
IN SEARCH OF A QUANTUM UNITARY
BROWNIAN MOTION

A. FRESLON †
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1 WHY BROWNIAN MOTION ?

Our purpose in the sequel is to study a specific family of random processes on free unitary quan-
tum groups called Gaussian processes. But why should we bother about random processes in the
first place ? One motivation is the search for a geometrical theory of compact quantum groups.
What we mean by this is that as we will see, free unitary quantum groups are defined as ana-
logues of the compact Lie groups UN , so that they should have an underlying differential geo-
metric structure, hopefully expressible in the setting of non-commutative geometry (by which we
mean spectral triples or other objects in the spirit of [Con94]). Alas, no such structure has ap-
peared so far in a natural way, mainly due to the lack of a quantum analogue of the corresponding
Lie theory (see for instance [Wan97]). Therefore, we will rather start by looking for “shadows”
of that geometric structure expressed in a language which we already know how to translate
to the quantum setting. Probability theory has a non-commutative counterpart which has been
well-developped (see for instance [Par92]) – under the name of quantum probability – due to its
fundamental connection with the mathematical foundations of quantum mechanics. This makes
it a good starting points.

1.1 FROM GEOMETRY TO PROBABILITY

We want to find some trace of the geometry of a compact Lie group in probability theory. There
is a way of doing this, which is the theory of Lévy processes. We will now explain how these are
related, but first we need to clarify what we are talking about.

DEFINITION 1.1. Let G be a compact group. A Lévy process on G is a family of G-valued random
variables (X t)t∈R+ such that

i) X t2 X−1
t1

, · · · , X tn X−1
tn−1

are independent for all n ∈N and 0É t1 < ·· · < tn ;

ii) Law
(
X tX−1

s
)=Law(X t−s) for all t Ê s Ê 0 ;

iii) X t → X0 when t → 0 in probability1.

We see from the properties above that setting µt = Law(X t), all the probabilistic information
about the process is contained in the family of measures (µt)t∈R+ . Moreover, the compatibility
between the group structure and the Lévy process translates into the following equality at the
level of measures:

Lemma 1.2. Let t, s ∈R+. Then, for any Borel subset A of G,

(µt ⊗µs)
({

(g,h) ∈G×G | gh ∈ A
})=µt+s(A).
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Proof. The left-hand side is the probability that X tXs ∈ A, while the right-hand side is the proba-
bility that X t+s ∈ A. Multiplying by X−1

s on the right, we can use the properties of a Lévy process
to compute

P(X tXs ∈ A)=P(X t ∈ AX−1
s )

=P(X t+sX−1
s ∈ AX−1

s )

=P(X t+s ∈ A).

■
The left-hand side defines the convolution µt ∗µs of the two measures, so that we conclude

that we have a convolution semigroup of probability measure :

µt ∗µs =µt+s.

The natural question is of course whether one can construct such a process out of the structure
of G. This is not clear in general, but can be done assuming that G has some differential structure.
To see how, we need to connect the associated convolution semigroup with harmonic analysis on
the group. To make things simpler, we will work from now on with G = SUN , which is a closed
subgroup of GLN (C), hence a Lie group2. The core idea is the following fact : for any f ∈C 2(SUN ),
the quantity

1
t

(∫
f (g)dµt − f (IN )

)
converges as t → 0 to a limit denoted by L( f ) (we refer the reader to [Lia04] for a complete treate-
ment of the subject). This defines a linear map L : C 2(SUN ) → C – called the infinitesimal gener-
ator of (µt)t∈R+ – which satisfies the following properties :

• L(1)= 0 (normalization) ;

• L( f )= L( f ) (hermitianity) ;

• L( f )Ê 0 if f Ê 0 and f (IN )= 0 (conditional positivity).

We will now give a name to such functionals, but it will be better to define them on a suitable
subalgebra3 of C 2(SUN ). More precisely, since SUN is a group of matrices, we can consider
the ∗-algebra O (SUN ) of functions on SUN which are polynomial in the coefficients. Note that
O (SUN )⊂C 2(SUN ).

DEFINITION 1.3. A linear map on O (SUN ) satisfying the properties above is called a generating
functional on SUN .

As it turns out, this is enough to recover the convolution semigroup of probability measures.
Indeed, given two linear functionals L1, L2 on O (SUN ), L1 ⊗L2 is defined4 on

O (SUN ×SUN )=O (SUN )⊗O (SUN )

so that one may define their convolution product as

(L1 ∗L2)( f )= (L1 ⊗L2) ((g,h) 7→ f (gh)) .

