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Chapter 1

Introduction

À réécrire

In 1872, Felix Klein posed the following question. "Given a multiplicity

and a group, to study the beings from the point of view of properties

that are not altered by the transformations of the group... this can also

be expressed as follows: given a multiplicity and a transformation group;

develop the theory of invariants relative to this group" ([15]).

Felix Klein

In this first volume notes, we concretly illustrate this visionary viewpoint by classifying geometric ob-

jects via invariants under various group actions (invariant factors, similarity invariants...) and different

perspectives (algebraic, topolgical...).

Our motivation is, starting from basic knowledge of dimension theory in linear algebra and calculus, to

give a bridge to modern methods of algebra with as little formal theory as possible. We will try to explain

how an equilibrium between abstract use of diagrams and modules on the one hand and concrete matrices

in the other allow to quickly obtain non trivial and, hopefully, interesting results.

To illustrate our perspective, similarity questions of matrices with field coefficients will be our leitmotif

example throughout this book for many reasons (importance of this problem, concrete character of the

objects,deep insights of a lot of more general subjects like arithmetic, K-theory, algebraic geometry, . . . .

It is definitely not our pretentiousness to make a study of these advanced topics, but we have tried to

use methods which will be useful later.

In the first part, we give an introduction to the module language theory in order to solve the following

problem as our typical illustration: how to decide when two square matrices are similar? We did not use

any reduction theory, eigenvalue or irreducible elements to solve this classification problem. The gain is

9
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that we can solve this problem in a perfectly algorithmic way, in a field independent way, (contrary to any

method based on eigenvalues because in general computing roots of a polynomial is hopeless). The cost

to pay is non continuity of these algorithms (even they are semi-continuous in some sense). We discuss

the intrinsic aspects continuity topics in the last part of the book.

In the second (more classical) part, we will discuss reduction theory where the key point is the factorization

of the characteristic polynomials in linear terms (eigenvalues) or more generally in irreducible polynomials.

The good news is that this process has continuity properties. The cost to pay is that we do not know

how to factorize a polynomial in general. We have include a section about simultaneous reductions of

matrices stressing the important notion of irreducible action of matrices.

In the third part, we will illustrate the interest on both perspective by studying the topology of similarity

classes which are of fundamental importance in advanced mathematics.

We strive to do so in a concrete manner, i.e., with methods that lead to algorithms. It is indeed better to

know how to construct an object than to simply know of its existence. The aim of the course, however,

is not to provide optimized programs in terms of efficiency (that’s another subject, and interesting at

that!), but to explore the how-to. One quickly encounters the numerical flaws of typical Gauss elimination

algorithms.

It is not, however, about giving formally constructivist methods ([3]) but about providing as much as

possible existence theorems that can explicitly lead to the construction of the object in question, for

example, through a computer.

The material of this book is more or less classical, only the perspective being somehow more original.

We strongly advise the reader to implement the various algorithms on a machine: this will allow them

to verify that they have thoroughly understood the proofs. On our part, we have used the SAGEMATH

program, based on Python.

Photo credits: ChronoMaths, Flickr user Duncan, Patrick Fradin, Marcel Gotlib, UQAM, Wikipedia.

1.1 Point of view

There are plenty ways to do mathematics and is rarely the case to have a unique good one. Writing a

book is emphasizes some choice. Finding a path between these two peaks guided our work.

Let us illustrate our purpose by two extreme ways of thinking mathematics by two universal genius. In

his huge Récoltes et Semailles writing1, explains how generalizing problems is a fruitful way to solve

problems.

Let’s take, for example, the task of proving a theorem that remains hypothetical (which, for some, might

seem to be the essence of mathematical work). I see two extreme approaches to tackling this. The first

is the hammer and chisel method, where the problem is seen as a tough, smooth nut, and the goal is to

1A. Grothendieck, Récoltes et Semailles I, II: Réflexions et témoignage sur un passé de mathématicien, Gallimard (2022)
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Alexander Grothendieck

reach the nourishing core protected by the shell. The principle is simple: you place the edge of the chisel

against the shell and strike hard. If necessary, you repeat this in several different spots until the shell

cracks—and then you’re satisfied. [...].

I could illustrate the second approach by sticking with the image of the nut that needs to be opened. The

first metaphor that came to my mind earlier is that you soak the nut in an emollient liquid—why not

simply water? From time to time, you rub it to help the liquid penetrate better, but otherwise, you let

time do its work. Over the weeks and months, the shell softens—and when the time is ripe, a gentle hand

pressure is enough, and the shell opens like that of a perfectly ripe avocado. Or, you let the nut ripen

under the sun and rain, and perhaps even the frost of winter. When the time is right, a delicate sprout

emerges from the nourishing core, piercing the shell as if in play—or, better said, the shell opens on its

own, allowing it passage. [...]

Readers even slightly familiar with some of my work will have no difficulty recognizing which of these two

approaches is "mine".

This way to go from the peculiar to the general contrasts with Decartes’ method2.

René Descartes

• Not to accept anything as true that I did not clearly know to be so.

• To divide each of the difficulties I examined into as many parts as possible and as might be required

for their best resolution.

• To conduct my thoughts in an orderly manner, beginning with the simplest and easiest-to-know objects

in order to ascend little by little, as if by steps, to the knowledge of the most complex.

2R. Descartes, Discourse on the Method (1637), Gallimard (2009).
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• To make everywhere such complete enumerations, and such general reviews, that I might be assured

of omitting nothing. This is the rule of enumeration. To make a complete review of objects, which

involves prudence and circumspection.

1.2 Prerequisites and conventions (in progress)

1.2.1 Prerequisites

We assume the reader familiar to the basic definition in algebra without any other expertise. From a

general point of view, the reader is assumed to be familiar with the general definitions of rings, ideals. . . .

For convenience of the reader, we recall the notion of quotient (6.2). Some familiarity with basic algebraic

properties of fields, Z and k[T], is assumed to be known (they are Principal Ideal Rings -PID-). To make

the reading easier, a proof of the main results will be given in 8.2 and in (10).

No other knowledge of linear algebra is assumed beyond the basics of dimension theory3 and Gauss

elimination method, the relationship between matrices and endomorphisms, and the elementary properties

of the determinant. Strictly speaking we therefore do not assume any peculiar knowledge about eigenvalue

or reduction theory although it is recommended to have taken an introductory course on the subject before

studying our book.

Readers who have studied linear algebra in the context of real or complex vector spaces is just asking to

accept (or verify) that nothing changes on an arbitrary field. It could happen that in some particular

subsection we use group notions but these items can always be skipped in a first reading.

In part III, we use freely basic notions from analysis and topology of metric spaces as taught in standard

undergraduate programs

1.2.2 Conventions

We will use at length the notation k for a (commutative) field and V for a k-vector space which is finite

dimensional unless otherwise explicitly assumed.

3Strictly speaking, it is easy following our way to recover all the results just using Gauss elimination and formal properties

of determinant
4We will say explicitly in this case non commutative ring.
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Unless expressly stated otherwise4, the rings are assumed to be commutative

and with an identity, generally denoted R. Their multiplicative group of units

is denoted R×.

This grants them the following property: Every nonzero ring admits a proper maximal ideal for inclusion

(Krull’s theorem (1.3.2.4), a result we could have considered as an axiom (in this generality, this is

equivalent to the axiom of choice). For the convenience of the reader, we have explained how Zorn’s

lemma allows to prove Krull’s theorem (1.3.2). Zorn’s lemma also allows to demonstrate, essentially

formally, that, just as Q is contained in C, any field k is contained in an algebraically closed field Ω. We

will use this result freely is some (rare) places (see for instance [13], theorem 4.7. or exercises TBD).

As usual, we’ll denote where Ei,j ∈ Mp,q(R) the matrix with all coefficients zero except the one at row

i and column j, which is 1. We refer it as the "standard basis" of Mp,q(R), recalling that tautologically

any matrix A = [ai,j ] has a unique decomposition A =
∑
i,j ai,jEi,j ass a linear combination of these

matrices.

We say that A is diagonal if ai,j = 0 for all i ̸= j. The coefficients ai,i, i = 1, . . . ,min(p, q) are often

denoted ai and called the diagonal coefficients.

We will identify Rn as the set of columns Mn,1(R) if n ≥ 1.

Transvection T1,2(2)

We will often use the following square matrices.

Definition 1.2.2.1. A square matrix is a

• transvection if is of the form Ti,j(r) = Id+rEi,j , i ̸= j;

• a permutation matrix if it is of the form Mσ = [δi,σ(j)] for a permutation5σ ∈ Sn;

• dilatation if its of the form D(r) = Id+(r − 1)E1,1 with r ∈ R×;

• a Bézout matrix if it of the form diag(A, Id) with A ∈ M2(R) of determinant 1.
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By construction, transvections and Bézout matrices have determinant 1 and det(D(r)) = r, det(Mσ) =

ε(σ). In general, it is recalled that line and column operations on rectangular matrices with coefficients

in a ring R are obtained by multiplication on the right or left by transvections or permutation matrices,

these matrices being invertible (of determinant ±1).

1.3 Useful tools

1.3.1 Division by Monic Polynomials

As the reader will see, it is often useful to adapt the usual division algorithm in polynomial rings with

values in rings. The cost to pay is that we have to assume that the leading coefficient is invertible, or,

which remains to the same, equal to 1. Let us give a precise statement.

Proposition 1.3.1.1. [Left Euclidean Division] Let R be a non necessary commutative ring with unit

and A,B ∈ R[T]. If the leading term of B is invertible, there exists a unique pair Q,R ∈ R[T] such that

A = BQ+R and either R = 0 or deg(R) < deg P.

If we set deg(0) = −∞, the last condition A = BQ + R and either R = 0 or deg(R) < deg P can

simply be written A = BQ+R deg(R) < deg P. Of course, there exists an analogous statement for right

division (change R to Ropp with the multiplication in reverse order). Left and right division coincide in

the commutative case (by uniqueness).

Proof. Uniqueness If (Q1,R1) and (Q2,R2) satisfies the required conditions, then

B(Q1 −Q2) = R2 − R1 and deg(B(Q1 −Q2)) = deg(B) + deg(Q1 −Q2)

since the leading coefficient of B is invertible. Because deg(R2 −R1) ≤ max(deg(R2),deg(R1)) < deg(B)

we get deg(Q1 −Q2) < 0 from which follows Q1 = Q2 and therefore R1 = R2.

Existence (induction on deg(A).

If deg(A) < deg(B) we take Q = 0 and R = A;

If deg(A) ≥ deg(B): let a, b be the leading coefficients of A,B and M the monomial b−1aTdegA−deg B;

then BM has the same leading monomial as A, so deg(A−UM) < deg(A). By induction, there exist two

polynomials Q and R such that (A− BM) = BQ+R and deg(R) < deg(B) thus A = BQ+M) + R.

1.3.2 Zorn’s Lemma and application

Let E be a (partially) ordered set. We can think, for example, of the set of subsets of a given set ordered

by inclusion. But there are many other examples.

5where δi,j is the Kronecker symbol equal to 1 if i = j and 0 if not.
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Definition 1.3.2.1. We say that E is inductive if every non-empty totally ordered part has an upper

bound in E.

