in the case of cube complexes.

2.1.3. Combinatorial point of view on cube complexes. Consider v a vertex of
C. The link of v, denoted by Lk(v), is the simplicial complex whose vertices are
the vertices of C that are adjacent to v and a set of vertices {v1, . . . , vn} in Lk(v)
spans a (n− 1)-simplex in Lk(v) if {v, v1, . . . , vn} is contained in the set of vertices
of a n-cube in C (see for instance Figures 1 and 2). The link of v is called flag if
every finite set {v1, . . . , vn} of vertices of Lk(v) that are pairwise adjacent, spans a
(n − 1)-simplex in Lk(v). For instance, the link of v in Figure 1b is flag while the
one in Figure 2b is not.

By a theorem of Mikhail Gromov [Gro87, Section 4.2.C] in the finite dimen-
sional case, and by Ian Leary [Lea13] in the infinite-dimensional case, we have the
following useful criterion that will be taken in what follows as definition of CAT(0)
cube complexes, as it is usually the one used in practice.

Theorem 2.2 ([Gro87], [Lea13]). A cube complex is CAT(0) if and only if it
is simply connected and the link of any vertex is flag.

For instance, the cube complex of Figure 1a is CAT(0) while the one of Figure
2a is not.

Note that with the above definition-theorem, the non-positive curvature of a
cube complex can be understood only by its combinatorial structure. In what fol-
lows we will never use the Euclidean metric, but most of the time the graph metric.
We will see in the next subsection that 1-skeletons of CAT(0) cube complexes are
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Figure 3. Examples of median graphs.
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(b) Three 4-cycles in a hypercube.

Figure 4. Example of non-median graphs.

median graphs and that indeed they contain already all the information needed for
our purpose.

2.1.4. Median graphs. In this survey, graphs are always assumed to be con-
nected and simplicial : no self-loops nor multiple edges are allowed.

Definition 2.3. Let X be a graph and x1, x2, x3 ∈ X three vertices. A median
point of x1, x2, x3 is a vertex m ∈ X satisfying

d(xi, xj) = d(xi,m) + d(m,xj) for all i 6= j.

A graph is median if any triple of vertices admits a unique median point.

Trees are the most basic examples of median graphs. Indeed, three points
x1, x2, x3 of a tree always define a tripod. The center of the tripod, i.e., the only
vertex that is at the intersection of the three geodesics c = [x1, x2]∩[x2, x3]∩[x3, x1]
is the median point (see for instance Figure 3a). Another important family of
examples is the one of hypercubes that are 1-skeletons of cubes (see for instance
Figure 3b). If we remove the point m of the hypercube of Figure 3b, we obtain a
graph which is not median anymore: the points x1, x2, x3 do not have a median
point (see Figure 4b). In the complete bi-partite graph K2,3 there exists three
points admitting two median points (see Figure 4a), so K2,3 is not a median graph.

Theorem 2.4 ([Che00, Ger98, Rol98]). A graph is median if and only if it
is the one-skeleton of a CAT(0) cube complex.

Indeed, as explained in [Gen23d], for the purpose of geometric group theory we
more often work with the median geometry than with the CAT(0) geometry. Hence,
starting from now on we will speak about “median graphs” instead of “CAT(0) cube
complexes” to emphasis the phenomenon even if in the literature the term “CAT(0)
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Figure 5. Example of a median graph with its cubical subdivi-
sion (respectively red, orange, yellow and green vertices correspond
respectively to 0,1,2,3-dimensional cubes).

cube complex”. Nevertheless, the cubical structure is always present; so probably
a better name would be median cube complexes...

In a median graph, we will call cube the 1-skeleton of a cube. We call cube
completion of a median graph the cube complex obtained by filling the cubes of
the graph. The dimension of a median graph is the one of its cube completion.
Hence, by analogy we will say that a median graph is respectively of finite dimen-
sion, infinite dimension, locally of finite dimension, locally compact when the cube
completion will be. The cubical subdivision of a median graph G is the graph whose
vertices are the cubes of G and whose edges connect two cubes C1, C2 if one contains
the other one and |dim(C1)− dim(C2)| = 1 (see Figure 5 for an example).

Definition 2.5. A cubical orientation on a median graph G is an orientation of
all the edges of G so that two opposite sides in a 4-cycle have parallel orientations.

Note that it is equivalent to have a map that associates to any hyperplane
H one of the two halfspaces that it delimits, denoted by H+. Be aware that
usually an orientation of a median graph requires also the condition that for any two
hyperplane H1 and H2, H+

1 ∩H
+
2 6= ∅; in this survey, we will not ask for this extra-

condition. It is always possible to endow a median graph with a cubical orientation.
For instance, fix a vertex v ∈ G in the median graph. For any hyperplane H, H+

is the halfspace containing x.

2.2. Hyperplanes. A fundamental tool in the study of median graphs is the
notion of “hyperplanes”. Throughout this section G is a median graph.

Two edges e and f of G are equivalent if there exists a sequence of edges
(ei)0≤i≤n such that e0 = e, en = f and for every 0 ≤ i ≤ n − 1, the two edges ei
and ei+1 are the opposite edges of a 4-cycle of G.

Definition 2.6. A hyperplane of a median graph G is the equivalence class of
an edge e and it will be denoted by [e].

For instance, the median graph of Figure 1a admits 4 hyperplanes: the blue
one, the red one, the dark one and the brown one.

A subgraph Y of G is convex if all geodesics between two vertices in Y are
contained in G. An important property of convex subgraphs in median graphs is
that they satisfy the Helly property for median graphs:

Proposition 2.7. Let G be a median graph and Y1, . . . , Yn convex subgraphs
that pairwise intersect. Then the intersection

⋂
1≤i≤n Yi is non-empty.

Note that the Helly property for median graphs does not hold for an infinite
family of convex subgraphs.



8 ANNE LONJOU

•
u1

•
v1

•u2 •
v2

•
u4 •

v4

•
u3 •

v3 •
v5

•
v6

Figure 6. The red hyperplane and its two halfspaces: the blue
and green subgraphs.

By [Sag95, Theorem 4.10], the graph obtained from G by removing the (in-
teriors of the) edges in the hyperplane H has exactly two connected components,
referred to as halfspaces (see for instance Figure 6), which are both convex sub-
graphs. A path in G is said to cross a hyperplane H, if there exist two consecutive
vertices of this path that are connected by an edge belonging to the equivalence
class H. Two vertices of G, or more generally two subgraphs of G are separated by
a hyperplane H if they belong respectively to different halfspaces that H delimits.
Two distinct hyperplanes are transverse if there exists a 4-cycle that contains an
edge (indeed 2) in both of them, or equivalently if each halfspace delimited by one
intersects the two halfspaces delimited by the second hyperplane. If they are not
transverse they will be called disjoint. For instance, in the median graph of Fig-
ure 1a, the blue hyperplane is transverse to the three other hyperplanes. The red
hyperplane and the brown one are disjoint, and they both separate x1 from x4.

The convex hull of a subgraph Y , denoted by Conv(Y ) is the smallest convex
subgraph of G containing Y , and it can be characterized through the following
intersection of halfspaces.

Proposition 2.8. Let G be a median graph and Y be a subgraph of G. The
convex hull of Y coincides with the intersection of all the halfspaces containing Y .

The neighborhood of a hyperplane H (sometimes called the carrier of H) and
denoted by N(H) is the subgraph whose vertices are all the vertices belonging to
some edges of H, and an edge links two such vertices if they are linked already
in G. The neighborhood of a hyperplane is a convex subgraph. For instance, in
Figure 1a, the neighborhood of the blue hyperplane is all the median graph while
the neighborhood of the brown one is the 4-cycle v − x4 − s− x3.

We say that a family of hyperplanes H1, . . . Hn generates a cube of dimension
n if the intersection of their neighborhoods ∩1≤i≤n N(Hi) is a cube of dimension n.
For instance, in Figure 1a the red, blue and dark hyperplanes generate a cube of
dimension 3. Cubes can be generated by pairwise families of transverse hyperplanes
(see [Gen23b] or as a consequence of [Sag14, Proposition 2.1] for instance):

Proposition 2.9. Let G a median graph. A finite family of n hyperplanes
generates a cube of dimension n if and only if they are pairwise transverse.

Note that Proposition 2.9 can not be extended to infinite families of pairwise
transverse hyperplanes as it is illustrated in the following example [Gen23b, Ex-
ample 1.6.5].
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Example 2.10. Let {0, 1}N denote the set of finitely supported sequences N→
{0, 1}. We define a graph as follows. The vertex-set consists in the set {0, 1}N ×N
and the edges are of two types:

• Type 1: there is an edge connecting (u, p) and (u, p± 1);
• Type 2: there is an edge connecting (u, p) and (v, p) if u and v differ at a

single integer q ≤ p.
It is a median graph containing an infinite family of pairwise transverse hyperplanes
as all the hyperplanes defined by edges of type 2 are pairwise transverse. But it is
locally finite so it does not contain an infinite cube.

Hyperplanes are also an important tool to characterize geodesics.

Theorem 2.11 ([Sag95, Theorem 4.13]). A path joining two vertices is ge-
odesic if and only if it crosses each hyperplane at most once. In particular, the
distance between two vertices is equal to the number of hyperplanes that separate
these two vertices.

For instance, in the median graph of Figure 1a, the path [x1, v] ∪ [v, x4] is
geodesic while any other path joining x1 and x4 is not.

2.3. Isometries. As we are interested in group actions, we describe in this
section the possible isometries of median graphs. Let us introduce first some defi-
nitions. Let f be an isometry of a median graph G. The translation length of f is
the non-negative integer:

`(f) := min{d(f(x), x) | x ∈ G0}.
The set of vertices realizing the translation length of f is called the minimizing set
of f and it is denoted by

Min(f) := {x ∈ V (L) | d(x, f(x)) = `(f)}.
An isometry f inverses a hyperplane H if it switches its two corresponding halfs-
paces: f(H+) = H− (and thus f(H−) = H+). If such hyperplane H does not exist,
we say that f acts without inversion. An isometry f acts stably without inversion
if f and all its iterates act without inversion.

We define now several isometry’s types.

Definition 2.12. Let f be an isometry of a median graph G.

• f is elliptic if it fixes a vertex. In this case, the minimizing set of f is also
called the fixed-point set of f and it is denoted by Fix(f).

• f is periodic if it preserves a cube.
• f is loxodromic if it preserves a bi-infinite geodesic path and acts as a

non-trivial translation along it. Such a geodesic path is called an axis of
f .

• f is helixodromic if it stabilizes a product Q × L of a cube Q with a
bi-infinite geodesic path L such that it acts on L as a translation and on
Q with no fixed point.

Note that an elliptic isometry is also periodic, but all the others cases are
disjoint. A periodic isometry of a locally finite dimensional median graph G induces
an elliptic isometry on the cubical subdivision of G; the isometry induced fixes the
vertex corresponding to the cube preserved by the initial isometry. Be aware that,
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often in the literature, “elliptic isometries” are defined as the ones fixing a point of
the space and not only a vertex. Hence, when the median graph is locally of finite
dimension, they correspond to our notion of “periodic isometries”.

As shown in the following theorem the isometry’s types defined in Definition
2.12 are the only ones existing for median graphs.

Theorem 2.13 ([Hag23],[Gen23b]). Let f be an isometry of a median graph
G. Then f is either periodic, or loxodromic, or helixodromic; the different cases
being exclusive. Moreover, if f acts stably without inversion then it is either elliptic
or loxodromic, and in particular, for any x ∈ Min(f), d(x, fn(x)) = n`(f) for all
n ∈ N.

The heart of the above theorem is the second part. It is due to [Hag23] where it
is also shown that the condition of acting stably without inversion is not restrictive.
Indeed, any isometry of a median graph G acts without inversion on the cubical
subdivision of G. The general statement comes from the fact that an isometry of
a median graph G that is elliptic on the cubical subdivision of G is periodic on G,
and one that is loxodromic on the cubical subdivision of G is either loxodromic or
helixodromic on G. Theorem 2.13 can be found in [Gen23b].

The following corollary is a direct consequence of Theorem 2.13 and it is one
of the main tools we will use.

Corollary 2.14. Let f be an isometry of a cube oriented median graph G that
preserves this orientation. Then f is either elliptic or loxodromic, and in particular,
for any x ∈ Min(f), d(x, fn(x)) = n`(f) for all n ∈ N.

The second main tool that we will use is given in the following proposition,
which has been shown in [Ger98] for the case of finitely generated groups and in
[Cor13, Corollary 7.G.4 and Remark 7.F.8] for the general case.

Proposition 2.15 ([Ger98],[Cor13]). If a group acts isometrically on a me-
dian graph with a bounded orbit then it preserves a cube. Moreover, if the action
preserves a cubical orientation the group fixes a vertex.

The last assertion, is an immediate consequence of the fact that a cube of an
oriented median graph has always a vertex such that all the edges of the cube issued
from this vertex are oriented to go away of this vertex. Hence, a group preserving
a cube such that the cubical orientation is preserved, fixes this vertex.

Note that in the finite dimensional case and using the CAT(0) metric of the
cube completion, Proposition 2.15 is very well known. When the dimension is
finite, the cube completion is a complete CAT(0) metric space and so such a group
fixes the circumcenter of the orbit (see [BH99]) and then the cube preserved is the
smallest (for the dimension) cube containing this fixed point.

The general case relies on the finite dimensional case as one can prove that if
a group acts isometrically on a median graph with a bounded orbit, it also admits
a finite orbit in the graph. The convex hull of this finite orbit is a finite median
subgraph invariant by the action of the group. In order to end the proof without
using the CAT(0) metric, a median argument is given in [Gen23b, Lemma 4.1.2]:
because the median graph is finite, halfspaces contain a finite number of vertices.
Take the intersection of all halfspaces that are strictly bigger than their opposite
halfspace. By a cardinality argument two such halfspaces pairwise intersect and so
by Helly property for median graphs 2.7, this intersection is a non-empty convex
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subgraph. Moreover it contains only hyperplanes whose two halfspaces contain the
same number of vertices and so they are pairwise transverse, forming a cube by
Proposition 2.9.

2.4. Purely elliptic actions on median graphs. In this subsection, we are
interested in the orbits of groups acting on median graphs purely elliptically meaning
that any element fixes a vertex of the graph. Notice that having a bounded orbit is
equivalent to having all orbits bounded. Moreover, by Proposition 2.15, it is also
equivalent to preserve a cube.

Question 2.16. Let G be a finitely generated group acting purely elliptically
on a median graph. Are the G-orbits bounded?

Without the assumption that the group is finitely generated, we can answer
negatively Question 2.16. For instance, the infinite torsion group

⊕
Z Z /2Z ad-

mits a purely elliptic action on a tree with unbounded orbits. It is an exam-
ple of a more general construction that can be found in [Gen23b, Corollary
4.2.2]. The construction is explicit and it is as follows. For i ∈ Z, let Hi de-
note the subgroup of

⊕
Z Z /2Z corresponding to the Z /2Z of the i-th factor,

and for i ∈ N∗, let Gi be the proper subgroup of
⊕

Z Z /2Z generated by the
subgroups H−i, . . . ,H−1, H0, H1, . . . ,Hi. Consider the graph T with vertex-set
{gGi | g ∈

⊕
Z Z /2Z and i ∈ N∗} and whose edges connect gGi and gGi+1 for all

g ∈
⊕

Z Z /2Z and i ∈ N∗.
⊕

Z Z /2Z acts by left multiplication on the vertex-set
and the vertex-stabilizers are conjugate of the subgrougs Gi.

It remains to understand why T is a tree. Indeed, it is connected because any
vertex gGi can be linked by a path to G1: due to the fact that G1 ⊂ G2 ⊂ . . .
covers

⊕
Z Z /2Z there exists j ∈ N∗ such that g ∈ Gj . If j ≤ i then gGi = Gi

and the path is obvious, otherwise gGi − gGi+1 − · · · − gGj = Gj −Gj−1 − . . . G1

is a path between gGi and G1. To see that there is no cycle, define the height of a
vertex gGi as i. T can not have any cycle because a vertex of height i has a unique
adjacent vertex that has height i+ 1.

Adding a restriction on the dimension of the median graph, Question 2.16 has
been answered positively. The theorem below is optimal in the sense that there
exist counter-examples to Question 2.16 when the median graph has infinite cubes
(see Subsection 2.4.3).

Theorem 2.17 ([GLU24]). Let G be a finitely generated group acting purely
elliptically on a locally finite dimensional median graph G, then G has a bounded
orbit.

The finite dimensional case was already known: it is a consequence of [Sag95,
Theorem 5.1] that has been remarked by Pierre-Emmanuel Caprace in [CFI16,
Proposition B.8]. A proof can also be found in [Fio18, Theorem 3.1] or in [LV20].

2.4.1. Finite dimensional case. In this section, we focus on the idea of the proof
of Theorem 2.17, in the specific case of finite dimensional median graphs following
[LV20]. It illustrates nicely the importance of hyperplanes in median graphs.

Let us start first with a baby case: the case of (simplicial) trees.

Theorem 2.18 ([Ser80]). Let G be a finitely generated group acting on a tree
T and generated by g1, . . . , gn. Assume that gigj induces an elliptic isometry of T
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•
P

•
Q

•g1Q

Fix(G2)Fix(g1)

Figure 7. The fixed-point sets of g1 and G2 are disjoint.

for all 0 ≤ i < j ≤ n (with the convention that g0 = id). Then the group G fixes a
vertex of T .

