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Contextual Stochastic Bandits

with Budget Constraints and Fairness Application

1 Stochastic bandits

2 Contextual stochastic bandits

3 Contextual stochastic bandits with budget constraints

Application to fairness: small budgets
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K–armed stochastic bandits

Simplest possible framework
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K probability distributions ν1, . . . , νK in a model D
with expectations µ1, . . . , µK −→ µ⋆ = max

a∈[K ]
µa

At each round t = 1, 2, . . .,
1. Statistician picks arm At ∈ [K ]
2. She gets a reward Yt drawn according to νAt

3. This is the only feedback she receives

−→ Exploration–exploitation dilemma
estimate the νa vs. get high rewards Yt

Goal:
Maximize expected cumulative rewards ←→ Minimize regret

RT = Tµ⋆ − E

[
T∑
t=1

Yt

]
=
∑
a∈[K ]

(
µ⋆ − µa

)
E
[
Na(T )

]
←→ Control the E

[
Na(T )

]
for suboptimal arms a
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Setting:
Distributions ν1, . . . , νK with expectations µ1, . . . , µK

At each round t ⩾ 1, pick arm At ∈ [K ], get and observe Yt ∼ νAt

Proof of the rewriting of regret

Tower rule: E[Yt |At ] = µAt thus E[Yt ] = E[µAt ]

RT =
T∑
t=1

(
µ⋆ − E[Yt ]

)
=

T∑
t=1

(
µ⋆ − E[µAt ]

)
=

T∑
t=1

∑
a∈[K ]

(
µ⋆ − µa

)
E
[
I{At=a}

]
=
∑
a∈[K ]

(
µ⋆ − µa

)
E
[
Na(T )

]

where Na(T ) =
T∑
t=1

I{At=a}
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Model: ν1, . . . , νK are distributions over [0, 1]

A popular strategy: UCB [upper confidence bound]
Auer, Cesa-Bianchi and Fisher [2002]

For t ⩾ K , pick At+1 ∈ argmax
a∈[K ]

{
µ̂a(t) +

√
2 ln t

Na(t)

}

Exploitation: cf. empirical mean µ̂a(t) =
1

Na(t)

t∑
s=1

Ys I{As=a}

Exploration: cf.
√

2 ln t/Na(t) favors arms a not pulled often

Regret bounds (suboptimal) of two types

– Distribution-dependent bound: RT ≲
∑

a:µa<µ⋆

8 lnT

µ⋆ − µa

– Distribution-free bound: sup
ν1,...,νK

RT ≲
√
8KT lnT
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Proof of RT ≲
∑

a:µa<µ⋆

8 lnT

µ⋆ − µa

Hoeffding–Azuma: P

{∣∣µa − µ̂a(t)
∣∣ ⩽√ 2 ln t

Na(t)

}
⩾ 1− 2t−3

Indeed, by optional skipping:

P

{∣∣µa − µ̂a(t)
∣∣ >√ 2 ln t

Na(t)

}

=
t∑

n=1

P

{∣∣µa − µ̂a,n

∣∣ >√2 ln t

n
and Na(t) = n

}

⩽
t∑

n=1

P

{∣∣µa − µ̂a,n

∣∣ >√ ln(1/t−4)

2n

}
︸ ︷︷ ︸

⩽2t−4

where µ̂a,n denotes the average of n–sample with distribution νa
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Proof of RT ≲
∑

a:µa<µ⋆

8 lnT

µ⋆ − µa

Hoeffding–Azuma: P

{∣∣µa − µ̂a(t)
∣∣ ⩽√ 2 ln t

Na(t)

}
⩾ 1− 2t−3

If At = b is not an optimal arm a⋆, then by design

µ̂a⋆(t) +

√
2 ln t

Na⋆(t)
⩽ µ̂b(t) +

√
2 ln t

Nb(t)

thus w.h.p. µ⋆ ⩽ µb + 2

√
2 ln t

Nb(t)

which imposes Nb(t) ⩽
8 lnT

(µ⋆ − µa)2

Conclude with RT =
∑
a∈[K ]

(
µ⋆ − µa

)
E
[
Na(T )

]
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Proof of sup
ν1,...,νK

RT ≲
√
8KT lnT

We proved E
[
Nb(t)

]
≲

8 lnT

(µ⋆ − µa)2

Thus RT =
∑
a∈[K ]

(
µ⋆ − µa

)√
E
[
Na(T )

]√
E
[
Na(T )

]
⩽
√
8 lnT

∑
a∈[K ]

√
E
[
Na(T )

]
⩽
√
8KT lnT
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Contextual stochastic bandits with K arms

Linear modeling + Logistic modeling
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At each round t = 1, 2, . . .,
0. A context xt ∈ Rd is determined by the environment
1. Statistician picks arm At ∈ [K ]
2. She gets a reward Yt with conditional expectation r(xt ,At)
3. This is the only feedback she receives

Goal:
Maximize expected rewards ←→ Minimize expected regret

RT =
T∑
t=1

targets?− E

[
T∑
t=1

Yt

]