Example(s) 1.3.2.2. R equipped with the usual order relation is not inductive. Similarly, the set of

intervals [0, x[, x ∈ R ordered by inclusion is not inductive. On the other hand, the set of subsets of a set

ordered by inclusion is inductive.

Max Zorn

Lemma 1.3.2.3 (Zorn’s lemma). Every non-empty inductive set has a maxi-

mal element.

This lemma can be seen as an axiom of set theory, in fact equivalent to the axiom of choice: if (Ei) is a

non-empty family of sets, then
∏

Ei is non-empty. We will consider it as such.

Corollary 1.3.2.4. [Krull’s lemma] Every non-zero ring has a maximal ideal. More generally, every

proper ideal of a ring is contained in a maximal ideal.

Proof. Let E be the family of proper ideals of A containing a given proper ideal J (for instance J = {0}

because our rings are nonzero). Because J is proper, E is non-empty. Obviously, E is inductive: the

union of a totally ordered family of proper ideals is still a proper ideal, which is an upper bound. Zorn’s

lemma finishes the job.
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Part I

Linear Algebra over Rings

17





Chapter 2

Warm-up I: review on basic linear

algebra

2.1 Introduction

Perspective

The purpose of this introductive chapter is to prove the main theorems of Euclidean

and general linear geometry in the real plane E. Our motivation is twice. First to

refresh general linear algebra knowledge in this elementary context. Second, more

fundamentally, to emphasize that almost all problems of linear algebras appear in

dimension ≤ 2. We’ll see in many occasions that the general case follows from this

small dimension study. In fact this simple observation is quite deep as the reader

will see in the next coming years, for instance if he has to look at the theory of Lie

or algebraic groups where the role of the 2 by 2 matrices of SL2 is crucial.

19
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2.2 Euclidean plane

We start with a "physical" perspective, namely we assume that our real plane E (n = dim(E) = 2) has

a metric, meaning a scalar product  E× E → R

(v, w) 7→ ⟨v, w⟩

Recall that this means that this map is linear in each variable and posoitve definite (or > 0 for short):

q(v) = ⟨v, v⟩ > 0 unless v = 0.

Definition 2.2.0.1. A Euclidean space is a real finite-dimensional vector space equipped with a scalar

product. An isometry of Euclidean spaces is a linear isomorphism preserving the scalar products. An

isometric endomorphism of positive determinant is called a rotation.

Of course the typical examples are E = C with

⟨z, z′⟩ = Re(zz′)

or R2 endowed with the standard scalar product

⟨(v1, v2), (w1, w2)⟩ = v1w1 + v2w2,

both being canonically isomorphic.

The set of isometries (resp. rotations) is a subgroup O2(E) of GL2(E) (resp. SO2(E) of SL2(E))1.

2.2.1 Euclidean Norm

Proposition 2.2.1.1 (Cauchy-Schwartz). Let v, w ∈ E and let us write ∥v∥ =
√
∥v∥.

1. One has ⟨v, w⟩ ≤ ∥v∥∥w∥ with equality if and only if v, w are positively colinear.

2. One has |⟨v, w⟩| ≤ ∥v∥∥w∥ with equality if and only if v, w are colinear.

Proof. We may assume v and w are non-zero. The Cauchy-Schwartz inequality (1) is nothing but the

inequality

2− 2⟨v/∥v∥, w/∥w∥⟩ = q(v/∥v∥ − w/∥w∥) ≥ 0

with equality if and only if v/∥v∥ − w/∥w∥ = 0, namely if v, w are positively colinear. We get (2) from

(1) changing w in −w.

1As usual, we’ll simply write O2(R) (resp. SO2(R)) for O2(E) (resp. for SO2(E)) when E is the standard Euclidean

plane R2
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Theorem 2.2.1.2. The mapping v 7→ ∥v∥ is a norm called the Euclidean norm.

Proof. We define, for v ∈ E, ∥v∥ = ⟨v, v⟩. As q is positive definite, to show that ∥ · ∥ is a norm, it suffices

to verify the triangle inequality

(∥v∥+ ∥w∥)2 − ∥v + w∥2 = ∥v∥2 + 2∥v∥∥w∥+ ∥w∥2 − ∥v∥2 − 2⟨v, w⟩ − ∥w∥2

= 2∥v∥∥w∥ − 2⟨v, w⟩

(by Cauchy-Schwartz) ≥ 0

Observe that equality in the triangle inequality is equivalent of equality in Cauchy-Schwartz and therefore

to the fact that our vectors are (positively) linked.

One immediately checks the important property of the Euclidean norm: the median equality

For any x, y ∈ E, ∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).

2.2.2 Non oriented angle of pair of vectors or lines

By Cauchy-Schwartz inequality, the absolute value of the scalar product of two unit vectors is ≤ 1

therefore can define the angle (̂v, w) between two nonzero vectors v, w by the formula

(̂v, w) = arccos⟨ v

∥v∥
,
w

∥w∥
⟩

thought as an element of R/2πZ defined up to sign.

Thanks to trigonometry formulae, we obtain the usual formula from elementary geometry (the Chasles

formula)

̂(v1, v2) + ̂(v2, v3) = ̂(v1, v3).

Of course, the parity of the arccos function and the homogeneity of the scalar product ensures that the

non oriented angle of two non zero vector neither depends on their order or on any nonzero multiple of

them. This allows to define the (non oriented) angle of two lines ℓ1, ℓ2 by the non oriented angle of any

vector basis of them, no matter the order of the lines.
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Remark(s) 2.2.2.1. Rather that "angle" we should have said "measure of the angle" in an Euclidean

plane (see 2.2.5.6).

2.2.3 Orthogonality in oriented Euclidean planes

If ℓ is a line (dimension d = 1), its orthogonal ℓ⊥ has equation ⟨., v⟩ = 0 for any chosen basis v of ℓ and

therefore has dimension dim(ℓ⊥) = n− d = 1 (see ?? for the general case).

Remark(s) 2.2.3.1. Let us recall that two bases of some finite dimensional vector space define the same

orientation if the determinant of the base change matrix is > 0. An orientation is then defined by a basis

defined up to the action of the group of matrix of positive determinant GL+(R). These bases are said

positively oriented or direct.

For instance, if we change the order of a basis of the plane, we change the orientation of the plane. There-

fore, given a normed vector v of an oriented Euclidean plane, there exists a unique positive orthonormal

basis of the plane (v, w).

Notice that GL+(R) is connected (??). It follows that orientation is the only way to assign a continuous

sign to any basis of E.

Because a line has obviously only two opposite normed vectors, we get just like in high school

Proposition 2.2.3.2. Let E be an oriented Euclidean plane. For any normed vector v ∈ E, there exists

a unique normed vector v⊥ such that (v, v⊥) is a positively oriented orthonormal basis.

In the standard Euclidean plane R2 with the usual orientation defined by the canonical basis, we have

explicitly for v = (a, b), a2 + b2 = 1 the usual formula v⊥ = (−b, a).

We indeed have defined an algorithm, which will be heavily generalized: if we

start with an arbitrary basis (v1, v2) of E, there exists a unique orthonormal

basis (e1 = v1/∥v1∥, e2 = e⊥1 ) such that e1 ∈ Rv1 and (e2, v2) > 0: this is the

Gram-Schmidt process in the plane (see ?? in general).

The following statement is well-known and useful.
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Proposition 2.2.3.3. 1. A morphism of Euclidean spaces (of any dimension) is an isometry (resp. a

rotation) if and only if it maps an orthonormal (resp. direct orthonormal) basis to an orthonormal

(resp. direct orthonormal) basis.

2. An endomorphism f of an Euclidean space (of any dimension) is an isometry if and only if its matrix

M with respect to (any) orthonormal basis satisfies tMM = Id

3. The determinant of an isometry is ±1. The determinant of a rotation is +1.

Proof. We assume the existence of orthonormal basis for granted in general (see ??). (1) is a direct

consequence of the bilinearity of the sclar product.

(2) If (ei) is our orthonormal basis, one has f isometry if and only if

(Id)i,j = δi,j = ⟨f(ei), f(ej)⟩ = ⟨
∑

ma,iea,
∑

mb,jeb =
∑
a

ma,ima,j =⟩ = (tMM)i,j

proving (2).

(3) Follows from (2) and the multiplicativity of the determinant.

We get the well-known formula

SOn(R) = {M|tMM = Id and det(M) = 1}

Because the base change morphism between two orthonormal bases is an isometry, we get

Corollary 2.2.3.4. Two Euclidean planes are (non canonically) isomorphic.

2.2.4 Oriented angles of vectors

Let E be an oriented Euclidean plane. Using the above results, we can define the oriented angle of two non

zero vectors v, w as follows. If v, w are normed, one has a unique writing w = av+ bv⊥ with a2 + b2 = 1.

Therefore, there exists a unique
̂̂
(v, w) ∈ R/2πZ such that

(a, b) = (cos(
̂̂
(v, w)), sin(

̂̂
(v, w))

Because ⟨w, v⟩ = a, one has
̂̂
(v, w) = |(̂v, w)|.

In the general case, one defines
̂̂

( v
∥v∥ ,

w
∥w∥ ) ∈ R/2πZ.
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Remark(s) 2.2.4.1. By construction, if θ is the oriented angle between two normed vectors v, w, the

base change matrix from (v, v⊥) to (w,w⊥) is Rθ =

cos(θ) − sin(θ)

sin(θ) cos(θ)

. The addition formulas for the

trigonometric functions sin, cos give the important formula

Rθ ◦ Rθ′ = Rθ+θ′

Of course, we again obtain the usual formula of elementary geometry like the Chasles formula

̂̂
(v1, v2) +

̂̂
(v2, v3) =

̂̂
(v1, v3).

2.2.5 Isometries

Let E be an oriented Euclidean plane.

Proposition 2.2.5.1. Let v, w be two normed vectors and θ =
̂̂
(v, w).

1. There exists a unique rotation ρθ mapping v to w whose matrix in any direct orthonormal basis is

Rθ.

2. One has

cos((̂v, w)) = ⟨w, ρ(w)⟩ = cos(θ) =
tr(ρv,w)

2
.

Proof. (1) The base change morphism from (v, v⊥) to (w,w⊥) is definitely a positive isometry, that is a

rotation ρ giving the existence. Conversely any isometry mapping v to w maps v⊥ to ±v⊥ and therefore to

w⊥ if it is positive giving the uniqueness. The matrix of ρθ in (v, v⊥) is Rθ (cf. (2.2.4.1)). If B = (v1, v2)

is another direct orthonormal basis, the base change matrix from (v, v⊥) to B is Rα (2.2.4.1). Therefore

Mat(B, ρ) = R−1
α ◦ Rθ ◦ Rα = R(−α+ θ + α) = Rθ

proving (1).

Let us chose any orientation on E. By (2.2.3.2), one can assume v = e1 is the first vector of an orthonormal

basis (e1, e2). Because w is a unit vector, it can be written as w = cos(θ)e1 + sin(θ)e2 for a uniquely

defined θ ∈ R/2πZ. But w,w′ = − sin(θ)e1 + cos(θ)e2 is the unique direct orthonormal basis with first

vector w. Therefore the endomorphism ρ mapping (e1, e2). to (w,w′) is the unique relevant positive

isometry.