It is easily checked that this defines an associative product, so that the formula (with the conven-
tion L∗0 = evIN )

+∞∑
k=0

tk

k!
L∗k( f )

unambiguously defines a linear map ϕt : O (SUN ) → C. Moreover, we have the following straight-
forward properties5 :

• ϕt(IN )= 1 ;

• ϕt( f )Ê 0 if f Ê 0;
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• ϕt ∗ϕs =ϕt+s.

In other words, we have a convolution semigroup of states on O (G). Now, positivity implies that
ϕt extends to the algebra C(G) of all continuous functions on G, and the RIESZ REPRESENTATION

THEOREM therefore implies that there exist a probability measure µt such that for all f ∈ C(G),

ϕt( f )=
∫

f (g)dµt(g).

In other words, we have built a convolution semigroup of probability measures !
The conclusion of that story is that all the information is encapsulated in the generating

functional, so that we can forget everything else. We are now ready to produce a Lévy process out
of the geometry of G. Indeed, the theory of continuous semi-groups of operators also provides us
with generating functionals, and on a Lie group we can build such semi-groups as heat kernels of
differential operators. Here is a rough outline of the procedure for SUN :

1. Since SUN has a manifold structure, take its tangent space at the identity TIN SUN ;

2. We know that TIN (SUN ) = suN has a Lie algebra structure, hence in particular a distin-
guished bilinear form called the Killing form ;

3. Because SUN is semisimple, the Killing form is negative definite, hence its oppposite defines
an inner product on suN ;

4. Because a Lie group is parallelisable, this extends to a Riemannian structure on SUN ;

5. With a Riemannian structure comes a Laplace-Beltrami operator ∆ defined on O (SUN ) (and
even on C 2(SUN )) ;

6. For f ∈O (SUN ), set LB( f )=∆( f )|IN .

The subscript B in the definition is meant to connect this with the probabilistic interpretation of
the associated stochastic process on SUN : this is the Brownian motion on SUN ! To make this
more convincing, let us make some computation on the real line.

Proposition 1.4. Let (µt)t∈R+ be the convolution semi-group of probability measure on R corre-
sponding to the Brownian motion. Then, for any function f ∈C 2(R) which goes to 0 at infinity6,

1
t

(∫
R

f (x)dµt(x)− f (0)
)
−→
t→0

f ′′(0)
.

Proof. By definition, µt is Gaussian with mean 0 and variance t. Then, if f ∈C 2(R), we can write
it as

f (x)= f (0)+ xf ′(0)+ x2

2
f ′′(0)+ g(x).

Remembering that the first moment of µt vanishes and that the second one is t, we have

1
t

(∫
R

f (x)dµt(x)− f (0)
)
= 1

t

(∫
R

f (x)dµt(x)−
∫

R
f (0)dµt(x)

)
= 1

t

∫
R

( f (x)− f (0))dµt(x)

= f ′(0)
t

∫
R

xdµt(x)+ f ′′(0)
2t

∫
R

x2dµt(x)+ 1
t

∫
R

g(x)dµt(x)

= f ′′(0)
2

+
∫

R
g(x)

dµt

t
(x).
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Because the derivative of the density of µt is just the same function divided by −t, we can integrate
by parts :

1
t

(∫
R

f (x)dµt(x)− f (0)
)
= f ′′(0)

2
+

[
−g(x)

e−x2/2t
p

2πt

]+∞

−∞
+

∫
R

g′(x)dµt(x)

=
∫

R
g′(x)dµt(x),

where we used the fact that since f goes to 0 at infinity, g(x) = O(x2) at infinity. The proof is now
concluded using the weak convergence of the Gaussian measures to δ0. ■

1.2 TO THE QUANTUM WORLD

Now that we know how to build random processes out of the geometric structure of a compact Lie
group, we want to define analogous probabilistic objects on compact quantum groups. But instead
of introducing the general theory, we will simply work directly with free unitary quantum groups
since these are the objects that we will focus on.

As explained above, the important objects can all be defined on the algebra of polynomial
functions, so that we will only define this. We refer the reader to [Fre23] for a detailed treatment
of the theory of compact quantum groups in terms of such ∗-algebras.

DEFINITION 1.5. For N ∈ N, let O (U+
N ) be the universal ∗-algebra generated by N2 elements

(ui j)1Éi, jÉN such that for all 1É i, j É N,

N∑
k=1

u∗
iku jk = δi j =

N∑
k=1

u∗
kiuk j &

N∑
k=1

uiku∗
jk = δi j =

N∑
k=1

ukiu∗
k j.

As we see, this is the largest algebra of polynomial functions in the coefficients of unitary
matrices, except that they are not even require to commute with one another. One concrete way
of seeing this is that the abelianization map yields a surjective ∗-homomorphism

πUN : O (U+
N )→O (UN )

sending ui j to the function ci j which associates to any matrix in UN its (i, j)-th coefficient.
This is of course not enough to generalize the previous setting, but we saw that the crucial

feature of polynomial functions on Lie groups was that there is a convolution product. To define a
convolution product on O (U+

N ), we need an analogue of the group law, which for matrices is easily
expressed.