Corollary 2.19 ([Ser80]). Let G be a finitely generated group acting purely
elliptically on a tree, then the group G fixes a vertex of this tree.

Periodic isometries of trees are either elliptic, or fix the middle of an edge.
Indeed, as already mentioned, they induce elliptic isometries on the cubical subdi-
vision of the initial tree, which is also a tree. Hence, as an immediate consequence
we have:

Corollary 2.20 ([Ser80]). Let G be a finitely generated group acting purely
periodically on a tree, then the group G fixes a vertex or the middle point of an
edge.

Indeed actions on trees are really rigid. For instance, if you consider an elliptic
isometry g of a tree T , then it has the strong property that for any vertex v ∈ T 0,
the middle point m(v, gv) ∈ T 0 between v and gv is fixed by g.

Proof of Theorem 2.18. We prove the theorem by induction on the num-
ber of generators of G. If G is cyclic, the result is immediate. Assume that G
is generated by n elements. We denote by G2 the subgroup of G generated by
g2, . . . , gn. Assume by contradiction that the fixed-point sets of g1 and G2 are dis-
joint. Because we are in a tree, there exists a unique geodesic joining Fix(g1) and
Fix(G2), denoted by [P,Q] with P ∈ Fix(g1), Q ∈ Fix(G2) and this geodesic real-
izes the distance between the two fixed-point sets (see Figure 7). This implies that
g1Q is not equal to Q and that the concatenation of the geodesics [g1Q,P ]∪ [P,Q]
is still geodesic. Moreover, g1Q = g1gkQ for all 2 ≤ k ≤ n, and g1gk induces an
elliptic isometry by assumption. As a consequence, P , which is the middle of g1gkQ
and Q, is fixed by g1gk, for all 2 ≤ k ≤ n. This implies that P is fixed by gk, for
all 2 ≤ k ≤ n, hence by G2, that is a contradiction. �

Theorem 2.21 ([Sag95]). Let G be a finitely generated group acting purely
elliptically on a finite dimensional median graph, then G has a bounded orbit.

The strategy of the proof is the following. Assuming that G does not have a
bounded orbit will allow us to build a loxodromic element of G that will lead to a
contradiction. To do so, the game is to find three parallele hyperplanes in a same
orbit:

Lemma 2.22 ([Sag95]). Consider the action of a group G on a median graph
such that there exists a hyperplane H and two elements g, h ∈ G such that the
hyperplanes H, gH and hH are pairwise disjoint with gH that separates H and
hH. Then G contains a loxodromic element.
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Figure 8. The family of hyperplanes red, orange, blue and green
does not contain three pairwise disjoint hyperplanes.

Indeed, the assumption implies that once given a cubical orientation on the
median graph G, there exist two positive halfspaces or two negative halfspaces of
these hyperplanes such that one is included in the other one providing a loxodromic
element; if for instance gH+ ⊂ H+ then g is loxodromic.

Finding three parallele hyperplanes in the same orbit when the median graph
is of finite dimension can be easily done if there exists an orbit of hyperplanes
containing enough hyperplanes compared to the dimension of the median graph.
For instance in the case of trees, any family of three hyperplanes has this property,
but already in dimension 2 we need more: in the standard Cayley graph of Z2 (see
Figure 8), any family of at least 5 hyperplanes has the desired property, but not
any family of 4 hyperplanes.

Lemma 2.23 ([Sag95, Lemma 5.2]). Let G be a median graph of dimension d
and S be a finite set of hyperplanes of G. If the cardinality of S satisfies |S| ≥
d+ d(d+ 1) then there exists in S three hyperplanes that are pairwise disjoint.

Idea of proof of Theorem 2.21. Consider g1, . . . gn ∈ G a symmetric gen-
erating set of G. Assume by contradiction that its orbits are unbounded. Let v
be a vertex of G. For 1 ≤ i ≤ n, denote by Si the set of hyperplanes separating
v and giv, and by S the union of the Si’s: S =

⋃
1≤i≤n Si. Note that S is finite.

By assumption on the action of G, its orbits are unbounded so in particular there
exists an element g ∈ G satisfying N := d(v, gv) ≥ |S| (d+ d(d+ 1)). Denote by
K := {K1, . . . ,KN} the set of hyperplanes separating v and gv. Writing g as a
product of generators g = gi1 . . . gik for some 1 ≤ i1, . . . , ik ≤ n, the union of the
following geodesics [v, gi1v]∪ [gi1v, gi1gi2v]∪· · ·∪ [gi1 . . . gik−1

v, gv] is a path joining
v and gv. Hence any hyperplane Kj crosses at least one of the above geodesics,
meaning, by construction, that they are in the orbit of a hyperplane of S. By
assumption on N and by the pigeonhole principle, there exist a hyperplane J of
S and a subfamily of K of size at least d + d(d + 1) whose all hyperplanes are in
the orbit of J . By Lemma 2.23, this implies that in the orbit of J there exists 3
hyperplanes that are pairwise disjoint. We get the contradiction using Lemma 2.22
who provides a loxodromic element in G. �

2.4.2. Case of locally finite dimensional median graphs. In the infinite-dimensional
case, the previous proof fails because we can not use Lemma 2.23 anymore. Nev-
ertheless, with the restriction that the dimension is locally finite, the same result
holds [GLU24]. We present here an idea of the proof.
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The following lemma allows us to first restrict the action of G on the convex
hull of the orbit of a vertex x0 ∈ G. It is well known, and it is contained in the
proof of [Sag95, Theorem 5.1] (see also [GLU24] or [Gen23b] for instance).

Lemma 2.24. Let G be a finitely generated group acting on a median graph G.
For every vertex x0 ∈ G0, the convex hull of the orbit G ·x0 is a G-invariant convex
subgraph on which G acts with finitely many orbits of hyperplanes.

Recall that the distance d∞ has been introduced in Subsection 2.1.1 for CAT(0)
cube complexes, but we can define it for median graphs using cube completion.
Another equivalent way to define it for median graphs, using Proposition 2.9, is
as follows. Given a median graph G and two vertices x, y ∈ G0, d∞(x, y) is the
maximal number of pairwise disjoint hyperplanes that separate x and y.

The main difficulty to deal with, in the infinite-dimensional case, is that the
dimension of cubes being not uniformly bounded, it could happen that G has an
unbounded orbit but that the orbit of a point is bounded with respect to the
distance d∞. Indeed, in this case, it is not always possible to find three pairwise
disjoint hyperplanes; preventing us to use Lemma 2.22 to build easily a loxodromic
element.

Idea of proof of Theorem 2.17. As a consequence of Lemma 2.24, we can
assume that G coincides with the convex hull of the orbit G · x0 for some x0 ∈ G0.
G has to be bounded with respect to d∞. Indeed, this can be proved by con-

tradiction, using that, by Lemma 2.24, the number of orbits of hyperplanes is finite
and then using the pigeonhole principle and Lemma 2.22 to build a loxodromic
element.

As a consequence, given a halfspace H1 delimited by a hyperplane H, we can
define the depth of H1 by

p(H1) := max {d∞(x,N(H)) | x ∈ H1} .
A hyperplane is balanced if the two halfspaces it delimits have the same depth, and it
is unbalanced otherwise. If H is an unbalanced hyperplane, we call larger halfspace
(respectively thinner halfspace) the halfspace that has the larger (respectively the
thinner) depth and we denote them respectively by H` and Ht. If H is a balanced
hyperplane, we denote by p(H) the common depth of the two halfspaces it delimits.
For instance in Figure 6, the red hyperplane is unbalanced, the blue halfspace has
depth 0 and it is the thinner one, whereas the halfspace green has depth 1 and is
the larger one. In Figure 1a, the blue hyperplane is balanced and its depth is 0,
whereas the red, the brown and the black ones are unbalanced.

It is not so hard to see that the intersection of two larger halfspaces is never
empty, and that two balanced hyperplane are always transverse.

If G contains only balanced hyperplanes, they are pairwise transverse and so by
Proposition 2.9 it must be a cube, possibly infinite dimensional. But we know by
assumption that G does not contain an infinite-dimensional cube, so we conclude
that G stabilises a finite cube, and that its orbits are bounded, as desired.

Otherwise, we consider the intersection of all the larger halfspaces:

C :=
⋂

H unbalanced

H`.

For instance in Figure 1a, the intersection of all the larger halfspace is the edge
[v, x3]. If C is non-empty, then it defines a G-invariant convex subcomplex as a
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consequence of the convexity of halfspaces. Moreover, it contains only pairwise
transverse hyperplanes, so we conclude as previously that C is a finite cube, and
that the orbits of G are bounded.

The final step is to prove that C can not be empty. We do it by contradiction.
By Helly property for median graphs (Proposition 2.7) it implies in particular that
the set of unbalanced hyperplanes is infinite. Using the following lemma, it remains
to construct a geodesic ray.

Lemma 2.25. Let G be a median graph and ρ a geodesic ray. If G does not
contain an infinite cube, then ρ has infinite diameter with respect to d∞.

We do it as follows. We construct a sequence of vertices (vi)i≥0 and a sequence
of unbalanced hyperplanes (Hi)i≥1 in the following way.

• We fix an arbitrary vertex v0 ∈ G0.
• If v0, . . . , vi and H1, . . . ,Hi are defined, we fix an unbalanced hyperplane
Hi+1 satisfying vi ∈ Ht

i+1 and we define the vertex vi+1 as the projection

of vi onto H`
1 ∩ · · · ∩H`

i+1.

Note that the projection is well defined because the intersection H`
1 ∩ · · · ∩ H`

i+1

is non-empty by the Helly property for median graphs (Proposition 2.7). Observe

that, by construction, we have vi ∈
⋂i
k=1H

`
k for every i ≥ 1, hence by assumption,

it is always possible to find a hyperplane Hi+1 such that vi ∈ Ht
i+1.

Let us illustrate this construction in the case of Figure 1a. Note that we can not
get an infinite sequence as our cube complex is finite. Nevertheless it illustrates how
the construction works. If we start for instance with the vertex u, we can choose as
first hyperplane the red one (the black one would have been also a possible choice).
Then the projection is the vertex u1. Then the second hyperplane has to be the
black one and the vertex v2 is x3. And then we can not continue because we are
indeed in the intersection of all the larger halfspaces of the median graph.

For every i ≥ 0, fix a geodesic [vi, vi+1] between vi, vi+1. The last step in order
to achieve the proof is to show that the concatenation [v0, v1]∪ [v1, v2]∪ · · · defines
a geodesic ray. �

2.4.3. Case of infinite-dimensional median graphs not locally of finite dimen-
sion. In the case of infinite-dimensional median graphs that are not locally of finite
dimension, the answer to Question 2.16 is no. Indeed, there exist several counterex-
amples to this question.

For instance, consider the Grigorchuk group. It is a famous example of a
finitely generated infinite torsion group. Hence it acts on any median graph purely
elliptically by Proposition 2.15. It is known that Grigorchuk groups have Schreier
graphs with 2 ends ([GK12]), and [Sag95] proved that if a finitely generated group
has a Schreier graph with more than one end, one can construct an unbounded
action on a median graph. More recently, [Sch24] proved that many Grigorchuk
groups act properly on a median graph.

Another counterexample can be found in [Osa18]. Recall that the free Burnside
group B(m,n) is defined by the presentation

B(m,n) = 〈s1, s2, ..., sm | w(s1, s2, ..., sm)n〉

where w runs over all words in s1, s2, . . . , sm.
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Theorem 2.26 ([Osa18]). If the free Burnside group B(m,n) is infinite then,
for every integer k > 1, the free Burnside group B(m, kn) acts without bounded
orbits on a median graph.

Note that knowing if B(m,n) is finite or not is known as the Burnside problem.
Many results have been proven in this direction. Let us mention for instance, the
result from [NA68] and from [Iva94] that B(m,n) is infinite when m > 1, n ≥ 248
and n is divisible by 29 if n is even.

Wreath products is a good family to find counterexamples to Question 2.16. See
for instance [Gen23b, Corollary 16.1.2(i)] or the appendix of [Osa18] by Mikaël
Pichot. Let H be an infinite finitely generated torsion group (for instance a infinite
free Burnside group) and consider the wreath product Z /2Z o H. It is a finitely
generated torsion group and it acts on

⊕
H Z /2Z, which can be seen as the 1-

skeleton of an infinite cube and so a median graph. It can be shown that it acts
with unbounded orbits (see [Gen23b, Fact 16.1.1]).

2.4.4. Related questions. Instead of adding restrictions in order to solve posi-
tively Question 2.16, one can also ask which groups that act purely elliptically on
a median graph, have bounded orbits?

An instance of such groups are the ones having the FW property, i.e., they
are the ones such that every action on a median graph admits bounded orbits.
Several equivalent definitions of this property exist (see for instance [Cor13]). For
instance, groups with FH property, i.e. groups such that every isometric action on
a Hilbert space has a fixed point, have the FW property. By a theorem of Delorme
and Guichardet, property FH is equivalent to the Kazhdan’s Property T in the case
of countable groups. Such groups are for instance: special linear groups SL(n,Z)
of dimension n > 2, but also simple real Lie groups of real rank at least 2, or more
generally simple algebraic groups of rank at least 2 over a local field. Nevertheless,
groups with property FH are not the only examples of groups with property FW:
for instance, the groups SL(2,Z[

√
k]), where k is a non-square positive integer, or

SL(2,OK) where OK is the ring of integers of a number field K with [K : Q] ≥ 2;
see for instance [Cor13, Example 6.A.8].

Refinements of the FW property have been investigated by [Gen23c], where
he introduced the property FWn that denotes the fixed-point property for median
graphs of dimension n. He constructed groups satisfying the FWn property but
not the FWn+1 one.

Finally, let us mention that [HO21] have investigated Question 2.16 extend-
ing the scope of the actions considered; from median graphs to complexes. They
conjectured that every purely elliptic action of a finitely generated group on a
finite-dimensional nonpositively curved complex has bounded orbit; for reasonable
notions of dimension and nonpositively curvature. They proved their conjecture for
a large class of complexes including for instance all infinite families of Euclidean
buildings, Helly complexes, uniformly locally finite Gromov hyperbolic graphs.

3. Cremona groups

The aim of this section is to introduce Cremona groups as well as all material of
algebraic geometry needed in order to understand the constructions of the median
graphs. In Subsection 3.4, we do a brief state of the art to understand in which
context these constructions have been developed.
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3.1. Birational geometry. This subsection is aimed at non-algebraic geome-
ters and will allow us to settle the notation. This material is standard and this part
is largely inspired by [Lam21]. It can be also found in any book which introduces
algebraic geometry, like for instance [Sha94a] and [Sha94b].

We make the choice to introduce everything over an algebraically closed field
and not to speak about schemes in order to introduce the least possible amount of
notions. Hence we fix here once and for all k to be an algebraically closed field.

3.1.1. Objects. The objects studied in algebraic are the algebraic varieties. So
let us introduce them first.

Recall that the affine space of dimension n is the set of all n-tuples of elements
in k, it is denoted by An:

An := {(a1, . . . , an) | ai ∈ k},

and that the projective space Pn is the quotient of the space An+1 \{(0, . . . , 0)} by
homotheties: (a0, . . . , an) ∼ (b0, . . . , bn) if and only if there exists λ ∈ k∗ such that
(a0, . . . , an) = λ(b0, . . . , bn). Such a class will be denoted by [a0 : · · · : an] ∈ Pn.

A projective variety (respectively an affine variety) is a subset X of the projec-
tive space Pn (respectively Y of the affine space An) defined as the common zero
locus of a finite collection of homogeneous polynomials in n + 1 variables over k,
Pi ∈ k[X0, . . . , Xn] for 1 ≤ i ≤ k (respectively of a finite collection of polynomials
in n variables over k, Qi ∈ k[X1, . . . , Xn] for 1 ≤ i ≤ k):

X = {[a0 : · · · : an] ∈ Pn | Pi(a0, . . . , an) = 0 for all 1 ≤ i ≤ k},
Y = {(a1, . . . , an) ∈ An | Qi(a1, . . . , an) = 0 for all 1 ≤ i ≤ k}.

Example 3.1. We can consider P2 × P1 as a projective variety by identifying
it with its image via the Segre-embedding:

P2 × P1 ↪→ P5

([x0 : x1 : x2], [t0 : t1]) 7→ [x0t0 : x0t1 : x1t0 : x1t1 : x2t0 : x2t1].

Denoting by [X0 : · · · : X5] the homogeneous coordinates on P5, the image of this
embedding, called the Segre threefold is given by the intersection:

{X0X3 −X1X2 = 0} ∩ {X0X5 −X4X1 = 0} ∩ {X2X5 −X3X4 = 0}.

Example 3.2. The Hirzebruch surface of index n ≥ 0, denoted by Fn, is:

Fn = {([x0 : x1 : x2], [t0, t1]) ∈ P2 × P1 | x0t
n
1 = x1t

n
0}.

It is a projective surface via the Segre-embedding P2 × P1 ↪→ P5 above.