(2) follows directly from the proof of (1).
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To specify the structure of isometries, let us choose a direct orthonormal basis B of E. We will identify

any endomorphism f with its matrix in B.

Corollary 2.2.5.2. 1. The map θ 7→ ρθ defines an isomorphism

R/2πZ ≃ SO(E)

2. ρθ is complex diagonalizable with complex eigenvalues are exp(±iθ).

3. ρθ is real diagonalizable if and only if θ ≡ 0 mod (2π) or θ ≡ 0 mod (2π) that is to say it is equal

ρθ = ± Id.

4. The matrices negatives isometries are orthogonal symetries.

Proof. Only the last point has not be proven yet. Let B = (e1, e2) be a direct orthonormal basis and

S0 =

0 1

1 0

 be the matrix of the orthogonal symmetry along the (second) diagonal R(e1 + e2). Then,

for any negative isometry, the product of S0 by its matrix S is some rotation S0S = Rθ. We get

R = S0Rθ =

sin(θ) cos(θ)

cos(θ) − sin(θ)


whose square is Id by direct calculation.

From this, one recover any elementary facts about plane isometries known for the highschool time (see

?? in the general case).

Remark(s) 2.2.5.3. If one prefers the identification E ∼ C with its orthogonal basis (1, i), the corre-

sponding statement is that rotations are as usual of the form θ 7→ exp(iθ)z and symetries of the form

θ 7→ exp(iθ)z.

Exercise 2.2.5.4. Show that the application which associates to an an orthogonal symmetry its invariant

vector line is a bijection from the set of symmetries onto the set of vector lines. Show that the compound

of two symmetries associated with two lines making a (non-oriented) angle θ is a rotation whose (non-

oriented) angle is 2θ.

Exercise 2.2.5.5. Determine the real and complex eigenvalues and the corresponding eigenspaces of any

planar isometry. When are they diagonalizable over R ? Over C ?
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Remark(s) 2.2.5.6. We could have defined an oriented angle in a non oriented plane as the former

rotation itself. The value of the angle would then have been in SO2(R). The link between the our definition

is that the choice of an orientation define a canonical isomorphism SO2(E) ≃ R/2πZ, recovering our

notion of angle which could be in this context be defined as the measure of the angle. But the usual modern

point of view is to see an angle as we did, and therefore we have to choose an orientation of the plane.

2.2.6 Symmetric real matrices

We know (2.2.5.1) that the matrices of a negative isometries in an orthonormal basis are of the formcos(θ) sin(θ)

sin(θ) − cos(θ)

, in particular are symmetric. Like all symetries, they are diagonalizable with spec-

trum {±1}. But, we have more. The eigenspaces are orthogonal. Indeed, if we identify E with C thanks

to B, our symmetry is nothing but z 7→ exp(iθ)z whose (real) +1-eigenspace is the line R exp(iθ/2) and

(real) −1-eigenspace is the orthogonal line iR exp(iθ/2). We recover the well known fact that orthogonal

symmetries are orthogonally diagonalizable. This fact is general.

Proposition 2.2.6.1. Symmetric matrices of M2(R) are exactly orthogonally diagonalizable matrices

(with restect to the standard Euclidean structure of R2).

Proof. We identify E with the standard Euclidean plan R2 with its standard orthogonal basis B. If

X,Y ∈ R2 and M ∈ M2(R), we have ⟨X,Y⟩ = tXY and therefore

⟨MX,Y⟩ = t(MX)Y = tXtMY = ⟨X, tMY⟩.

The characteristic polynomial of M =

a b

b d

 is χM(T) = T2 − (a+ d)T + (ad− b2) with discriminant

∆ = (a + d)2 − 4(ad − b2) = (a − d)2 + 4b2 ≥ 0. Therefore, it is split over R with distinct roots unless

b = 0 and a = d, i.e.M = a Id.

If ∆ = 0, then M is scalar and the canonical orthonormal basis of R2and therefore orthogonally diagonal.

Assume ∆ > 0 and let x, y ∈ R the distinct roots of χM. If X,Y are normed eigenvector of our real

symmetric matrix M relatively x, y, one gets

x⟨X,Y⟩ = ⟨MX,Y⟩ = ⟨X,MY⟩ = y⟨X,Y⟩

hence ⟨X,Y⟩ = 0. Therefore, after the orthonormal base change B → (X,Y), the matrix becomes

diag(x, y).
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In this section E denotes a rank real plane without any Euclidean structure.

We will will explain the reduction theory in this simple but non trivial case due

to the fact that the scalar field R is not algebraically closed (compare with the

general results of 9.2.2.2 and 9.4).

2.3 General linear maps of the plane

Let M =

a c

b d

 ∈ M2(R).

2.3.1 Minimal polynomial

A direct computation shows that χM(T) = T2 − (a+ d)T + (ad− bc) annihilates M: this is the Cayley-

Hamilton theorem in dimension 2. Because R[T] is a principal ideal domain, the ideal of real polynomials

annihilating M is generated by a unique monic polynomial µM. Because χM(M) = 0, one has µM|χM and

therefore

• either µM = χM

• either χM is of degree 1 and M is the scalar matrix tr(M)
2 Id.

Definition 2.3.1.1. If M is non scalar, we define the similiraty invariants P2,P1 of M by P1 = χM = µM

and P1 = 1. If M is scalar, we define P1 = P2 = µM.

2.3.2 Cyclic vectors

Assume that M is not a scalar matrix. Then M has at most two eigenlines (because deg(χM) = 2). Let

X ∈ R2 not belonging to these lines (a real plane is never the union of two lines!). Then X and MX are

certainly indendant vector, and is therefore a basis of the plane. Writing M in this basis, remembering

the equation χM(M).X = 0, we get that M is similar to C(χ) =

0 −det(M)

1 tr(M)

. Because a matric is

scalar if and only if deg(µM) = 1, we therefore get the plane version of the Frobenius theorem 9.4.

Theorem 2.3.2.1 (Jordan-Frobenius in the plane). Let M be real matrix.

1. One has P2|P1 and P2P1 = χM.

2. Two matrices are similar if and only if they have the same similarity invariants.

3. If M is not scalar, it is smilar to the "companion" matrix C(χ) of P1 = χM = µM.
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4. M is nilpotent if and only if it is similar to the standard matrix J =

0 0

1 0

.

In a certain extent, the rest of the book is dedicated to generalize these results in any dimension.

2.4 Exercices

Exercise 2.4.0.1. Let zi be n complex numbers such that the triangle inequality is an equality |
∑
zi| =∑

|zi|. Show that there exists α ∈ C such that (zi) = α(|zi|). Compare with 2.2.1.1 and theorem 1.39 of

[18]. [Hint : assume first
∑
zi ∈ R+].



Chapter 3

Warm-up II: duality

René Magritte

3.1 Introduction

Perspective

Sub-vector spaces can be either described by generating families or by linear equa-

tions. Duality is an important even formal tool formalizing the bridge between these

two aspects.

3.2 Basic notions

As always, V denotes in this chapter a finite dimensional1 k-vector space and V∗ = Hom(V,k) denotes

its dual; the vector space of linear applications from V to k, i.e. linear forms of V.

If φ ∈ V∗, v ∈ V, we note ⟨φ, v⟩ = φ(v) the duality bracket2 V∗ ×V → k.

1Unless otherwise stated.
2Be careful, the dual acts to the right on vectors, cf. [5].

29
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A hyperplane is the kernel of a non-zero linear form φ. Conversely, any hyperplane H determines φ up to

multiplication by a non-zero scalar: choosing any v /∈ H defines a direct sum decomposition H⊕ kv = V

and φ is unambiguously defined by any (nonzero) value of v.

We recall that any any free family of V can be completed in a basis of V. In particular, any proper

subspace of V is contained in some hyperplane and in fact is precisely the intersection of hyperplanes

that contain it (i).

Proposition 3.2.0.1. Let V be a n-dimensional vector space and let Vi finitely many proper sub-vector

spaces. If k is infinite or if the number of subspaces is ≤ 2, then ∪Vi ̸= V.

Proof. By the above remark, we can assume that all the Vi’s are hyperplanes Ker(φi). Choosing a

(finite) basis of V, these linear forms φi are nothing but (homogeneous) degree one polynomial in the

coordinates. By assumption
∏
φi is zero on kn and therefore the polynomial

∏
φi(X1, . . . ,Xn) is zero in

k[X1, . . . ,Xn] because k is infinite. But a polynomial ring is an integral domain, showing that one the φi

is zero, a contradiction. If k is a finite field (of characteristic p ≥ 2), the cardinal of V is pn. The union

of two hyperplanes has cardinal at worst 2pn−1 − 1 ≤ pn − 1 (because 0 belongs to bot hyperplanes) and

the proposition follows.

We recall that if B = (ei) is a (finite) basis of V, we define the dual basis B∗ = (e∗i ) of V∗ by the

formula ⟨e,ie∗j ⟩ = δi, j. In other words, e∗i is the i-th coordinate function and we have v =
∑
j⟨v, e∗j ⟩ej . In

particular, dim(V∗) = dim(V).

If V = kn = Mn,1(k) (column vectors), we have M1,n(k) = kn = V∗ (row vectors) and the duality bracket

is ⟨L,C⟩ = LtC where L ∈ V∗ is a row and C ∈ V a column. If B = (ei = [δi,j ]1≤j≤n) is the canonical

basis (Ei,1 = ei) of kn = Mn,1(k) = V, its dual basis B∗ is formed from the rows e∗i = tei, which is the

canonical basis (E1,i = e∗i ) of M1,n(k) = kn = V∗.

If B is a basis of an infinite dimensional vector space, the family B∗ is still free but is

never a basis. For instance, the linear form φ defined by ⟨φ, ei⟩ for all i is certainly not

in the span of B∗. Even as a set, Card(V∗) > Card(V) (exercise). In fact, in the infinite

dimensional case, the algebraic dual is not the good notion. As the reader who has notion

in functional analysis knows, the good notion is a the appropriate topological dual of

topological vector spaces.

If W is a subspace of V (or even a subset), we recall that its orthogonal is defined by

W⊥ = {φ ∈ V∗|⟨φ,w⟩ = 0 for all w ∈ W} ⊂ V∗.

If now W∗ is a subspace of V∗ (or even a subset) its polar in V is defined by

W◦
∗ = {v ∈ V|⟨φ, v⟩ = 0 for all φ ∈ W∗} ⊂ V.
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Example(s) 3.2.0.2. An important example comes from differential geometry. If f is a regular function

on an open Ω of Rn, its differential at ω ∈ Ω is a linear form on TωΩ = Rn: the differential df(ω).

In the canonical basis ( d
dxi

(ω))i of TxΩ, this form is the Jacobian J(ω) = ( dfdxj
(ω))j thus seen as a row

matrix. The kernel of df(ω) is none other than the tangent hyperplane at ω to the hypersurface defined

by the equation f = 0 as long as the differential is non-null at that point. The generalization to several

functions is contained in the notion of higher-dimensional submanifolds.

3.3 Motivation

Two useful ways compete to define a vector subspace W of V = kn.