Lemma 1.6. There is a unique ∗-homomorphism ∆ : O (U+
N ) → O (U+

N )⊗O (U+
N ) such that for all

1É i, j É N,

∆(ui j)=
N∑

k=1
uik ⊗uk j.

Proof. Simply set

vi j =
N∑

k=1
uik ⊗uk j

and apply the universal property. ■
Observe that through the isomorphism O (UN )⊗O (UN )=O (UN×UN ), we have for any 1É i, j É

N that

ci j(gh)=
N∑

k=1
cik(g)ck j(h)=

N∑
k=1

(cik ⊗ ck j)(g,h)

so that the formula above generalizes that of the matrix product in SUN .
With this in hand, we can define a convolution product for linear functionals L1, L2 on O (U+

N )
through the formula

L1 ∗L2 = (L1 ⊗L2)◦∆,
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and therefore set for t ∈R+

ϕt =
+∞∑
k=0

tk

k!
L∗k.

To prove that this yields states, we first need a notion of conditional positivity. But this was
defined by refering to functions vanishing at the identity. To generalize this to U+

N , we therefore
need an analogue of the evaluation evIN at the neutral element.

DEFINITION 1.7. The counit of U+
N is the unique ∗-homomorphism ε : O (U+

N )→C such that for all
1É i, j É N,

ε(ui j)= δi j.

Remark 1.8. The uniqueness of ε is clear since we know it on all generators. As for existence,
it simply follows from the fact that the matrix (δi j)1Éi, jÉN satisfies the generating relations of
O (U+

N ), together with the universal property.

With this in hand, we can give a natural definition of generating functional.

DEFINITION 1.9. A generating functional on U+
N is a linear map L : O (U+

N )→C such that

• L(1)= 0 (normalization) ;

• L(x∗)= L(x) (hermitianity) ;

• L(x∗x)Ê 0 for all x ∈ ker(ε) (conditional positivity).

It is then clear that ϕt is a state for all t ∈R+, and that we have a convolution semi-group :

ϕt ∗ϕs =ϕt+s.

In the non-commutative philosophy, states are analogues of integration with respect to a proba-
bility measure. We are therefore back to convolution semi-groups of measures !

As a conclusion, all we have to do is to find suitable generating functionals on O (U+
N ). But

where to start ? A fundamental idea, due tu Schürmann, is that the functional LB =∆|IN has the
property that it vanishes as soon as f has a zero of order at least 3 at IN . But such functions –
or at least the polynomial ones – are easy to characterize algebraically : they are the products of
three polynomials vanishing at IN ! To express this more asbtractly, let us set K1 = ker(ε) and

Kn+1 = K1.Kn

=Span{xy | x ∈ K1, y ∈ Kn}

=Span{x1 · · ·xn | x1, · · · , xn ∈ K1}.

Then, we want to consider generating functionals vanishing on K3. Because of their connection
to the Laplacian, and therefore to the Gaussian distribution on R, these are called Gaussian
generating functionals7.

DEFINITION 1.10. A generating function L on U+
N is called Gaussian if it vanishes on K3.

2 GAUSSIAN FUNCTIONALS ON FREE UNITARY QUANTUM GROUPS

In the remainder of this text, we will study Gaussian generating functionals on U+
N , from two

different points of view. First, we will investigate the global problem of how much information on
U+

N the set of Gaussian functionals contains. Second, we will give a somewhat explicit description
of all these functionals.

2.1 GLOBAL STUDY : THE GAUSSIAN PART

Before going further in the study of Gaussian processes on U+
N , we should stop and ask ourselves

a question : are we looking at the correct object ? The question is not about the functionals,
but about the quantum group. Indeed, U+

N is an analogue of UN , which is not semisimple. In
particular, the Killing form on the Lie algebra uN is degenerate and one must restrict it to suN to
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get an inner product. But then, the corresponding functional LB only depends on the restriction
of functions to the subgroup SUN ⊂ UN . Therefore, it is natural to wonder whether we should
rather be working on some quantum subgroup of U+

N analogous to SUN .
The question is tricky, because there is no clear way of defining some kind of determinant

at the level of O (U+
N ). But we can take the problem the other way round : is there a “quantum

subgroup” such that any Gaussian functional only depends on the restriction to that subgroup ?
This requires some definition.