We can define a topology on a projective variety X (respectively on an affine
variety Y ), called the Zariski topology, by taking as closed sets the projective sub-
varieties of X (respectively the affine subvarieties of Y ). A variety is irreducible if
it is not the union of two proper closed subsets. The dimension of an irreducible
variety X is the supremum of the length of chains Y0 ( Y1 ( · · · ( Yn where
each Yi is an irreducible subvariety of X. Note that the projective space Pn is an
irreducible projective variety of dimension n and that An is an irreducible affine
variety of dimension n.

Consider Pn with coordinates [x0 : · · · : xn]. Then the standard open cover of
Pn is given by Ui = Pn\{xi = 0}, for 0 ≤ i ≤ n. Note that each Ui is homeomorphic
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to An using deshomogenization:

Ui → An
[x0 : x1 : · · · : xn] 7→ (x0

xi
, . . . , xi−1

xi
, xi+1

xi
, . . . , xn

xi
)

and homogenization:

An → Ui
(t1, . . . , tn) 7→ [t1 : · · · : ti−1 : 1 : ti+1 : . . . tn].

Note that restricting to the Ui’s, any projective variety admits an affine open cover.
Let X ⊂ Pn be an irreducible projective variety. We consider the ideal associ-

ated to it:

I(X) := {P ∈ k[X0, . . . , Xn] | P (X) = 0} .
Let {Pi}1≤i≤k be a minimal generating set of I(X). The variety X is smooth if for

any point p ∈ X, the rank of the Jacobian
(
∂Pi

∂Xj
(p)
)

is equal to the codimension

n− dimX of X.
A quasi-projective variety, is an open subset of a projective variety. When not

mentioned otherwise, in all what follows a variety will be a quasi-projective variety
and they will be the central object. Both affine and projective varieties are examples
of quasi-projective varieties. On the other hand, P2×A1 is a quasi-projective variety
that is neither projective nor affine.

3.1.2. Maps. Let us define now morphisms between varieties, they are given
locally by polynomials. Let us be more precise. Let V ⊂ An be an affine variety. A
function f : V → k is regular if there exists a polynomial P ∈ k[X1, . . . , Xn] such
that f(x) = P (x) for all x ∈ V .

A map f : U ⊂ Am → V ⊂ An between affine varieties is a morphism if and
only if f = (f1, . . . , fn) with fi’s regular for each i. A map f : X → Y between
varieties is a morphism if locally at each point of X it restricts as a morphism
between affine open sets. In this case, we say that X dominates Y . A morphism
f : X → Y is an isomorphism if there exists a morphism g : Y → X such that
gf = idX and fg = idY .

Example 3.3. Consider the Hirzebruch surface of index 1:

F1 = {([x0 : x1 : x2], [t0, t1]) ∈ P2 × P1 | x0t1 = x1t0}.

The projection π : F1 → P2 on the first factor is a morphism. Indeed, in the chart
{x2 = 1} × {t0 = 1} we can write π locally as:

A2 ↪→ F1 → A2

(x0, t1) 7→ ([x0 : x0t1 : 1], [1 : t1]) 7→ (x0, x0t1)
.

The map of Example 3.3 is called the blow-up of [0 : 0 : 1] in P2. The blow-up
of [0 : 0 : 1] in P2 is unique up to automorphisms of P2 fixing the point [0 : 0 : 1].
Note that replacing P2 by A2 in F1, we obtain the blow-up of the origin of the affine
plane, which can be written locally in the same way as above: (x0, t1) 7→ (x0, x0t1).
Hence, it is possible to blow-up any point of any smooth quasi-projective variety.

The blow-up of [0 : 0 : 1] is not an isomorphism as the preimage of the origin
is P1: π−1(0, 0) = {[0 : 0 : 1]} × P1. We will call this preimage the exceptional
divisor of the blow-up and we denote it by E[0:0:1]. We refer to the nice cover of the
book [Sha94a] to have a picture of a blow-up. Note that there exists a bijection
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between the points on the exceptional divisors and the lines passing through the
point [0 : 0 : 1]. The preimages of these lines do not intersect anymore in F1.

We can also blow-up points in variety of higher dimension. For instance, the
blow-up of Pn at the point p = [0 : · · · : 0 : 1] is defined as the variety

Y = {([x0 : · · · : xn], [t0 : · · · : tn−1]) ∈ Pn×Pn−1 | xitj−xjti = 0, 0 ≤ i < j ≤ n−1}.
Isomorphisms are very rigid and so the classification of varieties up to iso-

morphisms is really too complicated. Hence, in this context, the good notion to
consider is the one of birational maps, i.e., maps that are given locally by quotients
of polynomials.

Let X and Y be varieties. A rational map X 99K Y is an equivalence class of
pairs (U, g), where U ⊂ X is an open dense set and g : U → Y a morphism. Two
pairs (U, g1) and (V, g2) are equivalent if g1|U∩V = g2|U∩V . By abuse of notation,
we denote a rational map represented by (U, g) just by g. The indeterminacy locus
of a rational map f : X 99K Y is the closed subset Ind(f) ⊂ X consisting of all the
points of X, where f is not defined, i.e., the points p ∈ X such that there exists
no representative (U, g) of f such that U contains p. Let f : X 99K Y be a rational
map and V ⊂ X be an irreducible subvariety of X not contained in Ind(f). The

strict transform of V by f is f(V ) := f(V \ Ind(f)); it is a well-defined irreducible
subvariety of Y .

For instance, the inverse of the blow-up seen in Example 3.3 π−1 : P2 99K F1 is
a rational map given by the equivalence class

(
P2 \ {[0 : 0 : 1]}, π−1

)
and

P2 \ {[0 : 0 : 1]} ↪→ F1

[x0 : x1 : x2] 7→ ([x0 : x1 : x2], [x0 : x1])
.

Its indeterminacy locus is the point Ind(π−1) = {[0 : 0 : 1]}. The strict transform
of the line {x1 = 0} ⊂ P2 intersects E[0:0:1] in the point [1 : 0].

A rational map represented by (U, g) is dominant, if the image of g contains
an open dense set of Y . If f : Y 99K Z and g : X 99K Y are dominant rational
maps, we can compose f and g in the obvious way and obtain a dominant rational
map fg : X 99K Z. A birational map from X to Y is a rational dominant map f :
X 99K Y that admits an inverse which is a dominant rational map f−1 : Y 99K X,
i.e. such that ff−1 = idY and f−1f = idX . Another way to say it is that there
exist U ⊂ X and V ⊂ Y two dense open subsets such that the map restricts to
an isomorphism between X and Y , i.e. outside a finite number of subvarieties of
codimension at least one.

Remark 3.4. Let f : X 99K Y be a birational map. There exists a unique
maximal pair of open subsets Umax ⊂ X and Vmax ⊂ Y such that f restricts as an
isomorphism. We can construct them as follows:

Umax = {x ∈ X \ Ind(f) | f(x) ∈ Y \ Ind(f−1)}
Vmax = {y ∈ Y \ Ind(f−1) | f−1(y) ∈ X \ Ind(f)}.

Remark 3.5. The set of birational maps from X to Y is in one to one corre-
spondence with the set of field isomorphisms between the function fields k(X) of
X and k(Y ) of Y .

The exceptional locus of a birational map f : X 99K Y , denoted by Exc(f), is
the closed subset of points of X where f is not a local isomorphism, i.e., the points
that are not contained in any open set U ⊂ X such that the restriction of f to
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U induces an isomorphism to the image. More precisely, Exc(f) = X \ Umax and
Exc(f−1) = Y \ Vmax.

For instance, the blow-up of the point [0 : 0 : 1] seen in Example 3.3, is a
birational morphism and it induces an isomorphism between F1 \E[0:0:1] and P2 \
{[0 : 0 : 1]}.

If there exists a birational map between two varieties X and Y , they are said
to be birationally equivalent. A variety birationally equivalent to Pn is called a
rational variety. Given a variety X, the set of birational transformations from X to
itself with the composition form a group, denoted by Bir(X). The Cremona group
of rank n is the group of birational transformations of the projective space Pn.

A subgroup G ⊂ Bir(X) is regularizable if there exist a variety Y and a bi-
rational map ϕ : Y 99K X such that ϕ−1Gϕ is a subgroup of the group of auto-
morphisms of Y . If the variety Y can be chosen projective, G is called projectively
regularizable.

3.2. Examples of Cremona transformations. Un element f ∈ Bir(Pn) of
the Cremona group can be written as follows:

f : Pn 99K Pn
[x0 : x1 : · · · : xn] 799K [f0(x0, . . . , xn) : f1(x0, . . . , xn) : · · · : fn(x0, . . . , xn)]

where fi ∈ k[x0, . . . , xn] are homogeneous polynomials of the same degree without
common factor; with an inverse of the same form. We call degree of f , the degree
of the polynomials fi. The indeterminacy locus of f is the common zero locus of
the fi’s Ind(f) =

⋂n
i=0{fi = 0}. It is a subvariety of codimension greater or equal

than 2.
Remark that locally, for instance in the chart Un = {xn 6= 0}, f can be written

as quotients of polynomials

(x0, . . . , xn−1) 799K (
f0(x0, . . . , xn−1, 1)

fn(x0, . . . , xn−1, 1)
, . . . ,

fn−1(x0, . . . , xn−1, 1)

fn(x0, . . . , xn−1, 1)
).

In rank 1, the Cremona group is isomorphic to PGL2(k). In higher ranks they
are far more complicated.

Here are a few examples of applications and subgroups contained in Cremona
groups.

Example 3.6. The group of automorphisms of Pn, denoted by Aut(Pnk ), con-
sists in the birational transformations of degree 1; this group is isomorphic to the
projective linear group PGLn+1(k). Writting the linear polynomials fi as follows
gives the isomorphism:

fi =

n∑
j=0

ai,jxj , for 0 ≤ i ≤ n and ai,j ∈ k! (ai,j)0≤i,j≤n ∈ PGLn+1(k).

Note that the indeterminacy locus and the exceptional locus of such maps are
empty.

Example 3.7. The standard quadratic Cremona involution in Bir(P2) (see Fig-
ure 9):

σ : [x0 : x1 : x2] 799K [x1x2 : x0x2 : x0x1] = [ 1
x0

: 1
x1

: 1
x2

].

This birational transformation is of degree 2 and contracts the lines {x0 = 0},
{x1 = 0} and {x2 = 0} respectively to the points [1 : 0 : 0], [0 : 1 : 0] and
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•
[0 : 0 : 1]

•
[0 : 1 : 0]

•
[1 : 0 : 0]

P2

σ

•
[0 : 0 : 1]

•
[0 : 1 : 0]

•
[1 : 0 : 0]

P2

Figure 9. The standard quadratic plane Cremona involution

[0 : 0 : 1]. Its exceptional locus is Exc(σ) = ∪2
i=0{xi = 0} and its inderminacy locus

is Ind(σ) = {[0 : 0 : 1], [0 : 1 : 0], [1 : 0 : 0]}. Locally, in the chart U2 = {x2 6= 0} it
can be written (x0, x1) 799K ( 1

x0
, 1
x1

). We easily see that it is an involution.

Example 3.8. The subgroup of monomial transformations is given by the fol-
lowing embedding of GLn(Z) into the Cremona group of rank n, written locally:

(x0, . . . , xn−1) 799K (

n−1∏
j=0

xa0,jj , . . . ,

n−1∏
j=0

x
an−1,j
j )

where (ai,j)0≤i,j≤n−1 ∈ GLn(Z). The standard quadratic Cremona involution seen

in Example 3.7 is a monomial transformation in the rank 2 case.

Example 3.9. The group of polynomial automorphisms Aut(Ank ) consists in
transformations having the following form and such that the inverse has also the
following form:

(x0, . . . , xn−1) 7→ (ϕ0, . . . , ϕn−1) with ϕi ∈ k[x0, . . . , xn−1].

The degree of such transformations is the maximum of the degrees of the ϕi’s.
When not empty, the exceptional locus is the hypersurface {xn = 0}.

Already, when n = 2 this group is huge and contains a non-abelian free group
of rank at least 2. More precisely, consider b : (x0, x1) 7→ (−x0 + x2

1, x1), aλ :
(x0, x1) 7→ (λx0 + x1, x0) where λ ∈ k, a∞ = id and gλ = aλba

−1
λ . Then the

subgroup generated by the involutions gλ is a free product of Z /2Z parametrized
by P1

k = k∪{∞} (see for instance [LL21]).

Another important example of subgroup worth to mention in dimension 2 is
called the Jonquières group.

Example 3.10. The Jonquières group: PGL2(k(x1))oPGL2(k) is a subgroup
of the Cremona group of rank 2. Locally, such transformations are of the form:

(x0, x1) 799K
(
α(x1)x0 + β(x1)

γ(x1)x0 + δ(x1)
,
ax1 + b

cx1 + d

)

where

(
α β
γ δ

)
∈ PGL2(k(x1)) and

(
a b
c d

)
∈ PGL2(k). These transformations

preserve the pencil of lines passing through the point [1 : 0 : 0]. Note that the
standard quadratic Cremona involution is also an example of a Jonquières trans-
formation.
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3.3. Zariski theorem: an important tool in birational geometry of
surfaces. Blow-ups of points are fundamental examples of birational transforma-
tions of surfaces as any birational transformation between surfaces can be decom-
posed by a sequence of inverse of blow-ups followed by a sequence of blow-ups (see
Theorem 3.11). Note that by convention, an isomorphism is the composition of 0
blow-ups. This is not true anymore in higher dimension.

As blow-ups induce isomorphisms outside the exceptional divisors produced, it
is useful to be able to identify points outside the exceptional divisors with their
image. More precisely, the bubble space of a given surface S is the set BS of triples
(t, T, π), where π : T → S is a birational morphism from a surface T and t is a
point on T ; two triples (t, T, π) and (t′, T ′, π′) are identified if π−1π′ is a local
isomorphism around t′ mapping t′ to t. The points in BS contained in S are called
proper points. Often in this survey, we will speak about points instead of elements
of the bubble space through misuse of language.

Theorem 3.11 (Zariski’s theorem). Let f : S 99K S′ be a birational map
between smooth projective surfaces. Then there exists a surface W and compositions
of blow-ups π1 : W → S, π2 : W → S′ such that f = π2π

−1
1 .

W

S S′

π1 π2

f

Note that in the above theorem, we allow π1 and π2 to be the composition of
zero blow-up. The proof of Zariski’s theorem is made of two steps. The first one
consists in blowing up the indeterminacy points of f and repeat this process until
we obtain a birational morphism W → S′. The second step uses the following well
known result (a proof can be found for instance in [Sha94a] or [Lam21]):

Theorem 3.12. Any birational morphism σ : W → S is a composition of
finitely many blow-ups of points belonging to BS.

Let us do the first step of the proof on the example of the standard quadratic
Cremona involution 3.7.

Example 3.13. Consider the standard quadratic involution seen in Exam-
ple3.7. Let us blow up the indeterminacy points until we get a morphism (see Fig-
ure 10). The birational transformation σ has three indeterminacy points: [0 : 0 : 1],
[0 : 1 : 0] and [1 : 0 : 0]. We blow-up the point [0 : 1 : 0] then σπ[0:1:0] has two
indeterminacy points: the points [0 : 0 : 1] and [1 : 0 : 0], using the abuse of
notation mentioned above. We blow-up the point [0 : 0 : 1], then σπ[0:1:0]π[0:0:1]

has a unique indeterminacy point [1 : 0 : 0]. We blow-up this point and we ob-
tain that σπ[0:1:0]π[0:0:1]π[1:0:0] : Sσ → P2 has no indeterminacy points and so it
is a morphism. Note that the order of the different blow-ups does not matter as
blow-ups are defined locally and the three points blown up belong to P2. Take
π1 := π[0:1:0]π[0:0:1]π[1:0:0], W = Sσ and π2 := σπ[0:1:0]π[0:0:1]π[1:0:0].

The second step of Zariski’s theorem consists in proving that π2 is a composition
of blow-ups.

Example 3.14. Consider the following Cremona transformation:

j := (x0, x1) 7→ (x0, x
2
0 + x1).
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π[1:0:0] π[0:1:0]

Sσ

•
[1 : 0 : 0]

π[0:0:1]

•
[0 : 1 : 0]

π[0:0:1]

•
[0 : 0 : 1]

•
[0 : 1 : 0]

π[1:0:0]

•
[0 : 0 : 1]

•
[1 : 0 : 0]

π[0:1:0]

{z
=
0}

{x
=

0
}

{y = 0}
•

[0 : 0 : 1]

•
[0 : 1 : 0]

•
[1 : 0 : 0]

P2

σ {z
=
0}

{x
=

0
}

{y = 0}
•

[0 : 0 : 1]

•
[0 : 1 : 0]

•
[1 : 0 : 0]

P2

Figure 10. Minimal resolution of σ : (x0, x1) 799K ( 1
x0
, 1
x1

).

π(0,−1)

Sj

π(0,1)

π(0,0)

•
(0,−1)

•
(0, 0)

π[0:1:0]

{x
=

0
} {z

=
0}

•
[0 : 1 : 0]

P2

j

{x
=

0
} {z

=
0}

•
[0 : 1 : 0]

P2

π(0,0)

•
(0,−1)

•
(0, 0)

π[0:1:0]

Figure 11. Minimal resolution of j : (x0, x1) 7→ (x0, x
2
0 + x1).