Structural assumptions handy! E.g., linearity:

r(x, a) = φ(x, a)Tθ⋆ ⇝ targets max
a∈[K ]

φ(xt , a)
Tθ⋆

Transfer function φ : Rd × [K ]→ Rm known,
But parameters θ⋆ ∈ Rd unknown
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Setting: contexts xt ∈ Rd , pick arms At ∈ [K ], get rewards Yt

Regret RT =
∑
t⩽T

max
a∈[K ]

φ(xt , a)
Tθ⋆ −

∑
t⩽T

E
[
φ(xt ,At)

Tθ⋆
]

Key: learn θ⋆ (= estimate it while playing)

LinUCB with regularization λ > 0 for bounded contexts
Abbasi-Yadkori, Pál, Szepesvári [2011]

Based on the idea

t−1∑
s=1

φ(xs ,As)Ys ≈
t−1∑
s=1

φ(xs ,As)φ(xs ,As)
Tθ⋆

Statement: let Mt−1 = λ Id +
t−1∑
s=1

φ(xs ,As)φ(xs ,As)
T

and θ̂t−1 =
(
Mt−1

)−1
t−1∑
s=1

φ(xs ,As)Ys
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Setting: bounded contexts xt ∈ Rd , arms At ∈ [K ], rewards Yt

reward function r(x, a) = φ(x, a)Tθ⋆, with E
[
Yt

∣∣At , xt
]
= φ(xt ,At)Tθ⋆

θ̂t−1 =
(
Mt−1

)−1
t−1∑
s=1

φ(xs ,As)Ys where Mt−1 = λ Id +

t−1∑
s=1

φ(xs ,As)φ(xs ,As)
T

Confidence region on θ⋆:

P
{wwθ̂t−1 − θ⋆

ww
Mt−1

≲ □
√
ln(t/δ)

}
= 1− δ

where ∥u∥M =
√
uTMu and provided that λ is well set

Complex proof based on“Laplace’s method of mixtures”

Simultaneous confidence intervals on the r(x, a): based on∣∣φ(x, a)Tθ̂t−1 − φ(x, a)Tθ⋆
∣∣ ⩽ wwθ̂t−1 − θ⋆

ww
Mt−1

wwφ(x, a)ww
(Mt−1)−1

⩽ □
√

ln(t/δ)
wwφ(x, a)ww

(Mt−1)−1︸ ︷︷ ︸
= εt−1,δ(x,a)

where
T∑
t=1

εt−1,δ(xt ,At) ≲
√
T ln(T/δ) by linear algebra
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Setting: bounded contexts xt ∈ Rd , arms At ∈ [K ], rewards Yt

reward function r(x, a) = φ(x, a)Tθ⋆, with E
[
Yt

∣∣At , xt
]
= φ(xt ,At)Tθ⋆

Simultaneous confidence intervals:
∣∣r̂t−1(x, a)− r(x, a)

∣∣ ⩽ εt−1,δ(x, a)

where
∑
t⩽T

εt−1,δ(xt ,At) ≲
√
T ln(T/δ)

Optimistic choice: At ∈ argmax
a∈[K ]

{
r̂t−1(xt , a) + εt−1,δ(xt , a)

}

Regret bound: RT =
T∑
t=1

max
a∈[K ]

r(xt , a)−
T∑
t=1

Yt ⩽ Õ
(√

T
)

In high-probability (but algorithm depends on δ)
Or in expectation (set δ = t−4, e.g.)

We could also have obtained high-probability bounds based on the UCB strategy

in the non-contextual case
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Logistic bandits
Extended from Faury, Abeille, Calauzènes, Fercoq [2020]

At each round t = 1, 2, . . .,
0. A context xt ∈ Rd is determined by the environment
1. Statistician picks arm At ∈ [K ]
2. The outcome Yt ∈ {0, 1} is drawn with probability P(xt ,At)
3. This is the only feedback Statistician receives
4. Statistician gets the reward r(xt ,At)Yt

Conversion rate P unknown but reward function r known

Structural assumption:

P(x, a) = η
(
φ(x, a)Tθ⋆

)
where η(x) =

1

1 + e−x

Similar results may be achieved as for linear bandits
Estimation based on maximum likelihood
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Contextual stochastic bandits with K arms

And now, with budget constraints!
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At each round t = 1, 2, . . .,
0. A context xt ∼ Q is drawn at random
1. Statistician picks arm At ∈ [K ]
2. She gets a reward Yt with conditional expectation r(xt ,At)
3. She also suffers costs Zt with conditional expectation c(xt ,At)
4. Her feedback is Yt and Zt

Vector-valued costs: possibly several constraints

Goals:
Maximize

∑
t⩽T

Yt while ensuring
∑
t⩽T

Zt ⩽ TB

Known: budget TB

Unknown: reward function r , cost function c, distribution Q
but structural assumptions to be issued on r and c
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Setting called CBwK – contextual bandits with knapsacks