DEFINITION 2.1. A quantum subgroup G of U+
N is a ∗-algebra O (G) together with a surjective

∗-homomorphism πG : O (U+
N )→O (G) and a ∗-homomorphism ∆G : O (G)→O (G)⊗O (G) satisfying

(π⊗π)◦∆=∆G ◦π.

The quantum subgroup G is said to be strict if π is not injective.

For instance, UN (hence also SUN by restriction of the functions) is a strict quantum sub-
group of U+

N : we already defined πUN as the abelianization map, and the coproduct is given on a
polynomial function f ∈O (SUN ) by the formula

∆SUN ( f ) : (g,h) 7→ f (gh),

through the isomorphism O (SUN ×SUN )∼=O (SUN )⊗O (SUN ). A generating function L : O (U+
N )→

C is said to factor through G if there exists a linear functional L′ : O (G) → C such that L = L′ ◦π.
With these notions, it is easy to express the question whether U+

N is the “correct object” to study
Gaussian generating functionals :

Question. Does there exist a strict quantum subgroup of U+
N through which all Gaussian gener-

ating functionals factor ? If not, then we will say that U+
N is Gaussian.

To get a better grasp at that question, let us make a few algebraic observations. If there is a
quantum subgroup G such that ker(πG)⊂ K3, then all Gaussian functionals will factor through G.
But I = ker(πG) is not any ideal of O (U+

N ) : the definition of a quantum subgroup implies that it
satisfies the following property :

∆(I)⊂ I ⊗O (U+
N )+O (U+

N )⊗ I.

It turns out that there is an ideal in K3 which satisfies this, namely

K∞ = ⋂
nÊ1

Kn.

We should therefore start by checking that this one is trivial. This first requires a little aparte. If
G is a compact group of matrices, setting εG = evIN we can define ideals Kn and K∞ inside O (G).
Similarly, if Γ is a discrete group, setting εΓ(g) = 1 for all g ∈ Γ we can define ideals Kn and K∞
inside the group algebra C[Γ]. We then have the following two facts :

• For a compact group of matrices G, K∞ = {0} if and only if G is connected ;

• For a discrete group Γ, K∞ = {0} if and only if Γ is residually torsion-free nilpotent.

It is tempting to term the property K∞ = {0} “connectedness” because of the first property. Unfor-
tunately, there is already a notion of connectedness for compact quantum groups [Wan09], which
is weaker than this one. We therefore call it strong connectedness. It turns out that the question
of strong connectedness can be solved for U+

N .

Proposition 2.2 (FRANZ-F.-SKALSKI). The quantum group U+
N is strongly connected, i.e. we have

K∞ = {0}.

Proof. Consider the following two quantum subgroups of U+
N :

• πUN : O (U+
N )→O (UN ) is the abelianization map and

∆UN ( f ) : (g,h) 7→ f (gh);
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• πFN : O (U+
N )→C[FN ] is the quotient by the relations ui j = 0 for all 1É i ̸= j É N and

∆FN (g)= g⊗ g

for all g ∈ FN .

The proof relies on two main facts. First, because we have the inclusions (coming from the surjec-
tivity of the ∗-homomorphisms in the definition of a quantum subgroup)

πUN (K∞)⊂ K∞ & πFN (K∞)⊂ K∞

and both right-hand sides vanish by the results mentionned above, we have

K∞ ⊂ ker(πUN )∩ker(πFN ).

Second, it is known from [Chi20] that the previous intersection does not contain any non-trivial
ideal I satisfying ∆(I)⊂ I ⊗O (U+

N )+O (U+
N )⊗ I. ■

The technique used in the previous proof is called topological generation : we use the fact that
U+

N is in fact “generated” as a compact quantum group by its quantum subgroups SUN and F̂N .

Remark 2.3. Let O (O+
N ) be the quotient of O (U+

N ) by the relations ui j = u∗
i j for all 1 É i, j É N. It

is easy to see that this is a quantum subgroup – called the free orthogonal quantum group – but
to this day it is not known whether it is strongly connected.

Back now to the question of Gaussianity, we can also characterize it for classical groups and
duals of discrete groups.

THEOREM 2.4 (FRANZ-F.-SKALSKI) A classical group G is Gaussian if and only if it is con-
nected. The dual of a discrete group Γ is Gaussian if and only if G is torsion-free and 2-step
nilpotent.

Remark 2.5. Let us briefly remark here that this shows that our original motivation for the study
of the Gaussian part, involving the lack of semi-simplicity of UN , was not a good one. Indeed, the
previous theorem says that Gaussian processes (or rather their trajectories) do reach all of UN (or
at least a dense subset).