Note that it is both a polynomial automorphism of A2 and a Jonquières transfor-
mation. Its unique indeterminacy point is {[0 : 1 : 0]}. The unique indeterminacy
point of the composition jπ[0:1:0] belongs to the exceptional divisor E[0:1:0], and, in
the chart {x1 = 1} × {t0 = 1}, it is the point (0, 0). Again, jπ[0:1:0]π(0,0) has a
unique indeterminacy point, which belongs to the exceptional divisor E(0,0) and, in
the chart {t0 = 1}, it is the point (0,−1). Blowing up this last point, we obtain
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that π1 := jπ[0:1:0]π(0,0)π(0,−1)Sj → P2 is a morphism. The resolution of j is given
by Figure 11. Note that, contrary to the case of the standard quadratic Cremona
involution, in the case of j, the blow-ups composing π1 do not commute.

Remark 3.15. In the Zariski theorem, W can be chosen minimal and it is
called the minimal resolution of f .

W ′

W

S S′

π′1 π′2

π1 π2

f

Definition 3.16. The points of BS blown up by π1 in the minimal resolution
of f are called the base-points of f , and they are denoted by B(f).

Remark 3.17. Note that for any f ∈ Bir(S), Ind(f) ⊂ B(f). In the case of
the standard quadratic plane involution, it is an equality (see Example 3.13), while
it is a strict inclusion for the birational transformation j : (x, y) 7→ (x, x2 + y) of
Example 3.14.

Remark 3.18. The points blown up by π2 in Theorem 3.11 are the base points
of f−1. Hence if S′ = S then |B(f)| = |B(f−1)|.

Over any field, Zariski theorem 3.11 still holds by replacing points with closed
points (in the context of the scheme theory), see for instance [Sta24, Tag 0C5Q].
Proposition 4.11 needs to be slightly adapted to this context. Note that by [LSZ23],
over perfect fields, the birational morphisms π1 and π2 of Theorem 3.11 blow up
the same number of closed points. It is unknown if the situation is similar over
non-perfect fields.

Remark 3.19. Let f : S 99K S′ and g : S′ 99K S′′, then, we have

|B(gf)| ≤ |B(f)|+ |B(g)|.

Let W and W ′ be the respective minimal resolution of f and g, and Z the one of
σ−1

1 π2:

Z

W W ′

S S′ S′′

σ′1 π′2

π1 π2 σ1 σ2

f g

Then Z is a resolution of gf but not always the minimal one. For instance, when
B(f−1) ∩ B(g) 6= ∅, Z is not the minimal one. Notice that it is not the only
possibility see for instance [Lam21, Example 4.16].

3.4. State of the art from a geometric group theoretic point of view.
The Cremona group can be studied from many different points of view making
it very interesting: algebraic, dynamical, topological, geometrical... Nevertheless
in this small state of the art, we will be mainly interested in its geometric group
theoretic features in order to explain the context in which actions on median graphs
have been constructed. It is not exhaustive at all. There exists several surveys and
books in the literature about Cremona groups (see for instance [Can18], [D2́1],
[Lam21] [Zim23]).

https://stacks.math.columbia.edu/tag/0C5Q
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Figure 12. Hyperboloid model of the hyperbolic plane.

Cremona introduced the Cremona group of rank 2 in 1863-1865 [Cre63]. The
first theorem on the structure of this group has been partially1 proved by Noether
and then completely by Castelnuovo. They gave a nice generating set.

Theorem 3.20 ([Noe70], [Cas01]). Over an algebraically closed field k, the
Cremona group of rank 2 is generated by the automorphisms group of P2 and the
standard quadratic Cremona involution σ : (x, y) 7→ ( 1

x ,
1
y ).

Note that even when the field is finite the Cremona group is never finitely gen-
erated (see for instance [Can18, Proposition 3.6]); if it would be the case you could
construct a finitely generated field that is algebraically closed, which is impossible.
Another generating set, which is often used, is the set of automorphisms of P2 and
the de Jonquières maps.

A breakthrough in the study of the Cremona group of rank 2 was done in
the years 2010 by constructing an action of the Cremona group of rank 2 on a
hyperbolic space (see [Can11] and [CL13]). This space is an analogous in infinite
dimension of the hyperboloid model of the hyperbolic plane (see Figure 12):

H2 = {(x, y, z) ∈ R3 | x2 − y2 − z2 = 1 and x > 0}.
Let us briefly give an idea of this construction, even if it is not an object

of interest in this survey (for more details see for instance [CL13], [Lon16] or
[Lam21]). Consider a smooth projective surface S. A divisor D on S, is a finite
formal sum of irreducible curves of S with integer coefficients: D =

∑n
i=0 aiCi where

ai ∈ Z, Ci irreducible curve of S. We denote by Div(S) the group of divisors on S.
There exists a well defined intersection theory on divisors (see for instance [Ful98]).
Two divisors are said numerically equivalent if they have the same intersection
number with any irreducible curve of S. The Néron-Severi group of S, denoted by
NS(S), is the group of divisors up to numerical equivalence, tensorised by R. It is
a finitely generated free abelian group (see for instance [Sha94a]). Its rank, called
the Picard rank of the surface S, is denoted by ρ(S). For instance NS(P2) ' R,
is generated by the class of the line. Consider a birational morphism σ : S′ → S.
Let D ∈ Div(S) given by the local equations {gα} on S. We define the pull-back
of D by σ as the divisor on S′, denoted by σ∗(D), defined locally by the equations
{gασ} on S′. By Theorem 3.12, σ is the composition of blow-ups of points in BS .
Let us denote them by p1, . . . , pn. Then

(3.1) NS(S′) = σ∗(NS(S))⊕
(
⊕

1≤i≤n
Rσ∗(Ei)

)
.

For instance, if you blow-up two points p, q ∈ P2, then the Néron-Severi group of
the surface obtained is isomorphic to R3 and it is generated by the class of the line
and by the classes of the exceptional divisors Ep and Eq. Now, we consider the

1Indeed, the proof contained a mistake
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Picard-Manin space, Z(S), which is the `2-completion of the inductive limit of the
Néron-Severi groups of the surfaces dominating S:

Z(S) := {d+
∑
p∈BS

λpep | λp ∈ R, d ∈ NS(S),
∑
p∈BS

λ2
p <∞},

where ep denotes the class in the inductive limit of the exceptional divisor obtained
by blowing up the point p ∈ BS . More precisely, denote by (p, T, π) a representative
of the point p, and πp : T ′ → T the blow-up of the point p, then in each surface
W dominating T ′: ρ : W → T ′, ep represents the divisor ρ∗(Ep). The intersection
form on divisors induces a well defined intersection form on classes of the Picard-
Manin space, which is a bilinear form of signature (1,∞). Let a ∈ NS(S) be any
ample class, i.e, the intersection number between a and the class of any irreducible
curve of S is positive and the self-intersection of a is positive. Taking the classes
of the Picard-Manin space of self-intersection 1 that intersect a positively gives a
hyperbloid as announced:

H∞(S) := {c ∈ Z(S) | c · c = 1 and c · a > 0}.
Note that H∞(S) does not depend on the choice of a. Equipped with the distance
d(c1, c2) := cosh−1(c1 · c2), it is a complete CAT(0) metric space with constant
curvature −1, which is also Gromov-hyperbolic.

As a consequence of (3.1), a birational morphism σ : S′ → S induces a canonical
bijection of the Picard-Manin spaces Z(S) and Z(S′) preserving the intersection
form; and so it induces an isometry between the hyperbolic spaces H∞(S) and
H∞(S′) denoted by σ#. As a consequence, the Cremona group acts on H∞(P2) as

follows: consider the minimal resolution of f = π2π
−1
1 given by the Zariski theorem,

then f# = (π2)#(π−1
1 )#.

The isometries of the action of the Cremona group on this hyperbolic space
are very well understood. Indeed, let f ∈ Bir(P2) and consider the sequence of
degrees of the iterates of f : {deg(fn) | n ∈ N}. The isometry f is respectively el-
liptic, parabolic and loxodromic if and only if this sequence is respectively bounded,
respectively grows linearly or quadratically, and respectively grows exponentially
([Can11],[DF01]).

Using this action, two important theorems about the structure of the Cremona
group of rank 2 have been proven making it having some features of both hyperbolic
and linear groups.

It was a long standing open question (since Enriques) to know whether the
Cremona group was a simple group or not. It was first solved by Cantat and Lamy
over algebraically closed field, then by the author over any field.

Theorem 3.21 ([CL13], [Lon16], [SB21]). The Cremona group of rank 2 is
not a simple group over any field.

Both proofs use small cancellation theory. The article of Cantat-Lamy is in
two part. They first elaborate a criterion, called “tight”, ensuring that, in a group
acting by isometries on a Gromov hyperbolic space, the normal subgroup generated
by some power of a tight element is a proper normal subgroup. In the second
part of their article they find such elements in the Cremona group of rank 2 over
algebraically closed fields.

In [Lon16], the author exhibits a family of “Weakly Properly Discontinuous
elements” in the Cremona group of rank 2 (over any field) and uses the machinery
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of [DGO17] ensuring that groups containing WPD elements have proper normal
subgroups. Moreover, this does not show only that the Cremona group of rank 2 is
not simple, but also that it has many quotients (it has the SQ universal property)
and that it is part of the family of acylindrically hyperbolic groups.

Note that the notions tight and WPD are related to the small cancellation
theory. Even if they have some similitude, these notions are not equivalent; even
more, none of these two notions implies the other one (see for instance [LL21,
Examples 5.10 and 5.11]). Indeed, if an element g of a group is tight (when acting on
a geodesic metric space X) then the stabilizer of its axis has to be the normalizer of
the subgroup generated by g; but there is no finiteness condition on this normalizer.
For instance, it could exist infinitely many elements fixing pointwise the axis of g.
This is not allowed for WPD elements. On the other hand, the stabilizer of the
axis of a WPD element f does not have to normalize the subgroup generated by f .

In [SB21], Shepherd-Barron proved also the non-simplicity of the Cremona
group of rank 2 for various fields using the tight criterion of Cantat-Lamy. He also
classifies the elements in the group having this property. In [CGL21], all elements
of infinite order such that, up to some power, the normal subgroup generated by
them is a proper subgroup, are classified; note that they are not all loxodromic.

The second important result is about the classification of the subgroups of the
Cremona groups. We say that a group G satisfies the Tits alternative (respectively
the Tits alternative for finitely generated subgroups) if any subgroup (respectively
any finitely generated subgroup) contains either a non-abelian free subgroup, or a
solvable group of finite index. This alternative has been proved by Tits for linear
groups (up to restricting to finitely generated subgroup when the field is of positive
characteristic). Note that over the algebraic closure of a finite field, the linear
group (of any dimension) does not contain any non-abelian free subgroup (any
element is of finite order) and it does not contain any solvable subgroup of finite
index. As a consequence the above restriction, when working over fields of positive
characteristic is necessary.

Theorem 3.22 ([Can11], [Ure21], [Lam21]). The Cremona group of rank
2 satisfies the Tits alternative if the characteristic of the field is 0 and the Tits
alternative for finitely generated subgroups otherwise.

Cantat proved that the Cremona group of rank 2 over a field of characteristic
0 satisfies the Tits alternative for finitely generated subgroups. Then it has been
improved by Urech for any subgroups. Recently, Lamy and Urech proved that in
positive characteristic the Cremona group of rank 2 satisfies the Tits alternative
for finitely generated subgroups (see [Lam21] for more details). Note that the
Cremona group of rank 2 over a field of positive characteristic k does not satisfy
the Tits alternative (for any subgroup) as it contains some linear groups over k.

Even if the Cremona group of rank 2 is now quite well understood, some ques-
tions remain open, like for instance Question 1.1. The recent constructions on
median graphs [GLU24] allowed to answer this question positively for Cremona
groups of rank 2 over finite fields (see Subsection 4.1.5) but it is still open over
arbitrary fields.

Cremona groups are not linear over C (see [Cor17]). A natural question asked
by Cantat is the following: are finitely generated subgroups of the Cremona group
of rank 2 residually finite? Recall that a group G is residually finite if for any
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non-identity element g ∈ G there exists a group homomorphism from the group to
a finite group that does not send g to the identity element.

In higher dimension, the situation is drastically different. Cremona groups are
far more complicated and less understood. For instance no nice family of generators
is known. Even worse, we do know that it can not be like in dimension 2.

Theorem 3.23 ([Pan99]). For n ≥ 3, Bir(PnC) is not generated by Aut(Pn)
and finitely many elements, or more generally by any set of elements of Bir(Pn) of
bounded degree.

Some attempts to generalize the construction of the hyperbolic space for Cre-
mona groups in higher ranks have been done (see for instance [DF21]) but it seems
not possible to obtain a geometric space with non positive curvature.

The median graphs constructed in [LU21] and that we will see in Section 5
are the first geometric constructions allowing to study Cremona groups of higher
ranks from a geometric group theoretic point of view.

Several recent progresses have been done in the understanding of Cremona
groups of higher ranks, like for instance, the non-simplicity of the Cremona group
in higher rank over any subfield of C.

Theorem 3.24 ([BLZ21]). Let k be a subfield of C and n ≥ 3, then Birk(Pn)
is not a simple group.

It has been obtained using advanced results of algebraic geometry, and us-
ing the Minimal Model Program and the factorization into Sarkisov links. They
also proved that in higher dimension for subfields of C, the Cremona group can
not be generated by automorphisms of Pn and higher dimensional analogue of de
Jonquières transformations.

An exciting progress would be to know whether Cremona groups of higher ranks
satisfy the Tits alternative.

4. Median graphs for groups of birational transformations of surfaces

In this section, we focus on surfaces, that will be for us (except said otherwise),
irreducible smooth projective varieties of dimension 2 over an algebraically closed
field. We refer to the original article [LU21] for a larger scope: projective regular
surfaces S over arbitrary fields k.

We will present and study two constructions of actions of groups of birationl
transformations of surfaces on median graphs (the blow-up graphs in Subsection 4.1
and the rational blow-up graph in Subsection 4.2).

4.1. Action of the Cremona group of rank 2 on the blow-up graph.
We first introduce the construction of the blow-up graph and prove that it is a
median graph. There is a natural action of Cremona groups of rank 2 on it. We
present a nice dictionary between the median objects (hyperplanes, distance, min-
imizing set etc) and birational notions and survey which results can be deduced
from this action.

4.1.1. Construction of the blow-up graph. This graph and its cube completion
have been constructed and studied in [LU21] in terms of CAT(0) cube complexes.

Let S be a smooth projective surface. A marked surface (T, ϕ) is a pair where
T is a smooth projective surface over k and ϕ : T 99K S is a birational map. Two
marked surfaces (T, ϕ) and (T ′, ϕ′) are equivalent if the map ϕ′−1ϕ : T → T ′
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•
[(P2, id)]

•
[(F1, π2)]

•
[(T, π1π2)]

•
[(F1, π1)]

•
[(F1, π3)]

•
[(T, π2π3)]

•
[(Sσ, π1π2π3)]

•
[(T, π1π3)]

•
[(T ′, π2π4)]

•
[(X,π1π2π3π4)]

•
[(S′, π2π3π4)]

Figure 13. The subgraph of Cb(P2) generated by the blow-up of
three points p1, p2, p3 of P2 and by the blow-up of p4 ∈ Ep2 .

T T ′

S

ϕ

∼

ϕ′

is an isomorphism. Such a class, will be denoted by [(T, ϕ)]. For instance, consider
an automorphism a of S then the marked surfaces (S, id) and (S, a) are equivalent.

Definition 4.1 ([LU21]). The blow-up graph associated to S and denoted by
Cb(S) is the graph whose vertices are equivalent classes of marked surfaces [(T, ϕ)],
and where two vertices [(T1, ϕ1)] and [(T2, ϕ2)] are connected by an edge if ϕ−1

2 ϕ1

is the blow-up of a point of T2 or the inverse of the blow-up of a point of T1.

We can define a height h on the set of vertices as the Picard rank of the surface
given by a representative: h([(T, ϕ)]) := ρ(T ). It is well defined as isomorphic
surfaces have the same Picard rank. Note that in the case S = P2, h([(T, ϕ)]) =
|B(ϕ−1)| − |B(ϕ)|+ 1. As the height does not depend on the marking but only on
the surface, we will sometimes do a slight abuse of notation denoting by h(T ) the
height of a vertex.

Example 4.2. Consider p1, p2, p3 three distinct points of P2. For 1 ≤ i ≤ 3,
denote by πi the blow-up map of the point pi and by Ei the exceptional divisor
obtained. Let p4 be a point on E2. We denote by π4 the blow-up map of p4 and by
E4 the exceptional divisor obtained. Let us denote respectively by T and Sσ the
surfaces (up to isomorphism) obtained from P2 by blowing up respectively two and
three points in P2, and by T ′ and S′ the surfaces obtained from respectively T and
S by blowing up a point on one of the exceptional divisors.

As the blow-ups of two distinct points of the same surface commute, the dif-
ferent possible orders to blow-up the points p1, p2, p3 span a cube of dimension 3.
Blowing up the fourth points p4 does not span a cube of dimension 4 because the
points p2 and p4 can not belong to a common surface (see Figure 13).