First reference for CBwK: Badanidiyuru, Langford, Slivkins [2014]

State of the art = TB at best T 3/4: Agrawal and Devanur [2016], Han et al. [2022]

Fairness application
Inspired from Chohlas-Wood, Coots, Zhu, Brunskill, Goel [2021]

Fair budget spending among groups: Z ′
t first component of Zt

T∑
t=1

Z ′
t ⩽ TBtotal

and ∀g ∈ G,

∣∣∣∣∣ 1

Tγg

T∑
t=1

Z ′
t I{gr(xt)=g} −

1

T

T∑
t=1

Z ′
t

∣∣∣∣∣ ⩽ τ

where γg = Q
{
gr( · ) = g

}
and τ is a tolerance factor, ideally ∼ 1/

√
T , i.e., T τ of order

√
T

B contains a Btotal component, as well as components ±γgτ
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Setting: context xt ∼ Q, arm At ∈ [K ], reward Yt and costs Zt

Conditional expectations: r(xt ,At) and c(xt ,At)

Total budget constraints TB, where some components are as small as
√
T

Benchmark: static policies π : x 7→
(
πa(x)

)
a∈[K ]

∈ P
(
[K ]
)

We assume feasibility, and actually do so for B− ε1 (OK if a null-cost action exists)

opt(r , c,B) = sup
π

{
EX∼Q

∑
a∈[K ]

r(X, a)πa(X)


under EX∼Q

∑
a∈[K ]

c(X, a)πa(X)

 ⩽ B

}

Regret: RT = T opt(r , c,B)−
∑
t⩽T

Yt

Hard constraint:
∑
t⩽T

Zt ⩽ TB
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Regret: Minimize RT = T opt(r , c,B)−
∑
t⩽T

Yt where

opt(r , c,B)

= sup
π

EX∼Q

∑
a∈[K ]

r(X, a)πa(X)

 : EX∼Q

∑
a∈[K ]

c(X, a)πa(X)

 ⩽ B


= sup

π
inf
λ⩾0

EX∼Q

∑
a∈[K ]

r(X, a)πa(X)−

〈
λ,
∑
a∈[K ]

c(X, a)πa(X)− B

〉
= min

λ⩾0
EX∼Q

[
max
a∈[K ]

{
r(X, a)−

〈
c(X, a)− B, λ

〉}]
→ Suffices to learn r and c, as well as λ⋆ ⇝ parametric problems†

Cf. xt ∼ Q observed at each round

Learn r and c: via †structural assumptions (linearity or logistic)
Uniform bounds available
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Target: opt(r , c,B) = min
λ⩾0

EX∼Q

[
max
a∈[K ]

{
r(X, a)−

〈
c(X, a)− B, λ

〉}]
→ Gradient descent on dual / best response for primal variable(s)

Algorithm with fixed step size γ

For t = 1, 2, . . . ,T :

1. Play At ∈ argmax
a∈[K ]

{
r̂t−1(xt , a)−

〈
ĉt−1(xt , a)− (B− b1), λt−1

〉}
2. Make gradient step λt =

(
λt−1 + γ

(
ĉt−1(xt , a)− (B− b1)

))
+

3. Update estimates r̂t and ĉt of functions r and c

Optimistic estimates: r̂t upper bounds r and ĉt lower bounds c

Idea already in Agrawal and Devanur [2016]
But the key to handle smaller budgets is the tuning of γ
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From Chzhen, Giraud, Li, Stoltz [2023]

Strategy with fixed γ

1. Play At ∈ argmax
a∈[K ]

{
r̂t−1(xt , a)−

〈
ĉt−1(xt , a)− (B− b1), λt−1

〉}
2. Make gradient step λt =

(
λt−1 + γ

(
ĉt−1(xt , a)− (B− b1)

))
+

Analysis for fixed γ: the projected-gradient descent entailswwwwww
(

T∑
t=1

Zt − T (B− b1)

)
+

wwwwww ⩽ Õ
(
1 + ∥λ⋆∥

γ

)
Cost margin Tb should be of the same order

(
1 + ∥λ⋆∥

)
/γ

That margin adds a term of order ∥λ⋆∥
(
Tb +

√
T
)
to regret

→ Oracle choices b ∼ 1/
√
T and γ ∼

(
1 + ∥λ⋆∥

)
/
√
T

lead to
(
1 + ∥λ⋆∥

)√
T regret

Estimating ∥λ⋆∥ on
√
T exploration rounds (see, e.g.: Agrawal

and Devanur [2016], Han et al. [2022]) imposes minB ⩾ T−1/4
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We use instead a careful doubling trick γk = 2k/
√
T

Breaking condition based on budget controls

Theorem:

If minB is larger than 1/
√
T up to poly-log terms, then w.h.p.,∑

t⩽T

Zt ⩽ TB and RT ≲ Õ
(
1 + ∥λ⋆∥

)√
T

Note: ∥λ⋆∥ ⩽ 2 opt(r , c,B)

minB
if null-cost action
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