1. Via generators vi ∈ V: W = Vect{vi}.

2. Via equations eqi ∈ V∗: W = {v|⟨eqi, v⟩ = 0} with

⟨eqi,


x1

...

xn

⟩ =
∑
j

ai,jxj = (ai,1, · · · , ai,n)


x1

...

xn

 .

The duality first focus on the second point of view, thus on the dual V∗ and the set of all possible

equations of W: the orthogonal W⊥ = {φ ∈ V∗|φ(W) ≡ 0} and then to the link with the first point of

view.

3.4 Formal Biorthogonality

Whether V is of finite dimension or not, any subspace W is tautologically contained in the space defined

by the set of its equations

W ⊂ (W⊥)◦ ⊂ {v|(⟨φ, v⟩ = 0 for all φ ∈ W⊥}.

In general, this inclusion is formal in the sense that it is always an equality, without any further assumption

about the dimensionality of V.

(i) W = (W⊥)◦ = {v|(⟨φ, v⟩ = 0 for all φ ∈ W⊥}.

Indeed, if v ̸∈ W, one can choose a complement S of W⊕kv in W and define for example φ ∈ W⊥ by the

conditions ⟨φ,W⟩ = ⟨φ,S⟩ = {0} and (⟨φ, v⟩ = 1 which implies v /∈ (W⊥)◦ proving the reverse inclusion.
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3.5 Ante-dual Basis: Biduality

Henceforth, in this chapter, V is finite-dimensional.

Proposition 3.5.0.1. Let V be of dimension n∞. Then

1. The evaluation linear application

ev :

 V → V∗∗

v 7→ (φ 7→ (⟨φ, v⟩)

is an isomorphism.

2. For any basis B∗ of V∗, there exists a unique basis B of V called ante-dual whose dual is B∗, i.e.

such that B∗ = B∗.

Proof. For (1), note that ev is injective between spaces of the same finite dimension.

For (2), note that B = ev−1((B∗)
∗) is the unique solution to the problem posed.

3.6 Orthogonal and Polar in Finite Dimension

Proposition 3.6.0.1. Let W,W∗ be two subspaces of V,V∗ respectively. We have

1. dim(W) + dim(W⊥) = n.

2. dim(W∗) + dim(W◦
∗) = n.

3. W∗ = (W◦
∗)

⊥.

4. W = (W⊥)◦.

5. ev(W◦
∗) = W⊥

∗ .

6. ev(W) = W⊥⊥.

Proof. For (1), choose a basis (ei, 1 ≤ i ≤ d of W and complete it to a basis B = (ei, 1 ≤ i ≤ n of V. If

B∗ = (e∗i ) is the dual basis, then by construction W⊥ = Vect(ei, i > d).

For (2), choose a basis (φi, 1 ≤ i ≤ d of W∗ and complete it to a basis B∗ = (φi, 1 ≤ i ≤ n of V∗. If

B = (ei) is the ante-dual basis, then by construction W◦
∗ = Vect(φi, i > d).

Applying the argument from (1) to W = W◦
∗ and using the basis εi = en−i, we get W⊥ = (W◦

∗)
⊥ =

Vect(φi, i ≤ d) = W∗ which gives (3).

(4) is added for reference and does not use finite dimension (i).
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For (5), if φ ∈ W◦
∗ and w ∈ W, then ev(v)(φ) = φ(w) which is null because φ ∈ W◦

∗ and therefore

ev(W◦
∗) ⊂ W⊥. Since these two spaces have the same dimension as established previously, this inclusion

is an equality.

For (6), if w ∈ W, and φ ∈ W⊥, then ev(v)(φ) = ⟨φ, v⟩ = 0 so that W ⊂ W⊥⊥. As these two spaces

have the same dimension as established previously, this inclusion is an equality.

Example(s) 3.6.0.2. If V is an euclidean space with scalar product (v, w) 7→ v.w, the partial linear

map w 7→ (v 7→ v.w) has zero kernel and is therefore an isomorphism V 7→ V∗. One checks that

this isomorphism identifies W⊥ with the usual Euclidean orthogonal {v ∈ V|v.W = {0}} recovering

the classical dimension formula in Euclidean geometry dim(W⊥) = n − dim(W). Moreover, with this

identification, w ∈ W ∩W⊥ satisfies w.w = 0 and therefore is zero ensuring in the Euclidean space the

so called usual orthogonal decomposition W
⊥
⊕ W⊥ = V.

Remark(s) 3.6.0.3. Note that orthogonality and polarity are strictly decreasing applications for inclu-

sion.

Corollary 3.6.0.4. Let φi ∈ V∗, i = 1, · · · ,m. Then, the rank of Vect{φi} is that of the evaluation

application

 V → km

v 7→ (φi(v))i

Proof. It suffices to observe that the kernel of the evaluation is the polar of Vect{φi} and then to invoke

the previous

proposition and the rank theorem.

Exercise 3.6.0.5. Let V be the real vector space of polynomial of degree ≤ 3. Let a < c < b be reals and

define I ∈ V∗ by

⟨I,P⟩ =
∫ b
a

P(t)dt.

Compute dimSpan(eva, evc, evb, I) depending on the value of c. Deduce a formula for I depending only

on evaluation forms.

3.7 Biduality Conventions (Finite Dimension)

The previous paragraph allows, in finite dimension therefore, thanks to ev to identify V and its bidual,

polar W◦
∗ of W∗ and orthogonal W⊥

∗ , W and biorthogonal W⊥⊥. We generally simply note W⊥
∗ for W◦

∗.
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Generally, in finite dimension, we consider spaces and dual, but we do not dualize the dual thanks to ev

and we simply write W = W⊥⊥ whether W is a subspace of V or of V∗.

As an illustration, let’s give the algebraic lemma, easy but important, which in real cases is the algebraic

content of the theorem of linked extrema in differential geometry (interpret the result in terms of tangent

spaces of submanifolds of Rn in the spirit of the example 3.2.0.2).

Exercise 3.7.0.1. Compare the orthogonal of a sum or intersection of sub vector spaces with the sum or

intersection of their orthogonals.

The following lemma is the algebraic part of the search of extrema through constraints equalities (see ??

for constraint inequalities).

Lemma 3.7.0.2. Let φ and φi, i ∈ I be linear forms of V. Then, φ is a linear combination of the φi if

and only if ∩iKer (φi) ⊂ Ker (φ).

Proof. By strict decrease of the orthogonal, the condition

∩iKer (φi) = Span(φi)
⊥ ⊂ Ker (φ) = Span(φ)⊥

is equivalent to the inclusion

Span(φ) = Span(φ)⊥⊥ ⊂ Span(φi)
⊥⊥ = Span(φi).

Exercise 3.7.0.3. Les φi, i = 1, . . . ,N linear forms on V and Ψ ∈ Hom(V,kN) = (φi). Prove that the

rank of Ψ is the dimension of the span of the φi’s.

Remark(s) 3.7.0.4 (Farkas’ Lemma). If k = R, we have an analogous result for finite families of half-

spaces H+,H+
i defined by the inequalities f ≥ 0, fi ≥ 0. Indeed, it be can be shown ∩iH+

i ⊂ H+ if and

only if φ is a linear combination with positive coefficients of the φi. See [1].

3.8 Contravariance

Let Vi, i = 1, 2, 3, be arbitrary vector spaces,

Definition 3.8.0.1. If f ∈ Homk(V1,V2), we note tf ∈ Homk(V
∗
2,V

∗
1) the transpose of f defined by

tf(φ2) = φ2 ◦ f , in other words, ⟨tf(φ2), v1⟩ = ⟨φ2, f(v1)⟩ for every φ2inV
∗
2, v1inV1.
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Let’s recall that a matrix and its transpose have the same rank: this is for instance an immediate

consequence of the fact that equivalent matrices have equivalent transpose and that equivalence classes

of matrices (with coefficients in a field) are classified by the rank).

We have the following (formal) proposition

Proposition 3.8.0.2. If f ∈ Homk(V1,V2) and Bi are bases of Vi.

1. The application f 7→ tf is linear injective.

2. If fi ∈ Homk(Vi,Vi+1), we have ( contravariance of the transpose) t(f2 ◦ f1) = tf1 ◦ tf2.

Assuming further that the Vi’s are finite dimensional, we have

3. We have MatB∗
2 ,B

∗
1
(tf) = tMatB1,B2(f).

4. rk(f) = rk(tf).

5. With the identifications (3.7), the transposition is involutive.

6. Im(tf) = Ker(f)⊥ and Ker(tf) = Im(f)⊥.

7. If V1 = V2 = V, a subspace W of V is stable by f if and only if W⊥ is stable by tf .

Proof. Let’s just give an argument for 5)(the verification of the rest is left as an exercise). First, it suffices

to show one of the two formulas (change f to tf and use the involution of the transposition and of the

orthogonal). Then, Im(tf) and Ker(f)⊥ having the same dimension according to 1) and 3.6.0.1, it suffices

to prove Im(tf) ⊂ Ker(f)⊥. Now, if f(v1) = 0, then ⟨tf(φ2), v1⟩ = ⟨φ2, f(v1)⟩ = 0.

3.9 Exercises

Exercise 3.9.0.1. Let X be any set and V a finite dimensional vector subspace of the R-vector space of

functions from X to R. Let n = dim(F).

1. Show that the family (evx), x ∈ X generates V∗

2. Show that there exists fi ∈ F, xi ∈ X, i = 1, . . . , n such that det(fi(xj)) ̸= 0.

3. Assume that all the functions of V are bounded on X. Show that any pointwise convergent sequence

of elements of F is uniformly convergent on X.

4. Does the result previous remain true if one no longer with no boundeness assumption?



36 CHAPTER 3. WARM-UP II: DUALITY



Chapter 4

Matrices with Ring coefficients

4.1 Introduction

Perspective

We explain how determinant identities and Gauss elimination method give non triv-

ial general results without any reference to advanced linear algebra and reduction

theory. This elementary but non trivial part can be skipped in a first reading.

4.1.1 Algebraic identities extension principle

Proposition 4.1.1.1. Let P ∈ Z[T1, · · · ,Tn] and Ii, 1 = 1, · · · , n be infinite sets of some field of char-

acteristic zero k. Then, if P vanishes on
∏

Ii then P = 0. In particular, for any ring R and any

(ri) ∈ Rn, we have P(r1, · · · , rn) = 0. For instance, if a polynomial P of integral coefficients in the

variables Ti,j , 1 ≤ i ≤ n, j ≤ m vanishes on all complex matrices [ti,j ] (or even on some open set) of

Mn,m(C), then for all ring R and M ∈ Mn,m(R), one has P(M) = 0.

Proof. We observe Z[T1, · · · ,Tn] ⊂ k[T1, · · · ,Tn] (because the characteristic of k is zero) and we reduce

by induction to the fact that a polynomial in one variable not identically zero has only a finite number

37
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of roots.

Corollary 4.1.1.2. All integral formulas for the determinant valid for complex square matrices remain

valid for square matrices in any commutative ring R. This is in particular the case for the Cramer’s

rule tCom(A)A = AtCom(A) = det(A) Id for any A ∈ Mn(R) and its corollary: the multiplicative group

GLn(R) of matrices having an inverse is equal to {A ∈ Mn(R)| det(A) ∈ R×}.

Remark(s) 4.1.1.3. As the interested reader can check, all formal properties of the determinant can

easily be proved directly for matrices with coefficients in a ring without using any linear algebra in a field.