As illustrated in Example 4.2, blowing up a family of n points in a surface W
generates a cube of dimension n. And indeed, it is the only way to have cubes.
More precisely:

Fact 4.3. In the blow-up graph, n distinct vertices [(T1, ϕ1)], . . . , [(T2n , ϕ2n)]
span a cube of dimension n if and only if there exists 1 ≤ r ≤ 2n such that for any
1 ≤ j ≤ 2n:
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• there exists n distinct points p1, . . . , pn in Tr,
• ϕ−1

r ϕj : Sj → Tr is the blow-up of a subfamily of the set {p1, . . . , pn}.

The surface S contains infinitely many points, so blowing up an arbitrary large
sequence of points, we immediately see the following properties of this graph.

Proposition 4.4 ([LU21]). The blow-up graph is:

• not locally compact,
• infinite dimensional with infinite cubes,
• cubically oriented.

We fix once and for all the following cubical orientation: from [(T1, ϕ1)] to
[(T2, ϕ2)] if ρ(T2) = ρ(T1) + 1.

Theorem 4.5 ([LU21]). The blow-up graph is a median graph.

Proof. Using Theorem 2.4 and Theorem 2.2 it remains to prove that the
cube completion is simply connected and that links of vertices are flag simplical
complexes.

Simply-connectness. First, it is connected by Zariski theorem 3.11: consider
two vertices represented by (T1, ϕ1) and (T2, ϕ2), decomposing ϕ−1

2 ϕ1 into a se-
quence of blow-ups followed by a sequence of contractions, yields a path between
these two vertices.

Let now γ be a cycle in Cb(S) passing through the vertices v1, . . . , vn repre-
sented respectively by (T1, ϕ1), . . . , (Tn, ϕn), which can be assumed to be without
backtrack. By repeated applications of Zariski theorem 3.11, there exists a marked
surface (W,ψ) dominating all Tis, meaning that ϕ−1

i ψ : W → Ti is a morphism for
all i, and in particular can be decomposed as compositions of blow-up of points.
Hence, the vertex w = [(W,ψ)] dominates all the vertices vi, i.e., for any 1 ≤ i ≤ n,
there exists a sequence of edges connecting w = [(W,ψ)] to vi, all oriented in the
same way from w to vi.

The goal now is to show that γ is freely homotopic to w. For this, we define
hmin(γ) := min1≤i≤n(h(vi)), where h(vi) is the height of vi, and 1 ≤ i0 ≤ n the
minimal index such that h(vi0) = hmin(γ).

By definition, there exist two distinct points p and q on Ti0 such that Ti0+1

is obtained by blowing up p and Ti0−1 by blowing up q. Let π : T ′i0 → Ti0 be the
blow-up of p and q and let v′i0 be the vertex given by (T ′i0 , ϕi0π). Since v′i0 , vi0+1,
vi0 and vi0−1 form a square, we can deform γ by a homotopy such that it passes
through v′i0 instead of vi0 . Moreover, v′i0 is also dominated by w:

w

...
...

...

v′i0

vi0−1 vi0+1

vi0

By induction on (ρmin(γ), i0) with the lexicographical order, we conclude that
in finitely many such steps γ is homotopic to w, and that the blow-up graph is
simply connected.
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Links of vertices are flag. Let v = [(T, ϕ)] be a vertex of Cb(S)0 and
v1, . . . , vn ∈ Cb(S)0 adjacent vertices to v that pairwise generate a square with
v. Up to reordering, we can assume that there exists 1 ≤ k ≤ n such that for
1 ≤ j ≤ k, the vertex vj corresponds to blowing up a point pj ∈ T and that for
k ≤ j ≤ n, the vertex vj corresponds to the contraction of an exceptional divisor
Ej in T into a point pj . Since the vertices are pairwise adjacent, this means that
for 1 ≤ j ≤ k all the pi’s are distinct, that for k ≤ j ≤ n, all Ej are disjoint and
for all 1 ≤ j1 ≤ k and for all j2 ≤ k ≤ n, pj1 /∈ Ej2 . Hence, contracting all the Ej ’s

gives us a surface (T̃ , ψ) with n distinct points: the images of the pi’s. By Fact 4.3,
we have the expected cube, and links of vertices are flag.

This ends the proof that the blow-up graph is a median graph. �

4.1.2. Hyperplanes. In the graph Cb(S) an edge is given by the blow-up of a
point p belonging to a marked surface (W,ϕ). We denote such an edge by (W,ϕ, p)
and by [(W,ϕ, p)] its corresponding hyperplane. In this subsection, we give a bira-
tional interpretation of hyperplanes, distance and halfspaces.

The following birational characterization of the equivalence class of edges is an
immediate consequence of the Zarisky theorem 3.11.

Lemma 4.6. [LU21] Two edges (W,ϕ, p) and (W ′, ϕ′, q) correspond to the same
hyperplane if and only if ϕ′−1ϕ induces a local isomorphism between a neighborhood
of p and a neighborhood of q and ϕ′−1ϕ(p) = q.

The following lemma describes the geodesics of the blow-up graph. It is an im-
mediate consequence of the factorization of a birational map in inverse of blow-ups
and blow-ups (see Zarisky theorem 3.11), and of the characterization of geodesics
by hyperplanes Theorem 2.11.

Lemma 4.7. [LU21] Consider two vertices [(T1, ϕ1)] and [(T2, ϕ2)] of Cb. There
is a bijection between the set of all the geodesic paths joining these two vertices and
the set of all the possible order to decompose ϕ−1

2 ϕ1 as blow-ups and inverse of blow-
ups of points. In particular, the combinatorial distance between these two vertices
is equal to:

d
(
[(T1, ϕ1)], [(T2, ϕ2)]

)
= |B(ϕ−1

2 ϕ1)|+ |B(ϕ−1
1 ϕ2)|.

For instance, in Figure 14, we see all the possible geodesics joining the vertices
[(P2

k, id)] and [(P2
k, σ)]. Nevertheless, sometimes the choices are more restrictive like

for instance between the vertices [(P2
k, id)] and [(P2

k, j)] (see Figure 15)
There is an algebraic characterization of the halfspaces associated to a given

hyperplane.

Proposition 4.8. [LU21] Consider a hyperplane [(W,ϕ, p)] in Cb(S). The set
of vertices (T, ϕ1) such that p is a base point of ϕ−1

1 ϕ determines one of the two
halfspaces.

For instance, let f ∈ Bir(S) and p ∈ S be a base point of f . Then [(S, f−1)]
belongs to the halfspace given by Proposition 4.8, while [(S, id)] belongs to the other
halfspace (see Figure 14 for an illustration in the case where f = σ and S = P2).
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•
(P2, id)

•
(F1, πq)

••
(F1, πp)

•
(F1, πr) •

•
Sσ• •

•

• •

••

• •

•
(P2, σ)

•

•

•

Figure 14. The convex hull of the vertices (P2, id) and (P2, σ) in
Cb(P2), where σ is the standard quadratic involution.

•
[(P2, id)]

•[(F1, π[0:1:0])]

•[(F1, π[0:1:0]π(0,0))]

•

•
(Sj , π[0:1:0]π(0,0)π(0,1))

•
[(P2, j)]

•

•

Figure 15. Convex hull of the vertices [(P2, id)] and [(P2, j)] in
the blow-up graph Cb(P2) where j : (x, y) 7→ (x, x2 + y).

4.1.3. Action of the Cremona group on the blow-up graph. The group of bira-
tional transformation Bir(S) acts faithfully on the set of marked surfaces by post-
composition and preserves the equivalence class, hence it acts on the set of vertices
of Cb(S): let f ∈ Bir(S) and [(T, ϕ)] ∈ Cb(S)0 be a vertex, f • [(T, ϕ)] = [(T, fϕ)].
This gives us a faithful action by isometries on the blow-up graph. Note that this
action preserves the height function and so the cubical orientation given previously.
As a consequence, an element preserving a cube, fixes a vertex (the one with the
smallest height).

As we will see in Proposition 4.11, this action encodes geometrically, and in a
unified way, diverse birational notions. Let us first introduce them.
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Let f ∈ Bir(S). The dynamical number of base points of f is defined as:

µ(f) := lim
n→∞

|B(fn)|
n

.

As we have seen in Remark 3.19, the number of base points is sub-additive. Hence,
the limit always exists. This number has been introduced and studied in [BD15].
The dynamical number of base points is invariant by conjugation, since conjugation
by a birational transformation g changes the number of base points at most by a
constant only depending on g.

Blanc and Déserti show that, over an algebraically closed field of characteristic
zero, the dynamical number of base points characterizes regularizable elements:
they are the birational transformations having dynamical number of base points
equal to 0. Note that they do not use the assumption on the characteristic of the
field.

Theorem 4.9 ([BD15]). Let S be a smooth projective surface and let f ∈ Bir(S).
Then

(1) µ(f) is an integer;
(2) there exists a smooth projective surface T and a birational map ϕ : T 99K S

such that ϕ−1fϕ has exactly µ(f) base points;
(3) in particular, µ(f) = 0 if and only if f is conjugate to an automorphism

of a smooth projective surface.

Consider an element of the Cremona group f ∈ Bir(P2). Its dynamical degree
is defined as :

λ(f) := lim
n→∞

deg(fn)
1
n .

As the sequence (deg(fn)) is sub-multiplicative, the limit always exists, and it is
invariant by conjugacy. It measures the complexity of the dynamics of f . For
instance, if k is the field of complex numbers, log(λ(f)) provides an upper bound
for the topological entropy of f and it most of the time equal to it (see [BD05]
and [DS05]). Note that one can define the dynamical degree for any birational
transformation of a projective surface but this requires a bit more work, so we will
not do it here. It has been studied by Diller and Favre [DF01]. For instance they
show that the dynamical degree is an algebraic integer. More precisely, if it is not
equal to 1 then it has to be a Salem number (algebraic integer in ]1,∞[ whose other
Galois conjugates lie in the closed unit disk, with at least one on the boundary) or
a Pisot number (algebraic integer in ]1,∞[ whose other Galois conjugates lie in the
open unit disk). A key notion in this context is the one of algebraic stability.

Any birational transformation f ∈ Bir(S) induces an endormorphism f∗ of the
Néron-Severi group NS(S). When this endomorphism satisfies:

(f∗)
n = (fn)∗,

for all positive integers n, f is algebraically stable (see for instance [DF01]). From a
dynamical point of view, such maps are important as in this case the dynamical de-
gree of f equals the spectral radius of the endomorphism f∗, and dynamical degrees
are usually complicated to compute. Diller and Favre showed that every birational
transformation of a projective surface admits an algebraically stable model.

Theorem 4.10 ([DF01]). Every birational transformation of a surface S is
conjugate to an algebraically stable transformation by a birational map T 99K S.
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Using the vocabulary from [Lam21], we say that a (-1)-curve E on a surface
T , i.e. a smooth rational curve with self-intersection −1, is redundant for f if
E ⊂ Exc(f) but E ∩ Ind(f) = ∅. Contracting such a curve preserves algebraic
stability (see [Lam21, Lemma 4.18]). A birational transformation f is minimally
algebraically stable if f is algebraically stable and for any integers n ≥ 1, there is no
(-1)-curve E that is simultaneously redundant for f and for f−n. Indeed, as a conse-
quence of Theorem 4.10 and [Lam21, Lemma 4.18], any birational transformation
can be conjugated to a minimally algebraically stable transformation.

The previous properties just seen are encoded geometrically as follows. Recall
that the minimizing set of a birational transformation f ∈ Bir(S), denoted by
Min(f) is the set of vertices realizing the translation length of f . Note that in
[LU21], the following proposition is for regular projective surfaces over any field.
Moreover, in [LU21] the authors called “algebraically stable transformations” the
ones being minimally algebraically stable, and they gave only the implication of the
point 4 that allowed to reprove 4.10. The geometric characterization of algebraically
stable models have been done in [Lam21].

Proposition 4.11 ([LU21], [Lam21]). Let S be a smooth projective surface
over an algrebraically closed field. We have the following correspondences between
geometric and birational notions.

(1) Elements of Bir(S) inducing elliptic isometries of the blow-up graph Cb(S)
correspond to projectively regularizable elements of Bir(S).

(2) The distance between the vertex [(S, id)] and its image by an element f of
Bir(S) corresponds to twice the number of base-points of f :

d ([(S, id)], [(S, f)]) = 2|B(f)|.
Moreover, there is a bijective correspondance between the set of all possible
orders of decomposing f−1 into composition of blow-ups (and inverse of
blow-ups) of points and the set of geodesics between these two vertices.

(3) The translation length corresponds to twice the dynamical number of base-
points:

`(f) = 2µ(f).

(4) The set of vertices of Min(f) of a birational transformation f ∈ Bir(S)
corresponds to minimally algebraically stable models: [(T, ϕ)] belongs to
Min(f) if and only if ϕ−1fϕ is minimally algebraically stable on T .

Idea of proof of Proposition 4.11. The point 1 follows from the defini-
tion of the vertices of the blow-up graph, the point 2 has been seen above in
Lemma 4.7.

Let us focus on the point 3. Consider f ∈ Bir(S) and x ∈ Min(f). By
Proposition 2.14, for any n ∈ N we have d(x, fn(x)) = n`(f). Let v = [(S, id)].
Then d(v, fn(v)) = 2|B(fn)| by Lemma 4.7. This implies that for any n ∈ N,
n`(f) ≤ 2|B(fn)|. Taking the limit we obtain: `(f) ≤ 2µ(f). On the other hand,
let x ∈ Min(f) and K = d(v, x). Then for any n ∈ N, 2|B(fn)| = d(v, fn(v)) ≤
n`(f) + 2K and hence 2µ(f) ≤ `(f).

The point 4 is a consequence of the fact that a birational transformation g
is minimally algebraically stable if and only if for all n ≥ 1, |B(gn)| = n|B(g)|
([Lam21, Proposition 4.22]).

Assume [(T, ϕ)] belongs to Min(f), then using the characterization of the
distance between two vertices in term of base-points Lemma 4.7 and the fact
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that isometries are semi-simple Proposition 2.14, we obtain that for all n ≥ 1,
|B
(
(ϕ−1fϕ)n

)
| = n|B

(
(ϕ−1fϕ)n

)
| and so ϕ−1fϕ is minimally algebraically stable

on T . On the other hand, if ϕ−1fϕ is minimally algebraically stable on T , then
for all n ≥ 1, |B

(
(ϕ−1fϕ)n

)
| = n|B

(
(ϕ−1fϕ)n

)
| and so, by writing x = [(T, ϕ)],

d(x, fn(x)) = nd(x, f(x)) for all n ≥ 1 implying that d(x, f(x)) is the translation
length. This implies that x ∈ Min(f) as expected. �

Theorem 4.9 is a direct consequence of the characterization of the dynamical
number of base-points in term of translation length (Proposition 4.11 (3)), and
Theorem 4.10 is a direct consequence of Proposition 4.11 (4).

4.1.4. Regularization results. By Proposition 4.11.1, stabilizers of vertices are
projectively regularizable subgroups of Bir(S). Hence, this action allows to obtain
straightforwardly and in an unified way some regularization results.

Remark 4.12. Note that in the following regularization results, smoothness is
assumed for surfaces, but up to desingularization, we can obtain the same results
for any surface.

For instance, it is immediate that groups with property FW are projectively
regularizable.

Proposition 4.13 ([CdC19, Theorem B]). Let S be a smooth projective sur-
face. Subgroups of Bir(S) having the FW property are projectively regularizable.

Note that in [CdC19], they show a stronger result, namely that a subgroup
G ⊂ Bir(P2) with the FW property is conjugated to a subgroup of the auto-
morphism group of a minimal surface (without (−1)-curve) using some classifica-
tion/geometry of surfaces.

As the action of Bir(S) on the blow-up graph Cb(S) preserves the cubical orien-
tation, a subgroup of Bir(S) having bounded orbits fixes a vertex of Cb(S) and by
definition is projectively regularizable. Hence, using Proposition 4.11, projectively
regularizable subgroups are the ones having a uniform bound on the number of
base-points of its elements. Moreover, the number of base points of an element
g ∈ Bir(P2) is bounded by a constant depending only on the degree of g. As a
consequence, the bounded subgroups of Bir(P2), i.e., the subgroups such that the
degree of all its elements is uniformly bounded, are projectively regularizable.

Proposition 4.14. Let S be a smooth projective surface. A subgroup G ⊂
Bir(S) is projectively regularizable if and only if there exists a constant K such that
|B(f)| ≤ K for all f ∈ G.

In particular, bounded subgroups of Bir(P2) are projectively regularizable.

Note that the there exists projectively regularizable subgroup of Bir(P2) that
are not bounded. For instance, group of automorphisms of Halphen surfaces (see
for instance [Lam21]).

Several classes of birational transformations are projectively regularizable. Let
us introduce them. In a group G, an element g ∈ G is:

• divisible, if for every integer n ≥ 0 there exists an element f ∈ G such
that fn = g;

• distorted, if limn→∞
|gn|S
n = 0 for some finitely generated subgroup Γ ⊂ G

containing g, where |gn|S denotes the word length of gn in Γ with respect
to some finite set S of generators of Γ.
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Distorted elements in Bir(P2) for an algebraically closed field k of characteristic 0
have been classified in [BF19] and [CdC20], and a description of divisible elements
in Bir(P2) can be found in [LRU23].

Proposition 4.15 ([LU21]). Divisible and distorted birational transforma-
tions of smooth projective surfaces are regularizable.