So how about the original question ? We do not have an answer to this date, but we can give
a sufficient criterion relying on similar ideas. This requires some extra vocabulary though. We
will denote by Γ2 the quotient of the free group F2 by the normal subgroup generated by all the
elements [g, [h,k]]. This is the free 2-step nilpotent group on two generators. We can then see it
as a quantum subgroup of U+

N by defining πΓ2 to be the composition of πF2 and the quotient map.

Proposition 2.6 (FRANZ-F.-SKALSKI). If ker(πUN )∩ ker(πΓ2) does not contain any non-trivial
ideal I satisfying

∆(I)⊂ I ⊗O (U+
N )+O (U+

N )⊗ I,

then U+
N is Gaussian for all N Ê 2.

2.2 LOCAL STUDY : A CLASSIFICATION

To get a better understanding of Gaussian generating functionals on U+
N , one may try to find

explicit formulæ describing them. Quite surprisingly, this is possible. The starting point is a
simple observation concerning derivations. Let us recall what we mean by this.

DEFINITION 2.7. A derivation on O (U+
N ) is a linear map D : O (U+

N ) → C such that for any x, y ∈
O (U+

N ),
D(xy)= D(x)ε(y)+ε(x)D(y).

Clearly, a derivation is completely determined by the images of the generators, which form
a matrix A with coefficients A i j = D(ui j) for all 1 É i, j É N. The observation is that any matrix
A ∈ MN (C) can appear.
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Lemma 2.8. For any matrix A ∈ MN (C), there is a unique derivation DA : O (U+
N ) → C such that

DA(ui j)= A i j.

Proof. Uniqueness is clear, so that we have to prove existence. Because the generators of O (U+
N )

are linearly independent8, we can define a linear map D1
A on their linear span sending ui j to A i j.

Next we extend it the linear span of these elements and their adjoints by setting

DA(u∗
i j)=−DA(u ji).

This then extends to a derivation on the free algebra A generated by these elements, and all we
have to do is to prove that it vanishes on the ideal J generated by the defining relations.

To do this, observe that by definition D(1)= 0 for any derivation, and that

DA

(
N∑

k=1
uiku∗

jk

)
=

N∑
k=1

D(uik)ε(u∗
jk)+ε(uik)D(u∗

jk)

= D(ui j)+D(u∗
ji)

= 0.

A similar computation works for the other three types of relations, so that DA vanishes on a set
generating the ideal J. Let now x ∈ J and observe that this implies ε(x) = 0. It then follows that
if DA(x)= 0, we also have

DA(xy)= 0= DA(yx)

for any y ∈O (U+
N ). All in all, we have proven that DA vanishes on J. But then, it defines a linear

map on the quotient vector space of A by J, that is to say on O (U+
N ), and the proof is complete. ■

This has no reason to be a generating functional in general. For instance, we have seen in the
proof above that

DA(u∗
i j)=−A ji = D−A∗(ui j),

so that A would have to satisfy A =−A∗. The good news however is that this is the only obstruc-
tion.

Lemma 2.9. Let H be an anti-hermitian matrix. Then, DH is a Gaussian generating functional.

Proof. By definition of a derivation, we must have DH(1) = 0. Hermitianity is guaranteed by the
assumptions, so that we have to check conditional positivity. But if x ∈ ker(ε), we have by the
derivation property

DH(x∗x)= DH(x∗)ε(x)+DH(x)ε(x∗)= 0.

As for Gaussianity, observe that by the derivation property, DH(xy) = 0 as soon as x, y ∈ ker(ε) so
that DH vanishes on K2 ⊃ K3. ■

We will give a name to these particular generating functional since they are very specific.

DEFINITION 2.10. A Gaussian generating functional L is a drift if it vanishes on K2, which ex-
actly means9 that L = DH for some anti-hermitian matrix H.

Remark 2.11. A direct computation shows that DH ∗DK −DK ∗DH = D[H,K], so that there is a Lie
algebra isomorphism between drifts on U+

N and uN .

To go further, we need to understand the defect of a general Gaussian generating functional
from being a derivation. To do this, let us introduce the coboundary of L to be the map

∂L : O (U+
N )⊗O (U+

N )→C

defined by
∂L(x⊗ y)= L(xy)−L(x)ε(y)−L(y)ε(x).

This makes sense for any linear functional, but in the Gaussian case we have a nice description
due to Schürmann (see the book [Sch93] for details).
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THEOREM 2.12 (SCHÜRMANN) If L is a Gaussian generating functional on U+
N , then there

is a finite-dimensional Hilbert space V and a derivation η : O (U+
N ) → V such that for all

x, y ∈O (U+
N ),

∂L(x⊗ y)= 〈η(x∗),η(y)〉.

Remark 2.13. Equivalently, η is a 1-cocyle with value in V equipped with the trivial representa-
tion of O (U+

N ). Therefore, the understanding of Gaussian functionals on U+
N is tightly connected

to the computation of its Hoschild cohomology groups.