4.1.2 Cayley-Hamilton in Mn(R)

Let us start with an easy lemma, which is usually more or less considered as "obvious" in a commutative

situation.

Let τ ∈ R be an element of a non necessary commutative ring with unit R and let R[T] → R the evaluation

additive group morphism

P(T) =
∑
i≥0

πiT
i 7→ P(τ) =

∑
i≥0

πiτ
i

In this non-commutative situation, we have to be cautious with its mulplicativity.

Lemma 4.1.2.1. Let P =
∑
i πiT

i,P =
∑

PiT
i ∈ R[T] and assume that t commute with all the coeffi-

cients πi of P. Then,

(PP)(τ) = P(τ)P(τ).

Proof. We have

[PP](τ). =
∑
k

 ∑
i+j=k

πiπj

 τk ==
∑
i,j

πiπjτ
i+j

and

P(τ)P(τ) =
∑
i

πiτ
i
∑
j

πjτ
j =

∑
i,j

πiτ
iπjτ

j τ
ipj=pjτ

i

=
∑
i,j

πiπjτ
i+j

Corollary 4.1.2.2 (Cayley-Hamilton). Let A ∈ Mn(R) and χA(T) = det(T Id−A). Then, χA(A) = 0.
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Proof. For the first item, Cramer’s rule applied to T Id−A ∈ Mn(R[T]) = Mn(R)[T] give the identity

(∗) tCom(T Id−A)(T Id−A) = χA(T) Id.

Because A commutes with the two coefficients Id,A of T Id−A, lemma 4.1.2.1 shows that the evaluation

of (*) at τ = A is the product the evaluation of tCom(T Id−A) at τ = A and the evaluation at τ = A

af T = A of T−A , which is zero. So is the evaluation χA(A) of the right hand side.

4.2 Maximal rank matrices

As usual, any A ∈ Mm,n(R) is identified with the (R-linear) map X 7→ AX from Rn to Rm. We assume

R is not the zero ring.

Proposition 4.2.0.1. Let n,m ne positive integers and A ∈ Mm,n(R),B ∈ Mn,m(R)

1. If n < m, then det(AB) = 0.

2. If A is surjective, then n ≥ m.

3. If A is injective then n ≤ m.

4. If A is bijective then n = m

Proof. (1). As before, we consider the generic matrices A = (Xi,j),B = (Yj,i) with Xi,j ,Yi,j , 1 ≤ i ≤

, 1 ≤ j ≤ n are indeterminates and we look in the the general matrix identity det(AB) = 0 which is a

polynomial identity of n2m2 indeterminates in Z[Xi,j ,Yj,i]. But this identity is true for complex matrices

Ac,Bc because the square matrix AcBc cannot be injective because Bc : C
m → Cn is not (for dimension

reasons).

(2). Let Bj ∈ Rn, j = 1, · · · ,m such that ABj = E1,j (E1,j is the usual "canonical basis" of Rm) and

B ∈ Mn,m(R) be the corresponding matrix. One has AB = Idn. Taking the determinant, we get n ≥ m

thanks to (1).

(3). Assume by contradiction n > m and let B =

 Idm

0n−m

 defining the canonical injection Rm ↪→ Rn.

Let C = BA ∈ Mn(R) and L = (0, . . . , 0, 1) = E1,n ∈ M1,n(R). Because n > m, one has LB = 0. By

Cayley-Hamilton, there exists a monic polynomial Td +
∑
i<d aiT

i annihilating C. One can assume that

d is minimal among these polynomials. Because C is injective as B and A, one has a0 ̸= 0 by minimality.

Left composing the equation Cd+
∑
i<d aiC

i = 0 by L, we get a0L = 0 and therefor a0=0, a contradiction.

(4). Each (2) or (3) implies (4) (apply to both A and A−1, the latter being defined as usual because A

is bijective).
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Remark(s) 4.2.0.2. • One will give below more natural proofs in some way, but less elementary.

Precisely, see 6.6.0.5 for (2) and (4) with an argument using the choice axiom see and 7.3.0.5 for

(2), (3) and (4) with an argument not using the choce axiom-. The idea in this last case is to reduce

to this statement by reducing to the case of matrix with coefficients in a field using Krull’s lemma

(1.3.2.4).

• I have learned the nice argument in (3) from the post https: // mathoverflow. net/ q/ 47846 of

Balasz Strenner.

4.3 Reminder on Gauss elimination method

Let us give a version of Gauss elimination not using dilatations nor permutation matrices as far as

possible.

The nine chapters Karl Friedriech Gauss

The elimination method was rediscovered by Gauss and Jordan in the 19th century. But it was known

to the Chinese at least in the 1st century BCE ([8]).

With definition 1.2.2.1 in mind, we set

Definition 4.3.0.1. Let R be a ring and p, q ≥ 1 two integers. We denote by En(R) the subgroup of

GLn(R) genrated by the transvections. We say that two matrices A,B of Mp,q(R) with p, q ≥ 1 are

• Gauss-equivalent (A ≡ B) if they differ by a series of left and right multiplications by transvections

(that we call Gauss-operations) or equivalently if the exists P ∈ Ep(R),Q ∈ Eq(R) with B = P−1AQ.;

• equivalent (A ∼ B) if the exists matrices P ∈ GLp(R),Q ∈ GLq(R) with B = P−1AQ.

Gauss-equivalent ⇒ equivalent. Notice also that Gauss equivalence does note use permutation matrices.

https://mathoverflow.net/q/47846
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4.3.1 The usual field case

Proposition 4.3.1.1. Let A ∈ Mp,q(k)− {0}.

1. There exists δ ∈ k∗ such that A is Gauss-equivalent to diag(δ, Idρ, 0p−ρ,q−ρ) with ρ = rank(A)− 1.

2. GLn(k) is generated by transvections and dilatations.

3. SLn(k) is generated by transvections.

Proof.

(1). Induction on p+q ≥ 2, the case p+q = 2 being trivial we assume now p > 1 or q > 1. If both the last

column and line are zero, one applies the induction to the (necessarily non zero) remaining Mp−1,q−1(k)

matrix.

The key point is showing that a non zero line (x, y) is Gauss equivalent to (0, 1). We perform column

operations with the pivot written in bold and the other (changing coefficient) by a ⋆. Because (x, 0) ≡

(⋆, x) we can assume y ̸= 0. Then, we have, (⋆,y) ≡ (1, ⋆) ≡ (1, 0) ≡ (⋆,1) ≡ (0, 1) as wanted.

Transposing if necessary, we can assume that either the last line is nonzero, i.e.there exists j < q such

that ap,j ̸= 0. Using the previous case (for the line of indices j, q), one can assume ap,q = 1.

Then, again using Gauss-operations Cj 7→ Cj − ap,jCq and Li 7→ Li − ai,qCq, one can now assume that

the only non zero coefficient of the last line and column is ap,q = 1 and we finish by induction on the

remaining Mp−1,q−1(k) matrix.

(2) and (3) are direct consequences of (1).

Exercise 4.3.1.2. Give a computer program of 4.3.1.1 for instance using the open source SAGE math-

ematical software (with Python kernel). Evaluate its complexity and numerical complexity. How can you

guarantee that your program is exact for matrix with rational coefficients ?

4.3.2 A few universal formulas

Although the reader can skip this (elementary) section, the following examples will be quite useful (com-

pare with 9.4.0.1 below). This also illustrate how permutation matrices can play a(or do not play) a role

in Gauss elimination method, no matter the coefficients ring is a field. Recall that R is any (commutative)

ring.

Lemma 4.3.2.1.

1. Let D be an invertible diagonal matrix of Mn(R). Then, D ≡ diag(det(D), 1, . . . , 1).
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2. Let any permutation matrix Mσ, σ ∈ Sn is Gauss equivalent to diag(ε(σ), 1, . . . , 1).

3. Let t, a0, . . . , an−1 ∈ R and

C(t, an−1, . . . , a0) =



t 0 · · · an−1

−1 t 0 · · · an−2

...
. . . . . . · · ·

...

. . . 0 −1 t a1

· · · · · · 0 −1 a0


∈ Mn(R).

Then, C(t, an−1, . . . , a0) ≡ diag(1, . . . , 1,
∑
ait

n−i).

Proof.

1. An easy induction argument reduces to the n = 2 case. And we just perform the Gauss operations

(having in mind that the determinant remains 1 to simplify the computations1)

x 0

0 y

 Col≡

x x

0 y

 Lin≡

 x x

1− y 1

 Col≡

xy x

0 1

 Lin≡

xy 0

0 1


2. Induction on n starting with the tautological n = 1. As always, the key point is n = 2 which is

solved thanks to the formula

(∗) M(1,2) = diag(−1, 1)T1,2(−1)T2,1(1)T1,2(−1) = T1,2(1)T2,1(−1)T1,2(1) diag(−1, 1)

If n > 2, using (1, 2, 3) = (1, 2)(2, 3) and (*), we get that M(1,2,2) is the product of (6!) transvections.

In particular, a product of an even number of transvections is Gauss-equivalent to Id and finally

using (∗) again, we get the result.

3. Using successive columns operations of type Cn 7→ Cn + xjCn−j for j > 1, we put zeros on the last

column to get by inductions the equivalences

C(t, an−1, . . . , a0) ≡ C(t, an−1, . . . ap+1, ap + ap−1t+ . . . a0t
p, 0, . . . , 0)

and finally

C(t, an−1, . . . , a0) ≡ C(t,
∑

ait
n−i, 0, · · · , 0) = C(t, 1, 0, · · · , 0).diag(1, . . . , 1,

∑
ait

n−i).

But

C(t, 1, 0 . . . , 0) =



t 0 · · · 1

−1 t 0 · · · 0

...
. . . . . . · · ·

...

. . . 0 −1 t 0

· · · · · · 0 −1 0


≡



0 0 · · · 1

−1 t 0 · · · 0

...
. . . . . . · · ·

...

. . . 0 −1 t 0

· · · · · · 0 −1 0


1We indicate the pivot and the bold coefficient is the pivot
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and using line operations

-1 t 0 · · ·
...

. . . . . . · · ·

. . . 0 −1 t

· · · · · · 0 −1


≡



−1 0 0 · · ·
...

. . . . . . · · ·

. . . 0 −1 t

· · · · · · 0 −1


≡ · · · ≡ − Idn−1

and therefore

C(t, 1, 0 . . . , 0) ≡ C(0, 1, 0, . . . , 0) = diag(1,− Idn−1)Mσ

where σ is the n-cycle (1, 2, . . . , n) of signature ε(σ) = (−1)n−1 giving the result by (1) and (2).

4.4 Application to subgroups of GLn(k)

Recall that the derived subgroup D(G) of a group G is the subgroup generated by the commutators

[g, h] = ghg−1h−1, g, h ∈ G. It is normal and G/D(G) is the largest abelian quotient of G.

Corollary 4.4.0.1. One has

1. D(GLn(V)) = SLn(V) except if n = 2 and Card(k) = 2.

2. D(SLn(V)) = SLn(V) except if n = 2 and Card(k) = 2, 8.

A group G with D(G) = G is called perfect.