Proof. Let S be a surface, let g ∈ Bir(S) be a divisible or distorted element
and define the length function L(f) := d([(S, id)], [(S, f)]) on Bir(S). It is sub-
additive, takes integral values, and the map n 7→ L(fn) grows asymptotically like
n`(f) by Corollary 2.14. Since g is divisible or distorted, then the restriction of L
to < g > has to be bounded, hence g has a bounded orbit on Cb(S) and so g is
projectively regularizable. �

Proposition 4.16 ([LU21]). Let S be a smooth projective surface, G ⊂ Bir(S)
be a subgroup and H ⊂ G a subgroup of finite index. Then G is projectively regu-
larizable if and only if H is.

The above proposition comes from the fact that, if H is projectively regu-
larizable, then the orbit of G on any vertex fixed by H is bounded and so G is
projectively regularizable.

4.1.5. Open question. We are interested in the following open question (see
Question 1.1): Consider a finitely generated subgroup G of the Cremona group of
rank 2 such that each of its elements is projectively regularizable. Does it imply
that G is projectively regularizable? In term of the action of the Cremona group on
the blow-up graph, this question can be reformulated as follows:

Question 4.17. Let G be a finitely generated subgroup of Bir(S) acting purely
elliptically on the blow-up graph. Does it implies that G fixes a vertex? (or equiv-
alently that G has bounded orbits?)

This question has to be related to the general question about finitely generated
groups acting purely elliptically on median graphs (see Question 2.16). As we have
already seen in Section 2.4, when the median graph is not locally of finite dimension
(which is the case of the blow-up graph), there exist counterexamples, so there is
no direct answer using actions on median graphs so far. Nevertheless, this action
seems to be a good starting tool to answer this question.

Note that, also in this context, it is necessary to require the subgroup to
be finitely generated, otherwise, there exist counterexamples. For instance, the
subgroup G = {(x, y) 7→ (x, y + P (x)) | P ∈ k[X]} of the Cremona group con-
tains only elliptic elements. Indeed, for any g ∈ G, gn(x, y) = (x, y + nP (x)), so
deg(gn) = deg(g) = deg(P ) if deg(P ) ≥ 1 and g is projectively regularizable by
Proposition 4.14. Nevertheless, for any n ∈ N∗, the element (x, y) 7→ (x, y+xn) ∈ G
has 2n−1 base-points so there is no uniform bound on the number of base-points of
elements of G implying by Proposition 4.14 that G is not projectively regularizable.

4.2. The rational blow-up graph over finite fields. In [GLU24], the
authors show that over a finite field the Cremona group of rank 2 embedds into a
Neretin group. They construct a median graph for the Neretin group, inspired by
the construction of the blow-up graph. Using this action, they answer positively
Question 1.1 for Cremona groups of rank 2 over finite fields.
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Theorem 4.18 ([GLU24]). Let F be a finite field and S be a projective regular
surface defined over F. Let G be a finitely generated subgroup of Bir(S) such that
for any g ∈ G, g is projectively regularizable. Then G is protectively regularizable.

In this survey, we present how this result can be reproved by constructing a
new median graph called the rational blow-up graph. Note that this construction
is different from the one of [GLU24], even when reformulating the construction
to study only the Cremona group of rank 2 over finite fields (instead of the all
Neretin group). As we will see, the rational blow-up graph is a convex subgraph of
the blow-up graph, making him immediately median. Moreover, it is locally finite
dimensional so this allows to apply Theorem 2.17 in order to answer positively
Question 1.1 for Cremona groups of rank 2 over finite fields. Nevertheless, as we
will see, the all Cremona group of rank 2 over a finite field does not act on it, but
only some subgroups, which is sufficient for our purpose.

4.2.1. Comments on the field. In this section, we consider projective surfaces
defined over a perfect field k, denoted by Sk. Let k̄ be an algebraic closure of k̄. In
this context, Sk is the pair (Sk̄,Gal(k̄/ k)), where the Galois group Gal(k̄/ k) acts
on the second factor of Sk̄ = S ×Spec(k) Spec(k̄).

In other words, the main problem, when working over non-algebraically closed
field, is that the notion of points changes. Indeed, there is an action of the Galois
group Gal(k̄/ k) on the set of points of Sk̄. The orbit of such a point will be called
a closed point of Sk. For instance, over R, the Galois group Gal(C /R) acts by
complex conjugation on the points of P2

C. The points [0 : 1 : i] and [0 : 1 : −i] are in
the same Galois-orbit and form the closed point

{
y2 + z2 = x = 0

}
of P2

R. Once k
is fixed, the set of rational points of S, denoted by S(k), is the set of orbits of size
1. For instance, the set of rational points of P2 is P2(k) = {[a : b : c] | a, b, c ∈ k}.

Notice that, when working over a finite field, a surface has infinitely many points
but finitely many rational ones. As a consequence, the blow-up graph associated
to a surface over a finite field is still not locally of finite dimension.

Theorem 4.19 ([LU21, Theorem 1.3]). Let S be a surface over a perfect field
k and let G ⊂ Bir(S) be a subgroup defined over k. G is projectively regularizable
over k if and only if it is projectively regularizable over its algebraic closure k̄.

4.2.2. Construction. The construction of the rational blow-up graph is general
and does not required the field to be finite, so let k be any field. A rational
marked surface (T, ϕ) is a pair where T is a regular projective surface over k and
ϕ : T 99K S is a birational map such that all its base-points and the ones of its inverse
are rational: B(ϕ)(k) = B(ϕ) and B(ϕ−1)(k) = B(ϕ−1). As before, two rational
marked surfaces (T, ϕ) and (T ′, ϕ′) are equivalent if the map ϕ′−1ϕ : T → T ′ is an
isomorphism. Such a class, will be denoted by [(T, ϕ)].

Definition 4.20. The rational blow-up graph associated to S and denoted by
Cb,k(S) is the graph whose vertices are equivalent classes of rational marked surfaces
[(T, ϕ)], and where two vertices [(T1, ϕ1)] and [(T2, ϕ2)] are connected by an edge
if ϕ−1

2 ϕ1 is the blow-up of a rational point of T2 or the inverse of the blow-up of a
rational point of T1.

Recall that an exceptional divisor is isomorphic to P1, and that P1 contains at
least three rational points. As a consequence, if π : T2 → T1 is the blow-up of a
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rational point of T1, T2 contains strictly more rational base points than T1. This
implies, that the rational blow-up graph is infinite dimensional. On the other hand,
it the field is finite, any surface contains only a finite number of rational base-points
and so the graph is locally compact and so locally of finite dimension. Moreover,
as consequence of Lemma 4.7 and by construction of the rational blow-up graph,
the later graph is a convex subgraph of the blow-up graph so it is also a median
graph.

Proposition 4.21. The rational blow-up graph Cb,k(S) is an oriented and infi-
nite dimensional median graph. Moreover, if the field is finite, it is locally compact,
hence locally of finite dimension.

Proof of Theorem 4.18. Fix a symmetric finite generating set {gi}1≤i≤n of
G. Let L be a finite field extension of F such that all the base-points of the gi’s, and
hence the base-points of all elements in G are defined over L. We now consider the
action of Bir(SL) on the median graph Cb,L(SL) that is locally of finite dimension
because L is finite. By definition, every element in G is regularizable over F and
so over L by Theorem 4.19. Hence they are elliptic. Theorem 2.17 implies that
G fixes a vertex in Cb,k(SL), meaning that G is regularizable over L. Again by
Theorem 4.19, G is regularizable over F. �

4.3. The Jonquieres graph. An element of Bir(P2) is algebraic if its degree
is bounded under iteration. Recall that a subgroup G ⊂ Bir(P2) is bounded if the
set of all the degrees of the elements in G is bounded. This subsection is dedicated
to the following result, which answer positively a question of Favre [Fav10] and
Cantat [Can11]:

Theorem 4.22 ([LPU24]). Finitely generated subgroups of Bir(P2) containing
only algebraic elements are bounded.

Note that algebraic elements of Bir(P2) correspond to the elliptic isometries of
the action of Bir(P2) on the hyperboloid H∞ introduced in Subsection 3.4. Hence,
theorem 4.22 can be rephrased as follows: finitely generated subgroups of Bir(P2)
acting by elliptic isometries on H∞ have a fixed point in H∞.

Being algebraic or bounded is invariant under field extensions so we can assume
the field to be algebraically closed. The first step to prove Theorem 4.22 is due to
Cantat, who showed in [Can11] that a finitely generated subgroup G ⊂ Bir(P2)
consisting of algebraic elements is either bounded or is conjugated to a Jonquières
subgroup. It is therefore enough to show Theorem 4.22 for finitely generated sub-
groups of the Jonquières subgroup. The main ingredients are the action of the
Jonquières group on a median graph, called the Jonquières graph and the study of
the dynamics of PGL2(k) on P1.

Let us construct the Jonquières graph. Here, a rational fibration on a surface S
is a morphism π : S → C, where C is a curve, such that all the fibres are isomorphic
to P1. Let π : S → C and π′ : S′ → C be rational fibrations. A conic bundle is a
composition with a rational fibration π : S → C of a sequence of blow-ups S̃ → S,
such that we blow up in total at most one point s ∈ S in each fibre.

Definition 4.23. Let F0 = P1 × P1 with the rational fibration π0 : F0 → P1

onto the first factor. The Jonquières graph Jonq is the subgraph of the blow-up
graph Cb(F0) induced on the set of vertices represented by marked surfaces [(S, ϕ)]
such that, for π = π0ϕ, the rational map π : S 99K P1 is a conic bundle.
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Note that the Jonquières graph Jonq is not a convex subgraph of the blow-up
graph Cb(F0). Consider the minimal resolution of j : (x, y) 7→ (x, x2 + y) (see
Example 11). The vertex [(Sj , π2)] is not a vertex of the Jonquières graph because
more than one point has been blown up in the same fiber. Nevertheless, the graph
Jonq is isometrically embedded in the graph Cb(F0).

For any p ∈ P1, consider the subgraph Xp of Jonq induced on the vertices repre-
sented by the marked surfaces [(T, ϕ)], where ϕ : T 99K F0 induces an isomorphism
between T \ π−1(p) and F0 \π−1

0 (p). Fix xp = [(F0, id)] in each Xp, and consider
the family of pointed sets {(Xp, xp)}p∈P1 . Its restricted product

⊕
p∈P1(Xp, xp) is

the set of sections {yp}p∈P1 with yp ∈ Xp such that all but finitely many yp are
equal to xp.

The coordinate yp of a point y ∈
⊕

p∈P1(Xp, xp) = J should be thought of
as the “marked fibre” in the surface corresponding to y over the point p. Thus
modifying the coordinate yp of y corresponds to performing an alternating sequence
of blow-ups of points and blow-downs of −1 curves in the fibre over p of the surface
corresponding to y.

Theorem 4.24 ([LPU24]). For any p ∈ P1, the graph Xp is a tree and the
graph Jonq is isomorphic to the restricted product:

⊕
p∈P1(Xp, xp); hence it is a

median graph.

The Jonquières group acts on the vertex set of Jonq by f • [(S, ϕ)] = [(S, fϕ)].
Moreover, the isomorphism of Theorem 4.24 induces an action of the Jonquières
group on

⊕
p∈P1(Xp, xp). Using the dynamics of PGL2(k) on P1, we show that this

action is decent, i.e., each subgroup of the Jonquières group with a finite orbit fixes
a point of

⊕
p∈P1(Xp, xp), and each finitely generated subgroup of the Jonquières

group acting purely elliptically fixes a point of
⊕

p∈P1(Xp, xp). Hence, using again
Theorem 4.24, this means that each finitely generated subgroup of the Jonquières
group acting purely elliptically is conjugated to a subgroup of an automorphism of
a projective smooth surface, and so it is bounded.

5. Median graph for groups of birational transformations of varieties of
any dimension

In this section, we assume varieties to be over an algebraically closed field (only
for technical reasons as before). We introduce the first and, up to the knowledge
of the author, the unique geometrical spaces with non-positive curvature known
today in order to study from a geometric group theoretic point of view groups of
birational transformations of varieties of arbitrary dimension. This section is taken
from [LU21] and translated in term of median graphs instead of CAT(0) cube
complexes.

It is very tempting to try to adapt the construction of the blow-up graph to
varieties of higher dimensions requiring vertices to be marked projective varieties
of the given dimension. But sadly this is not possible. One of the reason is that
the group of monomial birational transformations of P3, which is isomorphic to
GL3(Z), has the property FW. Hence, it would act on a median graph preserving
a cubical orientation, so it should fixes a vertex. However, it is known that it is
not conjugated to any subgroup of the automorphism group of a projective variety.
This can be seen, for instance, by considering the degree sequence of the monomial
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transformation (x, y, z) 799K (yx−1, zx−1, x), which does not satisfy any linear re-
currence and is therefore not conjugate to an automorphism of a regular projective
threefold (see [HP07] or [CZ12] for details).

As a consequence, it is necessary to leave the projective world. Hence, a natural
generalization is to consider varieties as quasi-projective varieties over algebraically
closed fields. This works to build the median graph C0(X) on which the group
of birational transformations of a variety X acts on. In [LU21], the authors also
build several median spaces for different subgroups of groups of birational transfor-
mations. For these later constructions, it is not clear anymore if considering only
quasi-projective varieties, the graphs constructed are median. In order to prove
that the links are flag, they need to be able to glue varieties along open dense
subsets and stay in the same class of varieties. Hence in this section varieties are
more general than quasi-projective varieties. To be precise they are integral and
separated schemes of finite type over k.

5.1. Actions of groups of isomorphisms in codimension ` on median
graphs. Consider two varieties A and B. A birational map f : A 99K B is called
isomorphism in codimension ` if Exc(f) and Exc(f−1) have codimension > `. Note
that isomorphisms in codimension 1 are usually called pseudo-isomorphisms, and
birational transformations are isomorphisms in codimension 0. For any 1 ≤ k ≤
dim(X) we denote by Exck(f) the set of irreducible components of the exceptional
locus of f of codimension k.

The following example is an easy but fundamental example for the construction
of the median graph that we will construct in Section 5.1.1.

Example 5.1. If D ⊂ X is an irreducible subvariety of codimension ` + 1
then ι : X \ D ↪→ X is an isomorphism in codimension `, with Exc(ι) = ∅ and,

Exc(ι−1) = D = Exc`+1(ι−1) has a unique irreducible component of codimension
`+ 1.

When we fix a variety X, isomorphisms in codimension ` from X to itself form
a subgroup of the group of birational transformations of X, which is denoted by
Psaut`(X). When ` is 0 then it is the whole group Bir(X), on the other hand, when
` = dimX, then it is the group of automorphisms of X. A subgroup G ⊂ Bir(X)
is called pseudo-regularizable in codimension ` if there exist a variety Y and a
birational map ϕ : Y 99K Pn such that

ϕ−1Gϕ ⊂ Psaut`(Y ).

If moreover, ϕ is an isomorphism in codimension ` − 1, we say that G is pseudo-
regularizable in codimension ` by an isomorphism in codimension `− 1.

5.1.1. Construction of C`(X). Let X be a variety over a field k and ` be a
non-negative integer. A `-marked variety is a pair (Y, ϕ), where Y is a variety over
k and ϕ : Y 99K X is an isomorphism in codimension `. Two `-marked varieties
(Y, ϕ) and (Y ′, ϕ′) are equivalent if ϕ′−1ϕ : Y 99K Y ′

Y Y ′

X

ϕ ϕ′

is an isomorphism in codimension `+ 1. Such a class will be denoted by [(Y, ϕ)].
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•
[(P3, id)]

•
[(A3, id|A3)]

•
[(V1 \H,π1|V1\H)]

•[(V1, π1)]

•
[(V2, π2)]

• [(V2 \H,π2|V2\H)]

• [(V1,2 \H,π2π1|V1,2\H)]•
[(V1,2, π2π1)]

Figure 16. A cube of dimension three in C0(P3) spanned by the
blow-ups of two points p1 and p2 in P3 and by removing the hy-
persurface H = {x3 = 0} at infinity.

For instance, let L = {x = 0}∩{y = 0} be a line in P3. The 1-marked varieties
(P3, id) and (P3 \ L, id|P3\L) are equivalent.

Definition 5.2. The graph C`(X) associated to X is the graph whose vertices
are equivalent classes of `-marked varieties [(Y, ϕ)], and where two vertices v1 and v2

are connected by an edge if v1 can be represented by a couple (Y, ϕ) such that there
exists an irreducible subvariety D ⊂ Y of codimension ` + 1 and v2 is represented
by (Y \D,ϕ|Y \D).

Note that we can put an orientation on the edges by saying that the edge from
the above definition is oriented from v1 to v2. We denote this edge by (Y, ϕ,D).
Recall that we say that the vertex v2 is dominated by v1 if there exists a sequence
of edges connecting v1 to v2 that are all oriented in the same direction from v1 to
v2.

Example 5.3. Consider two distinct points p1 and p2 in P3. Denote respec-
tively by πi : Vi → P3 the blow-up of the point pi, and Ei the exceptional divisor
obtained. In the graph C0(P3), we have an edge from [(Vi, πi)] to [(Vi \Ei, πi|Vi\Ei

)]

which is the same vertex as [(P3 \ {pi}, id|P3\{pi})] which is the same vertex as

[(P3, id)]. Denote by V1,2 the variety obtained by blowing up both pi’s. Then from
this variety, removing the Ei’s as well as the hypersurface at infinity H := {x3 = 0}
span a cube because up to pseudo-isomorphisms, these maps commute (see for in-
stance Figure 16).