Now if d is the dimension of V and (e1, · · · , ed) is an orthonormal basis, then η decomposes as

η=
d∑

r=1
ηr er

with ηr : O (U+
N )→C a derivation. In other words, we have matrices, A1, · · · , Ad ∈ MN (C) such that

η=
d∑

r=1
DAr er.

What we need is to find conditions on these matrices ensuring that η is a coboundary. There is at
least a necessary one that can be obtained quite easily.

Lemma 2.14. With the notations above, we must have the equality

d∑
r=1

Ar A∗
r =

d∑
r=1

A∗
r Ar.

Proof. We start with the equality

0= L(1)

= L

(
N∑

k=1
u∗

iku jk

)

= L(u∗
i j)+L(u ji)+

N∑
k=1

〈η(uik),η(u jk)〉

= L(u∗
i j)+L(u ji)+

N∑
k=1

d∑
r=1

A ik A jk

= L(u∗
i j)+L(u ji)+

d∑
r=1

N∑
k=1

A ik A jk

= L(u∗
i j)+L(u ji)+

d∑
r=1

(A∗
r Ar) ji

and then perform a similar one with another of the relations, namely

0= L(1)

= L

(
N∑

k=1
ukiuk j

)

= L(u ji)+L(u∗
i j)+

N∑
k=1

〈η(u∗
ki),η(u∗

k j)〉

= L(u ji)+L(u∗
i j)+

N∑
k=1

d∑
r=1

Aki A jk

= L(u ji)+L(u∗
i j)+

d∑
r=1

N∑
k=1

Aki A jk

= L(u ji)+L(u∗
i j)+

d∑
r=1

(Ar A∗
r ) ji

Therefore, the equality in the statement holds. ■
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The main result of this section is that the condition above is in fact sufficient.

THEOREM 2.15 (FRANZ-F.-SKALSKI) Let A1, · · · , Ad ∈ MN (C), with d É N2, be such that

d∑
r=1

Ar A∗
r =

d∑
r=1

A∗
r Ar.

Then, there is a unique Gaussian generating functional L on U+
N such that for all 1É i, j É N,

L(ui j)= 1
2

(
d∑

r=1
Ar A∗

r

)
i j

.

Moreover, we can always assume d É N, and the corresponding cocycle is

η=
d∑

r=1
DAr er.

Remark 2.16. Note that even though L is only defined on the generators in the statement above,
the Gaussian property and the link with the cocyle show that it is in fact uniquely defined on the
whole of O (U+

N ).

To conclude, let us mention that according to this result and to the last theorem of the previ-
ous subsection, it would in principle be enough to “understand” all quadruples (A1, A2, A3, A4) of
matrices in M2(C) such that

4∑
r=1

Ar A∗
r =

4∑
r=1

A∗
r Ar.

to determine whether U+
N equals its Gaussian part for all N Ê 2. The problem of course is in the

word “understand”, because it means determining through which quantum subgroup each process
can factor.

3 A CENTRAL HOPE

The picture is for the moment quite disappointing. We do not really understand globally Gaussian
processes on U+

N , and there is no specific one that singles out as a candidate for a replacement of
the Laplace-Beltrami operator. Yet, there is hope, if we throw in another important property.

Indeed, the generating functional LB on O (SUN ) has a remarkable property : it is invariant
under the adjoint action of the group on itself. More precisely, if g ∈ SUN and f ∈ O (SUN ), then
f ◦Adg is again a polynomial function, and we have

LB( f ◦Adg)= LB( f ).

This is because invariance under the adjoint action is built in the whole construction from the
start since it is satisfied already by the Killing form.

This suggests to look for Gaussian generating functionals on U+
N which are invariant under

the adjoint action ... once we make sense of the latter. But the good news is that this is not very
complicated if we take a more functional point of view. By this, we mean that if L1,L2 : O (SUN )→
C are linear maps and L1 is invariant under the adjoint action, then we can conjugate by any
element the first variable so that

(L1 ∗L2)( f )= (L1 ⊗L2)((g,h) 7→ f (gh))

= (L1 ⊗L2)((g,h) 7→ f ((hgh−1h))

= (L1 ⊗L2((g,h) 7→ f (hg))

= (L2 ⊗L1)((g,h) 7→ f (gh)).

In other words, L1 is central for the convolution product. This leads to the following definition :
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DEFINITION 3.1. A linear map L : O (U+
N )→C is said to be central if it is central for the convolution

product.

Remark 3.2. One can define a notion of adjoint action for compact quantum groups and check that
a linear map is central if and only if it is invariant under that adjoint action in a suitable sense,
see [CFK14].