Proof. Proof of (1). Because the derived group is normal and all transvections are conjugate in GL(V), it

is enough to show that in our case one transvection is a commutator. If n ≥ 3 and any characteristic, one

computes [Id+E2,1, Id+E1,3] = Id+E2,3. If n = 2, let us choose λ ̸= 0, 1. Then, [diag(λ, 1),T1,2(λ) =

T1,2(λ− 1) which is a transvection.

Proof of (2). If n ≥ 3, two transvections τ ′ = gτγ−1 are certainly conjugate not only under GL(V)

[Because one can change g by a dilation of ration det(g)−1 commuting with τ ]. We leave the n = 2 case

in exercice (adapt the GL argument with a general diagonal matrix in SL2).

Let V be an n-dimensional vector space with n ≥ 2, PV its set of lines (dimension 1 linear subspaces),

PV∗ its set of hyperplanes (dimension (n− 1) linear subspaces)2.

2At this stage, this is just a notation. Nothing has to be known about projective geometry.



44 CHAPTER 4. MATRICES WITH RING COEFFICIENTS

4.4.1 General transvections

If f ∈ Homk(V/D,D) we denote by f̃ ∈ Endk(V) the linear map x̃ 7→ x+ f(x mod D).

Proposition 4.4.1.1. Let τ ∈ Endk(V). The following properties are equivalent.

1. H(τ) = Ker(τ − Id) is a hyperplane of V containing D(τ) = Im(τ − Id), which is a line in V.

2. There exist φ ∈ V∗ and v ∈ V, both nonzero, such that τ(x) = x+ φ(x)v with φ(v) = 0.

3. There exists a (unique) f ∈ Homk(V/D(τ),D(τ)) such that τ = f̃ .

4. The restriction to the affine hyperplane defined by the equation φ(x) = 1 is a translation by the vector

v.

5. The natural morphism Hom(V/D,D) → GL(V)

6. The matrices of τ are similar to Idn+E1,2 =


1 1

0 1

 0

0 Idn−2,

 .

We say that τ is a transvection of V of type (D(τ),H(τ)) ∈ PV×PV⋆. If φ, v are as above, let us define

τλ(x) = x+ λφ(x)v, λ ∈ k. Under these conditions, we have:

• H(τ) = Ker(φ),D(τ) = ⟨v⟩,

• Transvections of type (⟨v⟩, ⟨φ⟩) are given by τλ, λ ∈ k∗, and λ 7→ τλ is an injective group morphism

(k,+) → (SL(V),×),

• tτ is a transvection of V⋆ of type (H(τ),D(τ)) ∈ PV⋆ ×PV.

4.4.2 Normal subgroups of GL(V)

We will explain the so-called Iwasawa to study normal subgroups of perfect groups G, or equivalently we

will give a criterium of simplicity of G/Z(G) where Z(G) is the centrum of G.

Definition 4.4.2.1. Let G be a group acting on a set X,and B ⊆ X.

1. We say that B is a G-block and if for all g ∈ G, the sets gB and B are either equal or disjoint. Blocks

reduced to a point or to the whole X are called trivial.

2. We say G acts primitively on X if:

(a) The action of G on X is transitive;
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(b) the only G-blocks are trivial.3.

3. We say G acts 2-transitively on X if for all x1, x2, y1, y2 ∈ X, x1 ̸= x2, y1 ̸= y2, there exists g ∈ G

such that g · x1 = y1 and g · x2 = y2.

Lemma 4.4.2.2. Let G be a group acting 2-transitively on a set E. Then the action is primitive.

For instance, SL(V) and GL(V) act 2-transitively on PV if dim(V) ≥ 2.

Proof. Let B be a subset of X having at least two elements and such that B ̸= X. Let us show that there

exists g ∈ G such that gB ̸= B and gB ∩ B ̸= ∅ and therefore that B is not a G-block.

Let a ̸= b ∈ B and c ∈ X \B. By 2-transitivity, there exists g ∈ G such that ga = a and gb = c. We have

a ∈ gB ∩ B, hence gB ∩ B ̸= ∅, and c ∈ gB, c /∈ B, hence gB ̸= B.

Proposition 4.4.2.3 (Iwasawa criterium). Let G be a group acting faithfully and primitively on a set

X. We assume that there exists a family Kx ⊂ Gx, x ∈ X such that

1. Each Kx is abelian.

2. For any g ∈ G⟩,G = ⟨gKg−1⟩.

3. ∪x∈XKx generates G.

Then any normal subgroup acting non trivially on X contains D(G).

Proof. We start with the direct part of the previous footnote.

Lemma 4.4.2.4. The stabilizer Gx of any primitive action is a maximal subgroup of G.

Proof. Let Gx ⊂ H ⊂ G and B = {hx, h ∈ H}. I claim that B is a block. If not, assume B ∩ g(B) ̸ ∅.

There exists h, h′ ∈ H such that hx = gh′x hence h−1gh′ ∈ Gx ⊂ H. Therefore, g ∈ H and g(B) ⊂ B

proving B = {x} and B = X by primitivity assumption. In the first case, H = Gx and we are done. In

the second case, H acts transitively on X. Therefore, for any g ∈ G there exists h ∈ H such that gx = hx

hence gh−1 ∈ Gx ⊂ H showing g ∈ H.

3Or equivalently (Exercice if the stabilizer Gx of a point x ∈ X is a maximal subgroup of G.
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Let N be a normal subgroup and let x ∈ X. Since N is normal, NGx is a subgroup of G containing Gx

and is therefore equal to Gx or G by maximality.

If NGx = Gx, we have N ⊆ Gx, and therefore for all

g ∈ G, gNg−1 ⊂ gGxg
−1 = Ggx.

By normality of N, we get N = N∩gNg−1 ⊂ Gx∩Ggx, hence N acts trivially on X and therefore N = {1}

because G hence N acts fathfully on X: we are done in this case.

Assume now NGx = G. One has Nx = NGxx = Gx = X because G acts transitively and therefore N

acts transitively on X. Let y = nx, n ∈ N be any point of X and κ ∈ Ky = nKxn
−1 which can therefore

be written κ = nkn−1 with (n, k) ∈ N×Kx. We have

κ = nkn−1 = nkn−1k−1k
N◁G
∈ NKx

proving Ky ⊂ NKx for any y ∈ X hence G = NKx. We deduce that the morphism k 7→ k mod N is a

surjection from the abelian group Kx to G/N commutative hence N ⊂ D(G).

Corollary 4.4.2.5. If dim(V) ≥ 2, any normal nontrivial normal subgroup of GL(V) (or SL(V)) contains

SL(V) unless k is a field with 2 (or 8) elements.

Proof. Take X = P(V) and Kx
∼→ Hom(V/Dx,Dx) be the group of transvections of line Dx (cf. 4.4.1.1)

and apply Iwasawa criterium and 4.4.0.1.

4.5 Exercises

Exercise 4.5.0.1. Prove that the evaluation map of lemma 4.1.2.1 is a (skew)-ring morphism if and

only t commutes with any element of R.

Exercise 4.5.0.2. Give an example of square matrices τ,A ∈ M2(C) such that the evaluation at τ of
tCom(T Id−A)(T Id−A) = χA(T) Id is not equal to the products of the evaluation at τ of tCom(T Id−A)

and of (τ −A). What is the value of χA(τ) in this case ?

Exercise 4.5.0.3. With the notation above prove the identity

TnχAB(T) = TmχBA(T)

Hint : Consider the matrices C =

T Idm B

A In

 , D =

Idm −B

0 T Idn

. Give another proof of 4.1.2.2.(2)

Exercise 4.5.0.4. Let G act primitively and faithfully on a set X. Assume that for some x ∈ X, the Gx

contains an abelian normal subgroup whose conjugate subgroups generate G. Then D(G) ⊂ G [Adapt the

proof of Iwasawa criterium].



Chapter 5

Modules

5.1 Introduction

Perspective

This chapter introduces the language of modules and diagrams in as light a manner

as possible. It is suggested that the reader first browse through it focusing on solving

the exercises, then later familiarize himself with its use in the following chapters in

a concrete manner.

Thus, it will only be consulted afterward if absolutely necessary: the idea is that all the formal construc-

tions of vector spaces or abelian groups apply mutatis mutandis to this general framework by accepting

scalars valued in a ring rather than in a field (or integers for abelian groups).

As will be seen here and throughout the text, the diagrammatic perspective (see 5.3) once familiar is

extremely valuable, unifying, and simplifying. Paradoxically, this effort in abstraction, besides opening

the doors to modern and deep mathematics, often makes them very concrete, even computable and

algorithmic.

This will be particularly illustrated in the section 9.2 and the chapters 12 and 14 dedicated to the study of

the linear group and the similarity classes of square matrices. Unlike the usual methods of linear algebra

that largely depend on the study of eigenvalues of endomorphisms, we will focus on polynomials and their

47
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action on endomorphisms. While annihilating polynomials play a special role, their roots are not actually

important for deciding whether two endomorphisms are similar, for example. The advantage is generally...

we do not know how to compute the roots of polynomials. Worse, the constructions of linear algebra are

often discontinuous in the coefficients of matrices and thus poorly support the numerical approximation

of these roots. Of course, the notion of eigenvalue remains essential as will be seen repeatedly. But its

often useless when one cannot compute the roots of the polynomial characteristic or, worse, when the

characteristic polynomial is not split.

5.2 Vocabulary and first examples

5.2.1 Modules

We know that a vector space over a field k is an abelian group M equipped with an external law k×M → M

verifying for all a, a′ ∈ k and m,m′ ∈ M (on the left say) the four usual compatibilities.

1. a(m+m′) = am+ am′

2. (a+ a′)m = am+ a′m

3. 1m = m

4. a(a′m) = (aa′)m

The notion of a module is obtained exactly in the same way, by allowing the field k to be a ring R (recall

that for us R is commutative with unit):

Definition 5.2.1.1. A module M over a unitary ring R is an abelian group equipped with a "scalar

multiplication" map R×M → M verifying the previous compatibility properties. A submodule N of M is

a supgroup stable by scalar multiplication.

Example(s) 5.2.1.2. By definition, modules over fields are vector spaces. Let’s provide more interesting

examples.

1. The multiplication of R makes R an R-module whose submodules are by the very definition its ideals.

2. Z-modules are identified with abelian groups through scalar multiplication

n.m = sign(n)
|n|∑
i=0

m, n ∈ Z,m ∈ M.

3. If V is a k-vector space, the set of formal polynomials1with coefficients in V is naturally a k[T]-

module.



5.2. VOCABULARY AND FIRST EXAMPLES 49

4. In general, if M is an arbitrary R-module, we denote AnnM(r) = Ker(r : M → M) and M[r] =

∪n>0Ker(rn : M → M), which is indeed a submodule as a union of increasing submodules (exercice).

5. The set Cc(T,R) of continuous functions with compact support from a topological space T to R is

a module over the ring of continuous functions from T to R. If T is a non-compact metric space,

Cc(T,R) is an ideal but not a ring (exercice). This ideal is not finitely generated for example if

T = Rn (exercice).

6. Let Mi, i ∈ I be a family of modules. As in linear algebra, the abelian group product
∏

Mi has a

natural module structure: it is the unique structure such that all projections πj :
∏

Mi → Mj are

linear. In other terms, a.(mi) = (ami) (cf. 5.5.1).