As illustrated in the example, removing a family of n distinct subvarieties of
codimension ` + 1 in a variety Y generates a cube of dimension n. And indeed, it
is the only way to have cubes. More precisely:

Fact 5.4. In the graph C`(X), n distinct vertices [(Y1, ϕ1)], . . . , [(Y2n , ϕ2n)]
span a cube of dimension n if and only if there exists 1 ≤ r ≤ 2n such that for any
1 ≤ j ≤ 2n:

• there exist n distinct irreducible subvarieties D1, . . . , Dn ⊂ Yr of codimen-
sion `+ 1,

• for each 1 ≤ j ≤ 2n different of r, there exists 1 ≤ m ≤ n such that
Yj = Yr \ {Di1 ∪ · · · ∪Dim} for some 1 ≤ i1, . . . , im ≤ n,

• the ϕj equals the restriction of ϕr to Yj .
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The variety X contains infinitely many irreducible subvarieties of codimension
`+ 1, so removing an arbitrary large sequence of such subvarieties, we immediately
see the following properties of these graphs.

Proposition 5.5. The graph C`(X) is:

• not locally compact,
• infinite dimensional with infinite cubes,
• cubically oriented.

Theorem 5.6 ([LU21]). The graphs C`(X) are median graphs for 0 ≤ ` ≤
dim(X).

A key point to notice is the following: for any family of vertices, we can find
explicitly a vertex that it is dominated by all of them. For instance, consider two
vertices vi := [(Yi, ϕi)] for 1 ≤ i ≤ 2 then, denoting by U1 := Y1 \Exc`(ϕ−1

2 ϕ1) and

by U2 := Y2 \ Exc`(ϕ−1
1 ϕ2), the vertex [(U1, ϕ1|U1

)] = [U2, ϕ2|U2
] is dominated by

both v1 and v2.

Lemma 5.7. Let X be a variety and let [(Y1, ϕ1)], . . . , [(Yn, ϕn)] be a finite

set of vertices in C`(X). Let Ui ⊂ Yi be open dense subsets with complements
of codimension > ` such that for 2 ≤ i ≤ n, ϕ−1

i ϕ1 induces an isomorphism in
codimension ` + 1 between U1 and Ui. Then the vertex [(U1, ϕ1|U1)] is dominated
by all the vertices [(Yi, ϕi)]. Indeed, [(Ui, ϕi|Ui

)] is dominated by [(Yi, ϕi)], and by
construction, all the vertices [(Ui, ϕi|Ui

)] coincide.

Note that this was not the case for the blow-up graph Cb(S) of a surface S.
Indeed, any vertex [(S′, ϕ)] for which the surface S′ is minimal, i.e., does not contain
any (-1)-curve, does not dominate any other vertices.

It is still an open question whether the strong factorization theorem (Zariski
theorem 3.11) remains valid or not in higher dimension. Zariski theorem was a key
tool for the construction and the study of the blow-up graph in the surface case.
Lemma 5.7 will be its replacement in the construction and the study of the graphs
C`(X).

The geometry of the graphs C`(X) are really different from the one of the
blow-up graph as we can see with the next lemma.

Lemma 5.8. Let v, v1, . . . , vn be vertices in C`(X) such that v dominates v1, . . . , vn.
Then there exists a cube containing v, v1, . . . , vn all of whose vertices are dominated
by v.

Proof. Let us observe that for any edge connecting a vertex v with vertex
v′, and for any representative (Y, ϕ) of v there exists an irreducible subvariety
D ⊂ Y of codimension ` + 1 and v′ is represented by (Y \ D,ϕ|Y \D). Because v
dominates the vi we can therefore find by induction a representative of the vi of
the form (Y \Di, ϕ|Y \Di) where Di is a finite union of irreducible subvarieties of
codimension `+ 1 of Y for each i. This shows that v, v1, . . . , vn form a cube whose
vertices are dominated by v. �

For instance, consider the standard quadratic Cremona involution σ ∈ Bir(P2)
seen in Example 3.7: σ : [x0 : x1 : x2] 799K [x1x2 : x0x2 : x0x1]. For 0 ≤ i ≤
2, denoting by Li = {xi = 0} the coordinate lines, the vertex [(P2 \ L0 ∪ L1 ∪
L2, id|P2\L0∪L1∪L2

)] of the graph C0(P2) is dominated by both [(P2, id)] and [(P2, σ)].
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Idea of proof of Theorem 5.6. Using Theorem 2.4 and Theorem 2.2, it
remains to prove that the cube completion of C`(X) is simply connected and that
links of vertices are flag simplical complexes. We will not discuss here about the
flagness of the links of vertices but an interested reader can find it in [LU21].

By Lemma 5.7, the graph C`(X) is connected. Let now γ be a cycle in C`(X)
passing through the vertices v1, . . . , vn, respectively represented by [(Yi, ϕi)], which
can be assumed to be without backtrack. Denote by v = [(Y, ϕ)] the vertex from
Lemma 5.7 that is dominated by all the vi, i.e., ϕ−1

i ϕ : Y → Yi is an open im-
mersion. The goal now is to show that γ is homotopic to v. For this we define
cmax(γ) := max1≤i≤n(c(vi), where c(vi) is the number of irreducible components of

pure codimension ` + 1 of Yi \ ϕ−1
i ϕ(Y ). Note that c(vi) does not depend on the

representative of vi and that c(vi) = 0 if and only if vi = v. Denote by 1 ≤ i0 ≤ n
the maximal index such that c(vi0) = cmax(γ).

By definition, vi0 dominates vi0−1, vi0+1 and v so by Lemma 5.8 there exists
a cube containing vi0 , vi0−1, vi0+1 and v. Moreover, this cube contains a square
spanned by vi0 , vi0−1 and vi0+1. We denote by v′i0 the fourth vertex. Since they
form a square, we can deform γ by a homotopy so that it passes through v′i0 instead
of vi0 . By the definition of our cube, v′i0 still dominates v and c(v′i0) < c(vi0).
By induction on (cmax(γ), i0) with the lexicographical order, we conclude that in
finitely many such steps γ is homotopic to v, and that the graph C`(X) is simply
connected. �

Remark 5.9. In the case ` = 0, when the variety is normal, the median graph
C0(X) is indeed median for a stupid reason; it is a single (infinite) cube. This comes
from the fact that the convex hull of any finite set of vertices in C0(X) is a single
cube. But this is not the case anymore if ` > 0 (see for instance [LU21, Remark
4.8]).

5.1.2. Hyperplanes. In the graph C`(X), an edge is given by removing an irre-
ducible subvariety D of codimension `+ 1 of a `-marked variety (Y, ϕ). We denote
such an edge by (Y, ϕ,D) and by [(Y, ϕ,D)] its corresponding hyperplane. In this
subsection, we give a birational interpretation of hyperplanes, distance and halfs-
paces.

The following birational characterization of the equivalence of edges is an im-
mediate consequence of the definition of Lemma 5.7.

Lemma 5.10 ([LU21]). Two edges (Y, ϕ,D) and (Y ′, ϕ′, D′) correspond to the
same hyperplane if and only if D′ is not contained in the exceptional locus of ϕ−1ϕ′

and D is the strict transform ϕ−1ϕ′(D′) of D′ under ϕ−1ϕ′.

The following lemma describes the geodesics of the graph C`(X). It is an
immediate consequence of Lemma 5.7 that allows us to find a vertex dominated
by any family of vertices, of Lemma 5.10 that characterizes the hyperplanes of this
graph, and of the characterization of geodesics by hyperplanes Theorem 2.11.

Lemma 5.11 ([LU21]). Let v1 = [(Y1, ϕ1)] and v2 = [(Y2, ϕ2)] be two vertices

in C`(X). There is a bijection between the set of all the geodesic paths joining
these two vertices and the set of all the possible order to remove the irreducible
components of pure codimension ` + 1 of the exceptional locus of ϕ−1

2 ϕ1 from Y1

and adding the irreducible components of pure codimension `+ 1 of the exceptional
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locus of ϕ−1
1 ϕ2. In particular, the distance between v1 and v2 equals the sum

d(v1, v2) =|Exc`+1(ϕ−1
1 ϕ2)|+ |Exc`+1(ϕ−1

2 ϕ1)|.

Note that working over algebraically closed fields ensure that if f is an au-
tomorphism in codimension ` of a variety Y then the number of irreducible com-
ponents in the exceptional locus of codimension ` + 1 of f and f−1 are equals:
|Exc`+1(f)| = |Exc`+1(f−1)|.

There is an algebraic characterization of halfspaces associated to a given hy-
perplane.

Lemma 5.12 ([LU21]). Consider a hyperplane [(Y, ϕ,D)] in C`(X). The set
of vertices [(V, ψ)] such that D is contained in the exceptional locus of ψ−1ϕ deter-
mines one of the two halfspaces.

Remark 5.13. If S is a projective surface, then the blow-up graph is a subgraph
of C0(S). The vertices of the blow-up graph can be identified with the vertices in
C0(S) of the form [(S′, ϕ)], where S′ is a projective surface. Indeed, the equivalence
relation on the marked surfaces of the blow-up graph is a subrelation of the one
put on the 0-marked varieties of the graph C0(S). However, this injection is not
an isometric embedding. For instance, if we consider j = (x, y) 7→ (x, x2 + y)
from Remark 3.17, in the blow-up graph Cb(P2), the distance between the vertices
[(P2, id)] and [(P2, j)] is 6 by Lemma 4.7 as j has three base-points (see Figure 11).
But in the graph C0(P2) it has distance 2 because Exc(j) = Exc(j−1) = {z = 0},
hence by Lemma 5.11, the path given by the vertices [(P2, id)], [(A2

z, idA2
z
)] and

[(P2, j)] is geodesic.

5.1.3. Action of groups of automorphisms in codimension `. For any `, the
group of automorphisms in codimension `, Psaut`(X), acts faithfully on the set of
`-marked varieties by post-composition and preserves the equivalence class, hence
it acts on the set of vertices of C`(X): let f ∈ Psaut`(X) and [(A,ϕ)] ∈ C`(X)0, f •
[(Y, ϕ)] = [(Y, fϕ)]. This gives us a faithful action by isometries on the graph C`(X).
Note that this action preserves the cubical orientation given. As a consequence, an
element preserving a cube, fixes a vertex.

As we will see in Proposition 5.14, this action encodes geometrically, and in a
unified way, diverse birational notions.

Let f ∈ Psaut`(X), the dynamical number of the (`+ 1)-exceptional locus of f
is defined as:

ν`+1(f) := lim
n→∞

|Exc`+1(fn)|
n

.

This limit always exists, since the function f 7→ |Exc`+1(f)| is subadditive on

Psaut`(X). The dynamical number of the (` + 1)-exceptional locus is invariant

under conjugacy in Psaut`(X), since conjugation by a birational transformation g

changes the number of irreducible components of Exc`+1(f) at most by a constant
only depending on g and g−1. This number has been introduced in [LU21] and is
inspired by the dynamical number of base points from the surface case. Neverthe-
less, it is a weaker notion in the sense that if f ∈ Bir(S), where S is a projective
surface, then ν1(f) ≤ µ(f). For instance, the Hénon transformation h : P2 99K P2

defined with respect to affine coordinates by h(x, y) = (y, y2+x) satisfies ν1(f) = 0,
whereas µ(f) = 3.
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In the same way as the blow-up graph gives a geometrical interpretation of
the dynamical number of base points, the graph C`(X) gives a geometrical inter-
pretation of the dynamical number of the (` + 1)-exceptional locus of elements of

Psaut`(X). The following proposition is an analogous of Proposition 4.11 that was
made in the context of the blow-up graph.

Proposition 5.14 ([LU21]). We have the following correspondences between
geometric and birational notions.

(1) Element of Psaut`(X) inducing elliptic isometries of the graph C`(X) cor-

respond to pseudo-regularizable elements in codimension `+1 of Psaut`(X)
by isomorphisms in codimension `.

(2) The distance between the vertex [(X, id)] and its image by an element f

of Psaut`(X) corresponds to twice the number of irreducible components
of the exceptional locus of f of codimension `+ 1:

d ([(X, id)], [(X, f)]) = 2|Exc`+1(f)|.

(3) The translation length corresponds to twice the dynamical number of the
(`+ 1)-exceptional locus of f :

`(f) = 2ν`+1(f).

Idea of proof of Proposition 5.14. The point 1 follows from the defini-
tion of the vertices of the graph C`(X), the point 2 has been seen above in Lemma
5.11.

Let us focus on the point 3. Consider f ∈ Psaut`(X) and x ∈ Min(f). By
Proposition 2.14, for any n ∈ N we have d(x, fn(x)) = n`(f). Let v = [(X, id)].

Then d(v, fn(v)) = 2|Exc`+1(fn)| by Lemma 5.11. This implies that for any n ∈ N,

n`(f) ≤ 2|Exc`+1(fn)|. Taking the limit we obtain: `(f) ≤ 2ν`+1(f).
On the other hand, let x ∈ Min(f) and K = d(v, x). Then for any n ∈ N,

2|Exc`+1(fn)| = d(v, fn(v)) ≤ n`(f) + 2K and hence 2ν`+1(f) ≤ `(f). �

Point 3 of Proposition 5.14 implies the following theorem, which can be seen
as an analogue to Theorem 4.9:

Theorem 5.15 ([LU21]). Let f ∈ Psaut`(X). Then

(1) ν`+1(f) is an integer; in particular the sequence
(

Exc`+1(fn)
)
n∈N

is ei-

ther bounded or grows asymptotically linearly in n;
(2) there exists a variety Y and an isomorphism in codimension ` ϕ : Y 99K X

such that ϕ−1fϕ has exactly ν`+1(f) irreducible components in its excep-
tional locus of codimension `+ 1;

(3) in particular, ν`+1(f) = 0 if and only if f is pseudo-regularizable in codi-
mension `+ 1 by an isomorphism in codimension `.

5.1.4. (Pseudo)-regularization results. By Proposition 5.141, stabilizers of ver-
tices are pseudo-regularizable subgroups in codimension ` + 1 by an isomorphism
in codimension `. Hence, this action allows to obtain in an unified way some regu-
larizable and pseudo-regularizable results.

For instance, using Proposition 5.14 2, bounded actions can be described as
follows:
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Proposition 5.16 ([LU21]). Let G ⊂ Psaut`(X) for some 0 ≤ ` ≤ dim(X)−1.
The subgroup G is pseudo-regularizable in codimension `+ 1 by an isomorphism in
codimension ` if and only if {|Exc`+1(g)| | g ∈ G} is uniformly bounded.

The construction of all these median graphs (for ` > 0) and not only C0(X)
have been indeed the key point to show regularizable results instead of only pseudo-
regularizable results. The following theorem has been one of the motivations of
these constructions.

Theorem 5.17 ([LU21]). Let X be a complete variety.

• If a subgroup G ⊂ Bir(X) has property FW, then G is regularizable.
• If an element g ∈ Bir(X) is divisible or distorted, then 〈g〉 is regularizable.

Proof. Denote by d the dimension of X. Let G ⊂ Bir(X) a subgroup that
either has the FW property, either that is generated by a single element g ∈ Bir(X)
that is divisible or distorted. Consider the action of Bir(X) on C0(X). If G does
not have the FW property, defines the length function L(f) := d((X, id), (X, f)) on
Bir(X). As G is generated by a distorted element or a divisible one, the restriction
of this length function to G has to be bounded.

As a consequence, in any case, the orbits of G on the median graph C0(X)
are bounded, and because the cubical orientation is preserved, G fixes a vertex
[(X1, ϕ1)]. As a consequence, ϕ1 conjugates G to a subgroup of Psaut1(X1). This
yields an action of G on C1(X1). We continue inductively until we find a variety
Xd and a birational map ϕ = ϕ1 . . . ϕd : Xd 99K X that conjugates G to a subgroup
of Psautd(Xd) = Aut(Xd). Hence, G is regularizable. �

5.1.5. Note on related constructions [CdC19] and [Cor20]. The first part of
Theorem 5.17 answers a question of Cantat and Cornulier ([CdC19, Question 10.1])
where they proved that subgroups of Bir(X) with the FW property are pseudo-
regularizable using the notion of commensurating actions. As mentioned by the
authors in [LU21], the constructions of the cube complexes C`(X) are inspired by
[CdC19].

In order to be more precise, let us introduce some definitions needed. Consider
a group G acting on a set X. We say that a subset A of X is commensurated by G if
for all g ∈ G the symmetric difference gA4A is finite. If there exists a subset B of
A that is G-invariant and such that the symmetric difference A4B is finite, then A
is said to be transfixed by G. Note that a transfixed subset is also commensurated.
But the converse does not hold in general. Nevertheless an equivalent definition of
the property FW is the following. A group G has Property FW if, given any action
of G on a set X, all commensurated subsets of X are transfixed.