So the question now is : what are the central Gaussian generating functionals ? The answer is
unfortunately not satisfying, all such functionals factor through a very small classical subgroup.
More precisely, let z denote the identity functional on the group U1 of complex numbers of modulus
one. Then the coefficients of the matrix zIN satisfy the defining relations of O (U+

N ), so that there
is a surjective ∗-homomorphism

πU1 : O (U+
N )→O (U1)

sending ui j to zδi j. Therefore, any Gaussian generating functional L on U1 lifts to a Gaussian
generating functional L̃ = L ◦πU1 on U+

N . Of course, since U1 is commutative, all its functionals
are central. That this remains true when they are pulled back to U+

N comes from the fact that πU1

is co-central in the sense that the following equality holds :

(πU1 ⊗ id)◦∆=Σ◦ (id⊗πU1)◦∆,

where
Σ : O (U+

N )⊗O (U+
N )→O (U+

N )⊗O (U+
N )

denotes the flip map sending x⊗ y to y⊗ x. This gives us a source of central Gaussian functionals
on U+

N , and we in fact get all of them in that way.

Proposition 3.3. The Gaussian functional L̃ = L ◦πU1 is always central. Moreover, all central
Gaussian functionals on U+

N arise in that way.

Proof. The first part is a simple computation : for any linear functional L′, we have

L̃∗L′ = (L̃⊗L′)◦∆
= (L⊗L′)◦ (πU1 ⊗ id)◦∆
= (L⊗L′)◦Σ◦ (id⊗πU1)◦∆
= (L′⊗L)◦ (id⊗πU1)◦∆
= (L′⊗ L̃)◦∆
= L′∗ L̃.

As for the second part, let L be a Gaussian generating functional on U+
N , which by Theorem

2.12 is given by an anti-hermitian matrix H and d matrices A1, · · · , Ad ∈ MN (C). We will first
consider the matrix L(U) ∈ MN (C) with coefficients (L(ui j))1Éi, jÉN and prove that it is central in
MN (C). Indeed, let M ∈ MN (C) be any unitary matrix. Then, there is by the universal property a
∗-homomorphism evM : O (U+

N )→C sending ui j to Mi j. Then, the equality

(L∗evM)(ui j)= (evM ∗L)(ui j)

translates into the equality
N∑

k=1
L(U)ikMk j =

N∑
k=1

MikL(U)k j

so that L(U) commutes with M. Now, a matrix commuting with all unitary matrices is a multiple
of the identity10, hence there exists λ ∈C such that L(U)=λIN . Setting for convenience

A =
d∑

i=1
A∗

r Ar,

we conclude that A +H = λIN , and the fact that A is hermitian and H is anti-hermitian shows
that A =ℜ(λ)IN and H =ℑ(λ)IN .
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Forgetting now about H (we can always remove drifts and still have a Gaussian generating
functional), one then proceeds similarly for L(U ⊗U) and concludes that it is in the center of
MN (C)⊗MN (C), yielding the equality

d∑
r=1

Ar ⊗ A∗
r ∈C.IN ⊗ IN .

Elementary linear algebra manipulations then show that each Ar must be a multiple of the iden-
tity. But that means that the kernel of L contains the kernel of πU1 , so that L comes from a
Gaussian generating functional on U1. ■

It seems like we are back to our starting point, but there is still a slight hope : what if the
Brownian motion was not given by a Gaussian generating functional, but by taking a Gaussian
generating functional and then making it central ? To explain whay we mean by this, let us see
how one can make a generating functional on SUN central.

The simplest way would be to have a natural way of making functions invariant under the
adjoint action. But this can be done, thanks to the existence of the Haar measure 2 : for any
f ∈ C(SUN ), just set

E( f )=
∫

SUN

f (hgh−1)dHaar(h).

The crucial point now is that the map E has nice properties, and in particular

• It preserves the unit : E(1)= 1 ;

• It preserves positivity : E( f )Ê 0 for f Ê 0 ;

• It preserves invariant functions : E( f ) = f if and only if f is invariant under the adjoint
action.

It is then straightforward that if L : O (SUN ) → C is a generating functional, then L ◦E still is a
generating functional which is furthermore central. That the same strategy works for U+

N is a
standard fact from compact quantum group theory, the proof of which would take us too far away
from our topic. We will therefore just state it as a blackbox. In order to do this, let us observe that
the algebra of polynomial functions on SUN which are invariant under the adjoint action is the
same as the algebra of characters of finite-dimensional representation, and this is generated as a
∗-algebra by the character of the defining representation as matrices11. In terms of the functions
ci j ∈O (SUN ) sending a matrix to its (i, j)-th coefficient, this character is simply

χ=
N∑

i=1
cii.