7. With the previous notation, the subset ⊕Mi of
∏

Mi consisting of almost null families is a submodule

called the direct sum of Mi. The (finitely supported) family (mi) is often denoted
∑
mi. If I is

furthermore finite, then ⊕Mi =
∏

Mi (cf. 5.5.1).

We summarize in the following table how the formal constructions of linear algebras adapt to modules.

To lighten the notation, the Greek letters λ, µ . . . denote elements of a ring R while the elements of

the modules are Latin letters x,m, n . . . for elements of the modules. The statements are implicitly

universally quantified. Thus we write λ(µx) = (λµ)x for ∀λ, µ ∈ R and ∀x ∈ M, we have λ(µx) = (λµ)x.

1That is, sums
∑

i≥0 viT
i with vi = 0 if i is large enough.
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Generalities for modules

Property/Definition Vector space Module

Scalars R R = field R = ring

Addition (M,+) abelian group

External multiplication λ(µx) = (λµ)x and 1x = x

Distributivity λ(x+ y) = λx+ λy, (λ+ µ)x = λx+ µx

Linear combination
∑

finite

λixi

Subspace N N stable by linear combinations

Generated subspace ⟨xi⟩ ⟨xi⟩ ={linear combinations of xi}

Sum of subspaces Ni +Ni ={linear combinations of xi ∈ Ni}

Product2of Ni
∏

Ni = {(xi), xi ∈ Ni}

Direct sum2 of Ni ⊕Ni = {(xi) ∈
∏

Ni|Card{i|xi ̸= 0} <∞}

R(I),Rn R(I) = ⊕IR, R
n = ⊕ni=1R =

∏n
i=1 R

5.2.2 Morphisms

The notion of a linear application is translated into that of module morphisms as in the following table,

the notion of kernel, image and quotient3 being the same as in linear algebra.

Definition 5.2.2.1. A morphism of modules f : M → N is a linear map: for any x, y ∈ M, λ ∈

R, f(x+ y) = f(x) + f(y) and f(λx) = λf(x).

The set HomR(M,N) of morphisms is a group for the addition. As in linear algebra, f has an inverse

g ∈ HomR(N,M) if and only if f is both injective and surjective.

Specifically, we have, ej being the "canonical basis" of Rn

2See 5.5.1.
3See 5.2.3.
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Lemma 5.2.2.2. If M,N are two R-modules, the set of morphisms HomR(M,N) is naturally a module.

If M = Rn, the natural application  HomR(R
n,N) → Nn

f 7→ (f(ej)

is an isomorphism. In particular, HomR(R
n,Rm) = Mm,n(R).

Proof. As in classical linear algebra.

Generalities on morphismes

Property/Definition Vector space Module

Morphism f ∈ HomR(M,M
′) morphisms of groups| f(λx) = λf(x)

f injective Ker(f) = {0}

Isomorphism Bijective morphism

HomR(R
n,M) HomR(R

n,M) = Mn

Matrices HomR(R
n,Rm) = Mm,n(R)

5.2.3 Quotient, cokernel

The problem we are tackling is as follows. Let f : M → N be a morphism of R-modules. The injectivity

of f is characterized by the nullity of the kernel Ker(f) of f . Can we find a module whose nullity measures

the surjectivity?

We define a relation on N by the condition

n ∼ n′ if and only if ∃m such that n− n′ = f(m).

This is an equivalence relation thanks to the linearity of f for the law +. The equivalence class of n ∈ N

is

n = {n+ f(m), m ∈ M} = n+ f(M)

We denote Coker(f) the set of equivalence classes of ∼. Thus, as a set,

Coker(f) = {n+ f(M), n ∈ N}

and the application π : N → Coker(f) defined by n 7→ π(n) = n is surjective. The following statement

is also as immediate as it is important.
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Proposition 5.2.3.1. There exists a unique R-module structure on Coker(f) such that π is a morphism.

It is characterized by n + n′ = n+ n′ and λn = λn; its neutral is 0 simply noted 0. Moreover, f is

surjective if and only if Coker(f) = {0}.

Thus, we have solved our problem. A particular, fundamental case is when f is injective. In this case, f

induces an isomorphism of M onto its image f(M) which is thus a submodule N′ of N.

Definition 5.2.3.2. Let N′ be a submodule of N and denote j the inclusion of N′ in N. We say that

Coker(j) is the quotient of N by N′ and we denote it N/N′.

It is important to characterize the cokernel, up to canonical isomorphism, by its properties rather than

by its construction. This is what is explained in 5.5.2.1.

Remark(s) 5.2.3.3. In general, we are interested in modules up to isomorphism. Thus, we will identify

two modules between which exists a canonical isomorphism, that is, one that depends on no choice. The

reader is, for example, used in linear algebra to identify a finite-dimensional vector space with its bidual

(cf. 3.5.0.1), a Euclidean space with its dual (cf. more generally ??), a square matrix of dimension 1 with

its unique coefficient (its trace actually). . . Similarly, as in linear algebra, we will most often identify an

injective morphism j : M → N with the submodule image j(M) because j defines a canonical isomorphism

M ≃ j(M) and we simply say (but somewhat abusively) that M is a submodule of M. We will see other

examples.

The following result is formal but important (compare with 5.5)

Proposition 5.2.3.4. If f ∈ HomR(M,N), then f induces a canonical isomorphism f : M/Ker(f) ≃

Im(f).

Proof. We define

f(m) = f(m+Ker(f)) = f(m+Ker(f)) = f(m) + f(Ker(f)) = f(m) ∈ Im(f).

Thus, f is well defined and linear. It is surjective. If m is in the kernel, f(m) = f(m) = 0 and therefore

m ∈ Ker (f) so m = 0.

Exercise 5.2.3.5. Quotient et supplémentaire d’un ev. TBD.
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5.2.4 A key example: the k[T]-module Va

If R = k[T] and M is an R-module, multiplication by the elements of k seen as

constant polynomials makes M a k-vector space. Furthermore, multiplication

by T defines a ∈ Endk(M): the homotethy of ratio T. Conversely, if V is a

k-vector space and a ∈ Endk(V), we define a R-module structure Va on V by

the formula T.v = a(v) and by linearity

P(T).v = P(a)(v)∀P ∈ R = k[T], v ∈ Va = V

These two constructions are inverses of each other:

The k[T]-modules are identified with the pairs (V, a), a ∈ Endk(V).

Submodules of Va are then identified with subspaces of V stable by a (exercice).

From the perspective of morphisms, the identification works as follows. If N = Wb is a second module

associated with an endomorphism b ∈ Endk(W), a morphism f ∈ HomR(M,N) = Homk[T](Va,Vb) is

defined by f ∈ Homk(V,W) such that

f ◦ a(m) = f(Tm) = Tf(m) = b ◦ f(m)∀m ∈ M

i.e.

(i) Homk[T](Va,Wb) = {f ∈ Homk(V,W) such that b ◦ f = f ◦ a}

Corollary 5.2.4.1. If f ∈ Isomk[t](Va,Wb) if and only if a = f−1 ◦ b ◦ f so that Va and Wb are

isomorphic if and only if a and b are similar.

Recall that a, b ∈ Endk(V) are similar if and only if there exists an isomorphism f of V such that

b = f−1 ◦ a ◦ f and we write in this case a ≈ b. This defines an equivalence relation ≈ on Endk(V). In

particular, when a = b, the k-algebra Endk[T](Va) is the set of endomorphisms of V commuting with a.

5.3 Exact sequences and diagrams
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5.3.1 Exact sequences

If f ∈ Hom(M,N) a morphism of modules; we have a canonical sequence of morphisms

Ker(f)
ι−→ M

f−→ N
π−→ Coker(f).

We notice that the composed of two successive morphisms d ◦ δ (namely f ◦ ι and π ◦ f) are null, which

is equivalent to the inclusions Im(δ) ⊂ Ker(d). But we have better: these inclusions are equalities! This

leads to the following definition

Definition 5.3.1.1. Let di ∈ Hom(Mi,Mi+1) morphisms, noted as a «sequence»:

· · ·Mi−1
di−1−−−→ Mi

di−→ Mi+1 · · ·

.

• We say that the sequence is a complex (at i) if di ◦ di−1 = 0 ie Im(di−1) ⊂ Ker (di).

• We say that the sequence is exact (at i) if in addition Im(di−1) ⊃ Ker (di) ie Ker (di) = Im(di−1).

An exact sequence is therefore a particular complex.

Exercise 5.3.1.2. Let f ∈ Hom(M,N).

• Show that 0 → M
f−→ N is exact if and only if f is injective. What is the analogue for surjectivity?

• Show that the sequence 0 → K → M
f−→ N is exact if and only if K can be identified (canonically)

with the kernel of f . Compare with 5.4.0.2 infra.

• Show that the product or direct sum of exact sequences is still exact.

5.3.2 A key exact sequence

Let a ∈ Endk(V) and Va be the associated k[T]-module (5.2.4). We define the k[T]-module as follows.

As a k-vector space, V[T] is the set of formal polynomials with V coefficients

V[T] = {v(T) =
∑
finite

viTi}
∼→ V(N).

The scalar multiplication is then characterized by T
∑
viT

i =
∑
viT

i+1. There is a unique lifting

ã ∈ Endk[T](V[T]) of a to V[T] characterized by ã(vTi) = a(v)Ti. Let πa :∈ Hom(V[T] → Va) the

unique lifinting of IdV (we have πa(
∑
viT

i) =
∑
ai(vi)).



5.3. EXACT SEQUENCES AND DIAGRAMS 55

Lemma 5.3.2.1. The sequence

(ii) 0 → V[T]
TId−ã−−−−→ V[T]

πa−→ Va → 0

is exact.

Proof. Let v ∈ V. The image of the constant polynomial v ∈ V[T] by πa is v. Therefore πa is onto.

We then have

πa ◦ (TId− ã)(v) = Tπa(v)− a(v) = a(v)− a(v) = 0

hence πa ◦ (TId− ã) = 0 since V generates V[T] and therefore Im(TId− ã) ⊂ Ker (πa).

Conversely, let v(T) =
∑
i≥0 T

ivi ∈ Ker (πa), i.e.

v0 +
∑
i≥1

ai(vi) = 0.

Thus, we have

v(T) =
∑
i≥1

(TiId− ãi)(vi).

But since TId and ã commute, we have (geometric series sum)

TiId− ãi = (TId− ã) ◦ (
i−1∑
j=0

Tj ãi−1−j)

and thus v(T) ∈ Im(TId − ã). Hence the exactness in the middle. The exactness on the left, being

unnecessary for us, is left as an (interesting) exercise.

5.3.3 Commutative diagrams

We want to see properties of morphisms in terms of diagrams. For example, to say that f, g ∈ Homk(V,W)

are equivalent endomorphisms in the sense of linear algebra is to say there exist endomorphisms p, q of

W,V such that p◦f = g◦q with p, q isomorphisms. The first condition p◦f = g◦q (resp. both conditions)

is then translated by saying that the diagram

V
p //

g

��

V

f

��
W

q //W

resp. 0 // V
p //

g

��

V

f

��

// 0

0 //W
q //W // 0

is commutative with exact lines4 (this last condition being empty for the first diagram). A general formal

definition (which we encourage the reader not to read!) might be

4By convention, the lines of a diagram are horizontal, the columns vertical.
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Definition 5.3.3.1. Let G = (S,A) be a directed graph with vertices S and edges A.