In [CdC19], X is assumed to be a smooth projective variety over an alge-
braically closed field of characteristic 0. Inspired by the construction of the space
H∞ they construct a space denoted by ˜Hyp(X) consisting in all irreducible and
reduced hypersurfaces in all birational smooth projective varieties dominating X
(up to a natural identification). They show that Bir(X) acts on this set by strict
transform, and that the set Hyp(X) of all irreducible and reduced hypersurfaces of
X is commensurated by Bir(X). They prove the following theorem:

Theorem 5.18 ([CdC19]). Let X be a smooth projective variety over a field
of characteristic 0. Let Γ be a subgroup of Bir(X). Then Γ transfixes the subset

Hyp(X) of ˜Hyp(X) if and only if Γ is pseudo-regularizable.
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The strategy is as follows. Assume that Γ transfixes Hyp(X). Then there
exists a subset B ⊂ Hyp(X) Γ invariant such that there exist two finite sets of

irreducible and reduced hypersurfaces H1, . . . ,Hn of X and D1, . . . , D` ∈ ˜Hyp(X)
lying in some varieties dominating X such that B = (Hyp(X) \ (H1 ∪ · · · ∪Hn)) ∪
(D1 ∪ · · · ∪D`). There exists a smooth projective variety Y dominating X such
that D1, . . . , D` ∈ Hyp(Y ). Denote by π : Y → X, then up to replacing Γ by
π−1Γπ and X by Y we can assume that B = Hyp(X) \ (H1 ∪ · · · ∪Hn). Then we
show that Γ is a subgroup of the group of pseudo-automorphisms in codimension
1 of the variety Y \H1 ∪ · · · ∪Hn, which is not projective anymore. Note that the
other way around is direct.

As a consequence, they obtain the following corollary.

Corollary 5.19 ([CdC19]). Let X be a smooth projective variety over a field
of characteristic 0. Let Γ be a subgroup of Bir(X) having the FW property. Then
Γ is pseudo-regularizable.

Note that from a commensurating set, it is possible to construct a wall space on
a group ([HP98], see also [Cor13]), and from a wall-space a CAT(0) cube complex
(see [CN05]). It seems that following this correspondence we would obtain C0(X)
constructed directly in [LU21].

In [Cor20], Cornulier has also obtained another proof that groups with prop-
erty FW are regularizable (first point of Theorem 5.17), using the notion of partial
actions. Unlike [LU21], varieties in [Cor20] are not assumed to be reduced. The
main tool is the notion of partial action.

Definition 5.20. Let G be a group and X be a set. A partial action of G on
X is a map α from G to the set of partial bijections on X satisfying:

• α(g) : Dg ⊂ X → D′g ⊂ X,
• α(1G) = idX ,
• α(g−1) = α(g)−1,
• α(gh) ⊃ α(g)α(h).

Note that the last point means that if α(h) is defined in x and α(g) is defined
in α(h)(x) then α(gh) is defined in x and equals α(g)(α(h)(x)).

Let us give broadly the strategy. First look at the group of birational transfor-
mations of a variety X as partially acting on X as follows: Let f ∈ Bir(X) then
α(f) : X \ Exc(f) → X \ Exc(f−1). By a result of Abadie, Kellendonk-Lawson,

associated to a partial action there exists a universal globalization X̂, i.e, a set
(unique in some sense) such that G acts on it, and when restricted to X we obtain
the partial action given. It is defined as follows: consider G×X with the G-action
g • (h, x) = (gh, x) and identify (g, x) and (h, y) if there exists k ∈ G such that
α(kg)(x) and α(kh)(y) are defined and equal.

It is almost a regularization result; the problem being that X̂ is in general not
a variety. Indeed, it is obtained by glueing copies of X along open dense subsets.
In [LU21] they encountered the same problem to show that the graphs C`(X) are
median and more precisely to show that links of vertices are flag. Indeed, consider
a vertex v, and a family {v1, . . . , vk} of adjacent vertices at v that pairwise span
a square. Then we need to prove that there exists a cube containing them. To
do so, we need to find a vertex dominating them (see Lemma 5.8, so the difficulty
comes from the ascending edges. To construct this vertex, we also need to glue
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together dense open subsets of a given variety and show that what we obtain is still
a variety; in particular that it is a k-scheme that is separated.

Using the definition of the property FW in terms of commensurating sets and
a consequence of Neumann’s lemma ([Neu54]) saying that if X̃ \ X is finite and

meets no finite orbit then there exists g ∈ G such that X̂ = X ∪ gX, Cornulier
proves the following theorem.

Theorem 5.21 ([Cor20]). Let G be a subgroup of Bir(X) having the property

FW then there exists a dense G-invariant open subset of X̃ (of the partial action
of G on X) that is a variety.

5.1.6. Other consequence of the action of Bir(X) on C0(X). We focus on two
other kind of results that are possible to obtain for Cremona transformations that
are not pseudo-regularizable in codimension 1, by using the action of the Cremona
group on C0(Pn) from [LU21]. The first one gives new restrictions on centralizers of
these Cremona transformations and the second one bounds the asymptotic degree
growth by below of these Cremona transformations.

Centralizers of elements in the Cremona group of rank 2 have been studied
in various papers ([Can11], [BC16], [BD15], [CD12], [Zha22]): centralizers of
general elements are virtually cyclic (see [Zha22] and references therein). The rigid
nature of isometries of median graphs allows to give new restrictions on centralizers
of non-pseudo regularizable transformations of varieties of arbitrary dimension:

Theorem 5.22 ([LU21]). Let X be a variety over an algebraically closed field k
of characteristic 0. Let f ∈ Bir(X) be an element that is not pseudo-regularizable in
codimension 1 and let cent(f) ⊂ Bir(X) be its centralizer. Then either f permutes
the fibers of a rational map X 99K Y , where 0 < dim(Y ) < dim(X), or cent(f)
contains as a finite index subgroup 〈f〉×H, where H ⊂ Bir(X) is a torsion subgroup.

Note that the above result is not new for the case of surfaces, and a more
precise result is known. Indeed, in [BC16], it is shown that any f ∈ Bir(P2)
that induces a loxodromic isometry on H∞, has 〈f〉 as finite index subgroup of
its centralizer cent(f). Note that they are the only ones that are not pseudo-
regularizable and that do not permute the fibers of a rational map. Hence, one could
ask whether in any dimension, the torsion group H in Theorem 5.22 is always finite?
Another interesting question is to understand if there exist non pseudo-regularizable
elements having such centralizers.

Theorem 5.23 ([LU21]). Let g ∈ Bir(Pd) be an element that is not pseudo-
regularizable in codimension 1. Then the asymptotic growth of deg(gn) is at least

1
d+1n.

Sketch of the proof. For any n, we denote by δn the degree of gn, and
by (gn,0, gn,1, . . . , gn,d) the polynomials of degree δn that define gn. Then the
exceptional locus of gn is the zero locus of the Jacobian of (gn,0, gn,1, . . . , gn,d),

which is of degree at most (δn−1)(d+1). Hence |Exc1(gn)| ≤ δn(d+1). Moreover,
as g is not pseudo-regularizable, by Theorem 5.15, the sequence

(
Exc1(gn)

)
n∈N

grows linearly, which gives the excepted lower bound for δn. �
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5.2. Application: construction of morphisms from some Cremona
groups to Z. In this subsection, we focus on an application of the action of Cre-
mona groups on median graph in order to obtain morphisms to Z. We first, intro-
duce a bit of context.

5.2.1. Introduction. As seen in Subsection 3.4, the first proofs that the Cre-
mona group of rank 2 ([CL13], [Lon16]) is not a simple group consist in exhibiting
elements that generates proper normal subgroups of the Cremona group of rank 2.

Another strategy, not using geometric group theoretic methods and working
over non algebraically closed field, emerged. It consisted in constructing non-trivial
group homomorphisms from the Cremona group of rank 2 to direct sums or free
products of copies of Z/2Z (for instance [Zim18] over real numbers, [LZ20] over
some fields) using Sarkisov links (special birational maps). This strategy has been
fruitful as it has led to another recent breakthrough done by Blanc, Lamy and Zim-
mermann [BLZ21]: constructing non-trivial group homomorphisms from Cremona
groups of rank at least 3 over C to direct sums of copies of Z/2Z.

For the first time and using motivic methods Lin and Shinder constructed non-
trivial homomorphisms from some Cremona groups of rank at least three onto Z
[LS24b]. In [BSY22] the result of Lin and Shinder is reproved using the techniques
developed in [BLZ21], where they show the much stronger result that Bir(Pn)
surjects to a free product of infinitely many copies of Z, if n ≥ 4 and k ⊂ C. Note
that when the field is perfect, such morphisms can not exist in rank 2 as it has
been proved by [LS24a] that the Cremona group of rank 2 over a perfect field is
generated by involutions.

An alternative proof of the result of [LS24b] has been done in [GLU25] using
geometric group theoretic methods through the action of Cremona groups on the
median graphs C0(Pn) defined in Subsection 5.1. We follow this proof.

We need first to introduce the following definition. Two subvarieties A,B ⊂ X
are Cremona equivalent if there exists a birational transformation f of X such that
f(A) = B, where f(A) denotes the strict transform of A. Denote by Z[Div(X)/≈]
the free abelian group on the set of Cremona equivalence classes of subvarieties of
codimension 1 of X.

Theorem 5.24 ([GLU25]). There exists a non-trivial homomorphism

ϕ : Bir(Pn)→ Z[Div(Pn)/≈]

in the following cases:

(1) n ≥ 5 and the field is infinite,
(2) n ≥ 4 and the field is of characteristic 0,
(3) n = 3 and the field is either a number field, a function field over a number

field, or a function field over an algebraically closed field.

Moreover, in these cases, Bir(Pn) is not generated by pseudo-regularisable elements.

Note that it is indeed, a reinforcement of [LS24b] who proved the existence of
a non-trivial homomorphism (in the same cases)

c : Bir(Pn)→ Z[Birn−1],

where Z[Birn−1] is the free abelian group on the set of birational equivalence classes
of varieties of codimension 1. Indeed being birationally equivalent is weaker than



50 ANNE LONJOU

being Cremona equivalent. Remark also that to this day it is unknown if there
exist morphisms from the Cremona group of rank 3 over C to Z.

In both cases, the homomorphism is constructed as follows. Let f ∈ Bir(Pn).
Let H1, . . . ,Hk be the irreducible components of codimension 1 of the exceptional
locus of f and let K1, . . . ,Km be the irreducible components of codimension 1 of the
exceptional locus of f−1. The group homomorphism ϕ : Bir(X)→ Z[Div(X)/≈] is
given by

(5.1) f 7→ [K1] + · · ·+ [Km]− [H1]− · · · − [Hk].

In order to show Theorem 5.24, two ingredients are needed. First, prove that ϕ
is a group homomorphism. In [LS24b] it is done through motivic methods, while
in [GLU25] it is done through geometric group theoretic methods. Second, show
that it is non-trivial. Note that in order to be non trivial it is enough to show that
there exists an f such that Hi that is not Cremona equivalent to any of the Kj .
Such examples can be found in [HL18] for the case Pn if n ≥ 4, or in [LS24b],
where they extended the example of Hasset and Lai and other examples.

The construction of this morphism comes from a more general construction of
morphisms from groups acting on median graphs and preserving a cubical orienta-
tion, to right-angled Artin groups.

5.2.2. Morphisms from groups acting without inversion on median graphs to
right-angled Artin groups. Given a graph Γ, the right-angled Artin group A(Γ) is
defined by the presentation

〈u ∈ V (Γ) | uvu−1v−1 = 1 ({u, v} ∈ E(Γ))〉

where V (Γ) and E(Γ) denote the vertex- and edge-sets of Γ. Note that if Γ is a
complete graph then A(Γ) is a free abelian group.

The goal of this subsection is to explain how, given an arbitrary group G
acting on a median graph G and preserving a cubical orientation, we can construct
a morphism from G to some right-angled Artin group. For free actions, this is done
in [HW08]. We follow [GLU25] where the point of view of [Gen23a] is used.

Let us fix a cubical orientation on G. Let Γ denote the graph whose vertices are the
G-orbits of hyperplanes in G and whose edges connect two orbits whenever they
contain transverse hyperplanes.

Example 5.25. For instance, the action of Z2 on its classical Cayley graph
(see Figure 8) gives a graph made of two vertices and an edge linking them. The
action of the standard quadratic Cremona involution σ : (x, y) 7→ ( 1

x ,
1
y ) on the

convex hull of the vertices [(P2, id)] and [(P2, σ)] in the blow-up graph (see Figure
3.7) gives a complete graph with three vertices.

Notice that an oriented path α in G is naturally labelled by the word written
over V (Γ)tV (Γ)−1 given by the oriented edges crossed by α. Fixing a vertex o ∈ G,

Θ :

{
G → A(Γ)
g 7→ label of a path from o to g · o

defines a group homomorphism.
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If we come back to the examples above (Example 5.25), in the case of Z2 we
are constructing the morphism identity, while in the case of the subgroup generated
by the standard quadratic Cremona involution, we obtain a trivial morphism.

The fact that Θ is well-defined is a consequence of the following lemma, which
is a consequence of the fact that filling the 4-cycles of a median graph with squares
yields a simply connected square complex.

Lemma 5.26. Let G be a median graph and let α, β be two paths with the same
endpoints. Then α can be transformed into β by adding or removing backtracks and
by flipping 4-cycles.

Indeed, adding or removing a backtrack to a path amounts to adding or re-
moving a subword uu−1 or u−1u (where u ∈ V (Γ)) to its label. And flipping a
4-cycle amounts to replacing a subword uv (resp. u−1v, uv−1, u−1v−1) with vu
(resp. vu−1, v−1u, v−1u−1) where {u, v} ∈ E(Γ). Thus, Θ is well-defined.

Let us show now that Θ is a group homomorphism. Let g, h ∈ G be two
elements and fix two oriented paths [o, go] and [o, ho]. Then

Θ(gh) = label of [o, go] ∪ g[o, ho] = (label of [o, go]) · (label of g[o, ho])

= (label of [o, go]) · (label of [o, ho]) = Θ(g)Θ(h).

Note that the group homomorphism Θ depend on the choice of the basepoint
o. But changing the basepoint amounts to change the morphism by a conjugation.
Hence, if the right-angled Artin group A(Γ) turns out to be abelian, the morphism
Θ does not depend on the choice of the basepoint o. As another consequence, note
also that all g ∈ G fixing a vertex are contained in the kernel of Θ.

5.2.3. Application to Cremona groups. In order to prove Theorem 5.24, it re-
mains to construct the morphism of Equation 5.1.

Proof. Consider the action of Bir(Pn) on the oriented median graph C0(Pn)
constructed in Section 5. By Remark 5.9, all the hyperplanes are pairwise trans-
verse, so the graph Γ constructed in Subsection 5.2.2 is complete and the group
A(Γ) is therefore free abelian.

Fix the vertex o = ([Pn, id]) in C0(Pn). By Lemma 5.7, we obtain a path from
o to f(o) defined by the vertices

[Pn, id], [Pn\K1, id], . . . , [Pn\{K1∪· · ·∪Km}, id] = [Pn\{H1∪· · ·∪Hk}, f ], . . . , [Pn, f ].

This shows that the image Θ(Bir(Pn)) is in fact contained in A(Γ′), where Γ′ ⊂ Γ
is the complete subgraph whose vertices are represented by hyperplanes of the
form [(Pn, ψ,H)], with ψ ∈ Bir(Pn). Moreover, by Fact 5.10 two hyperplanes
[(Pn, ψ,H)] and [(Pn, ψ′, H ′)] represent the same vertex if and only if H and H ′

are Cremona equivalent, hence we can identify the vertices of Γ′ with the Cremona
equivalence classes of hypersurfaces in Pn and the group A(Γ′) with Z[Div(Pn)/≈].
The path [o, f(o)] crosses the hypersurface classes [Kj ]’s with positive sign and the
hypersurface classes [Hi]’s with negative sign. This achieves the proof.

Note that every pseudo-regularisable element fixes a vertex in C0(Pn). Hence,
all pseudo-regularisable elements are in the kernel of Θ. Therefore, they cannot
generate Bir(Pn) in this case. �
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mer program, Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 3, 447–489. MR 3014483

[D2́1] Julie Déserti, The Cremona group and its subgroups, Mathematical Surveys and Mono-
graphs, vol. 252, American Mathematical Society, Providence, RI, [2021] ©2021.

MR 4256046

[DF01] J. Diller and C. Favre, Dynamics of bimeromorphic maps of surfaces, Amer. J. Math.
123 (2001), no. 6, 1135–1169.

https://arxiv.org/abs/1302.5982
https://arxiv.org/abs/1302.5982
https://www.normalesup.org/~cornulier/crelin.pdf
https://www.normalesup.org/~cornulier/crelin.pdf


SURVEY ON CREMONA GROUPS FROM A MEDIAN GEOMETRIC POINT OF VIEW 53

[DF21] Nguyen-Bac Dang and Charles Favre, Spectral interpretations of dynamical degrees and

applications, Ann. of Math. (2) 194 (2021), no. 1, 299–359. MR 4276288

[DGO17] F. Dahmani, V. Guirardel, and D. Osin, Hyperbolically embedded subgroups and rotat-
ing families in groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (2017),

no. 1156, v+152. MR 3589159

[DS05] Tien-Cuong Dinh and Nessim Sibony, Une borne supérieure pour l’entropie topologique
d’une application rationnelle, Ann. of Math. (2) 161 (2005), no. 3, 1637–1644.

MR 2180409

[Fav10] Charles Favre, Le groupe de Cremona et ses sous-groupes de type fini, no. 332, 2010,
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