Proposition 3.4. Let us denote by O (U+
N )c the ∗-subalgebra of O (U+

N ) generated by the element

χ=
N∑

i=1
uii.

Then, there exists a linear map
E : O (U+

N )→O (U+
N )c

such that for any generating functional L on U+
N , L ◦E is a central generating functional.

We can now investigate functionals of the form L̃ = L ◦E with L Gaussian. To do this, let us
make a few elementary remarks. First, by construction L̃ is completely determined by the values
of L on O (U+

N )c. Second, the Gaussianity property implies that the values of L are completely
determined by the values on products of at most two generators and their adjoints. Since, O (U+

N )c
is generated by the single element χ, this leaves us with six values to compute. These can be
reduced to four values using hermitianity of L, and we will now see that the number of parameters
is even smaller.

2. Like all compact groups, SUN has a unique Borel probability measure µ which is bi-invariant in the sense that
for any g ∈ SUN and any Borel subset A, µ(g.A)=µ(A)=µ(A.g).
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Proposition 3.5. If L is a Gaussian functional on U+
N , then L̃◦E is determined by two parameters

α ∈C and β ∈R with

ℜ(α)Ê β

N
Ê 0.

Proof. Let us set a =Tr(A) ∈R+, b =Tr(H) ∈ iR and

β= (Tr⊗Tr)

(
d∑

r=1
Ar ⊗ A∗

r

)
=

d∑
r=1

|Tr(Ar)|2 Ê 0.

Then, using the explicit formulæ from Theorem 2.12, we find that

L(χ)= a
2
+ ib

L(χχ)= Na+2Nib−β
L(χχ∗)= Na+β
L(χ∗χ)= Na+β

Setting α= a/2+b, this can be writtent as

L(χ)=α ; L(χχ)= 2Nα−β ; L(χχ∗)= 2Nℜ(α)+β.

The inequality in the satement then follows from the Cauchy-Schwarz inequality : for all 1É i É d,

|Tr(Ar)|2 É NTr(A∗
r Ar).

■

We now hope that the reader is convinced that the two-parameter family of central functionals
above is worth studying. Let us conclude by mentioning some recent results concerning them, due
to Delhaye in [Del24] :

• Consider the generating functional Lclass
B : O (UN ) → C of the classical Brownian motion on

the group UN . Then, the generating functional

Lclass
B ◦πUN ◦E

is of the form given in Proposition 3.5, and the coefficients α and β can be computed ex-
plicitely in terms of normalizations of the Laplace-Beltrami operators on SUN and on the
kernel of the Killing form on uN . In particular, if we start instead from the generating
functional of the Brownian motion on SUN , then we have β= 0.

• Given some relative growth conditions on α and β (which are in particular satisfied when-
ever β = 0), the corresponding stochastic process exhibits a cut-off phenomenon and the
corresponding limit profile is explicitly computed.
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NOTES

1. For the convenience of the reader, let us recall that this means that for any ϵ> 0, then P(|X t − X0| > ϵ)→ 0 as t → 0.

2. It would be more natural in principle to work with UN since we want to consider a quantum analogue of the latter.
However, its lack of semi-simplicity would be an issue, as we will discuss below.

3. One of the reasons for that is that there is no good notion of C 2-functions on a compact quantum group, precisely
because we do not have a (non-commutative) differential structure. Another reason will be given below.

4. Observe that C 2(SUN )⊗C 2(SUN ) is not equal to C 2(SUN ×SUN ), a problem which vanishes when restricting to
polynomial functions.

5. Note that we also have the hermitianity property ϕt( f )=ϕt( f ), but this follows from positivity.

6. Since we are dealing here with a non-compact group, we cannot consider arbitrary functions. The correct notion for a
locally compact space is rather that of functions going to 0 at infinity.

7. The term quadratic is also used.

8. We are cheating here of course, this is does not follow directly from the definition.

9. Indeed, setting x′ = x−ε(x)1 and y′ = y−ε(y)1, we have for any x, y ∈O (U+
N ) that

L(xy)= L(x′ y′)+L(x′)ε(y)+ε(x)L(y′)+L(ε(x)ε(y)1)

= L(x′ y′)+L(x)ε(y)+ε(x)L(y)

= L(x)ε(y)+ε(x)L(y)

10. Observe that if λ is an eigenvalue of L(U) associated to some eigenvector x ̸= 0, then for any vector x′ with the same
norm as x, there exists a unitary matrix M such that Mx = x′, so that

L(U)x′ = ML(U)M∗x

= ML(U)x

=λMx

=λx′.

This means that all vectors are eigenvectors of L(U), which is only possible if the latter is a multiple of the identity
matrix.

11. This is a translation of the fact that this representation is faithful.
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