• A diagram5is the data for each vertex Σ ∈ S of a module MΣ and for each edge a : Σ> → Σ< of A

of a morphism fa : MΣ> → MΣ< .

• The diagram is said to be commutative if for every couple of vertices Σ,Σ′, the composed of the fa

associated with an oriented path from Σ to Σ′ depends only on the vertices and not on the chosen

path.

In practice, we will only deal with diagrams composed of squares or triangles for which the definition of

commutativity will be obvious.

5.4 Functoriality and diagram chasing

Although very simple, the following functoriality statements are crucial. This is a very convenient form

to formulate the universal properties of kernels and cokernels (cf. §5.5).

Proposition 5.4.0.1 (Functoriality I). Assume we have a commutative diagram of R-modules where the

top horizontal line is exact and the bottom line is a complex.

M1
µ1 //

��

M2
//

��

M3
// 0

N1
ν1 // N2

// N3
// 0

Then there exists a unique morphism

f3 : M3 → N3

making the completed diagram commutative

M1
µ1 //

��

M2
//

��

M3
//

f3

��

0

N1
ν1 // N2

// N3
// 0

If in addition, the lower complex line is an exact sequence and the two arrows Mi → Ni, i = 1, 2 are

isomorphisms, then f3 is an isomorphism. In particular, there is canonical isomorphism Coker (µ1) = M3.

5There are more general definitions, allowing diagrams with several arrows between two edges. We don’t use these

diagrams.
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Proof. We focus on the existence and uniqueness of the commutative diagram

M1
µ1 //

f1

��

M2

f2

��

µ2 // M3

f3

��

// 0

N1
ν1 // N2

//ν2 // N3

If there are two arrows f3 and f ′3 that work, we have f3 ◦ µ2 = ν2 ◦ f2 = f ′3 ◦ µ2 so f3 and f ′3 coincide on

µ2(M2) = M3 and therefore are equal, hence the uniqueness.

For existence, let m3 ∈ M3 and consider m2 one antecedent by µ2. If m2 is not unique, it is defined

modulo Ker(µ2) = Im(µ1). By linearity, the image ν2 ◦ f2(m2) is well defined modulo ν2 ◦ f2 ◦ µ1(M1).

But by commutativity of the left square, we have ν2 ◦ f2 ◦ µ1 = ν2 ◦ ν1 ◦ f1 = 0 because ν2 ◦ ν1 = 0 by

hypothesis. Thus, ν2 ◦ f2(m2) is well defined, i.e. depends only on m3. Then set f3(m3) = ν2 ◦ f2(m2)

which is checked to work.

For the second part, we can easily verify by hand that the bijectivity of f1, f2 implies that of f3 (exercice).

Let’s give a «categorical»proof, which has the advantage of generalizing to other contexts. Under the

bijectivity assumptions of f1, f2, we want to prove that f3 admits a left inverse g3 and a right inverse d3.

From g3 ◦ f3 = IdM3 we then obtain by composing on the right by d3 the equality g3 = d3 and thus that

f3 is invertible.

Let’s show the existence of g3. Call g1, g2 the inverses of f1, f2. As f2 ◦ µ1 = ν1 ◦ f1, by composing on

the left by g2 and on the right by g1 we have ν2 ◦ g1 = g2 ◦ ν1 so we have a commutative diagram with

exact lines

M1
µ1 //

f1

��

M2

f2

��

µ2 // M3

f3

��

// 0

N1
ν1 //

g1

��

N2

g2

��

ν2 // N3

g3

��

// 0

M1
ν1 // M2

//ν2 // M3
// 0

that we can complete uniquely in a commutative diagram with exact lines according to the first point

M1
µ1 //

f1

��

M2

f2

��

µ2 // M3

f3

��

// 0

N1
ν1 //

g1

��

N2

g2

��

ν2 // N3

g3

��

// 0

M1
ν1 // M2

//ν2 // M3
// 0

But by looking at the outer square, taking into account g1 ◦ f1 = IdM1
and g2 ◦ f2 = IdM2

, we have a

commutative diagram with exact lines

M1
ν1 //

Id

��

M2

Id

��

ν2 // M3

g3◦f3
��

// 0

M1
ν1 // M2

//ν2 // M3
// 0
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But we also have a commutative diagram

M1
ν1 //

Id

��

M2

Id

��

ν2 // M3

Id

��

// 0

M1
ν1 // M2

//ν2 // M3
// 0

which, thanks to the uniqueness in the first point, gives g3 ◦ f3 = IdM3 . By exchanging the roles of M,N,

we construct the right inverse of f3.

Let’s tur to the last point. By construction of the cokernel, we have a canonical exact sequence

(0) M1
µ1→ M2 → Coker(µ1) → 0

Apply the functoriality to the commutative diagram with exact lines

M1
µ1 //

Id

��

M2
//

Id

��

Coker(µ1) // 0

M1
µ1 // M2

µ2 // M3
// 0

We obtain exactly the same statement by «reversing the direction of the arrows»6

Proposition 5.4.0.2 (Functoriality II). Suppose we have a commutative diagram of R-modules where

the bottom horizontal line is exact and the top line is a complex.

0 // M1
// M2

µ2 //

��

M3

��
0 // N1

// N2
ν2 // N3

Then there exists a unique morphism

ι1 : M1 → N1

making the completed diagram commutative

0 // M1
//

ι1

��

M2
µ2 //

��

M3

��
0 // N1

// N2
ν2 // N3

If in addition, the top complex line is an exact sequence and the two arrows Mi → Ni, i = 2, 3 are

isomorphisms, then ι3 is an isomorphism. In particular, there is canonical isomorphism N1 = Ker (ν2).

6an injection 0 → M → N being thus replaced by a surjection M → N → 0 and vice versa! This is a general phenomenon:

any formal statement involving commutative diagrams, complexes, and exact sequences gives rise to an analogous statement

by reversing the direction of the arrows. We can give a precise sense to this statement valid in any «abelian category». We

will content ourselves, and it is quite sufficient, to see this as a meta-principle.
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A sometimes useful generalization is the famous (and formal) five lemma

Exercise 5.4.0.3. Consider a

commutative diagram of modules with exact lines

M1
//

f1

��

M2
//

f2

��

M3
//

f3

��

M4
//

f4

��

M5

f5

��
N1

// N2
// N3

// N4
// N5

• If f2, f4 injective and f1 surjective, then f3 injective.

• If f2, f4 surjective and f5 injective, then f3 bijective.

Remark(s) 5.4.0.4. The above result is most often in the following weakened form. Consider a com-

mutative diagram of modules with exact lines

0 // M2
//

f2

��

M3
//

f3

��

M4
//

f4

��

0

0 // N2
// N3

// N4
// 0

If f2, f4 bijective f3 bijective.

5.5 Universal properties

The question posed is to characterize the various modules M in question by the «calculation»of

h(T) = Hom(T,M) or h∨(T) = Hom(M,T)

for T an arbitrary «test module». Thus, T is seen as a variable and h, h∨ as a function of T whose values

are sets. One should say functor: the composition with f ∈ HomR(M,N) defines an application (linear)

hf (T) : hM(T) → hN(T) (resp. h∨f : h∨(N) → h∨M(T)) which is compatible with composition7 The

correct general framework to formulate what follows is that of the Yoneda lemma in categories, but we

will stay in the framework of modules for the examples that interest us to avoid unnecessary formalism.

5.5.1 Sum and product

Let Mi, i ∈ I be a family of modules. We denote Mi
φi→ ⊕Mi the canonical injections and

∏
Mi

πi→ Mi

the canonical projections. If T is a test module we have two tautological applications

h∨(T) :

 HomR(⊕Mi,T) →
∏

Hom(Mi,T)

f 7→ (φi ◦ f)
7The reader will recognize the usual notion of «restriction»of a morphism for hf (T) and dually of «transpose»for h∨(f).
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and

h(T) :

 HomR(T,
∏

Mi) →
∏

Hom(T,Mi)

g 7→ (g ◦ πi)

Lemma 5.5.1.1 (Universal properties of sum and product). The applications h(T) and h∨(T) are bijec-

tive.

The proof is immediate and left as an exercice. In the case of the direct sum, the meaning of the lemma

is that giving a morphism f : ⊕Mi → T is equivalent to giving a collection of morphisms fi : Mi → T

(thanks to the formula f(
∑
mi) =

∑
fi(mi) which is well defined because the sum is actually finite).

5.5.2 Kernel and cokernel

Let f : M → N be a morphism of modules. By construction, we have two exact sequences

0 → Ker (f)
j−→ M → N

and

M → N
p−→ Coker(f) → 0

that characterize kernel and cokernel (see also 5.3.1.2 and 5.9.0.3).

If T is a test module we have two tautological applications

h∨(T) :

 Hom(Coker(f),T) → Hom0(N,T) = {ψ ∈ Hom(N,T)|ψ ◦ f = 0}

φ 7→ φ ◦ p

and

h(T) :

 Hom(T,Ker (f)) → Hom0(T,M) = {ψ ∈ Hom(T,M)|f ◦ ψ = 0}

φ 7→ j ◦ φ

Lemma 5.5.2.1 (Universal properties of kernel and cokernel). The applications h(T) and h∨(T) are

bijective.
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Proof. Let’s prove, for example, the universal property of the cokernel ie construct the inverse of h∨(T).

Observing that we have an exact sequence 0 → T
Id−→ T → 0. Let then ψ ∈ Hom0(N,T). The condition

ψ ◦ f = 0 precisely ensures the commutativity of the diagram

M
f //

��

N
p //

ψ

��

Coker(f) // 0

0 // T
Id // T // 0

so that 5.4.0.1 ensures the existence of a unique φ making the diagram

M
f //

��

N
p //

ψ

��

Coker(f) //

φ

��

0

0 // T
Id // T // 0

commute. We verify that the application ψ 7→ φ is the inverse of h∨(T).

The meaning of the lemma is that providing a morphism φ from the cokernel to T is equivalent to

providing a morphism ψ from N to T such that the composition ψ ◦ f is zero, or ψ factors through

the quotient (or passes to the quotient) in φ if and only if ψ◦ = 0 (and the analogous for the kernel by

reversing the directions of the arrows). From a diagrammatic perspective, we often summarize by keeping

only the informal meaning of the statement:

T

If ψ ◦ f = 0 then M
f // N

ψ

;;

// Coker(f)

∃!φ

OO

Another way of expressing this, in terms of the functors h and h∨, is that the sequences of module

morphisms they define

0 → Hom(Coker(f),T) → Hom(N,T) → Hom(M,T)

and

0 → Hom(T,Ker (f)) → Hom(T,M) → Hom(T,N)

are exact.

5.6 Cokernel of Diagonal Matrices

The following simple but crucial example generalizes the well-known exact sequence

0 → Z
n−→ Z → Z/nZ → 0
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Let us consider a "diagonal" rectangular matrix D ∈ Mn,m(R) «diagonal» in the sense that its coefficients

di,j are zero if i ̸= j. Thus, we have a block decomposition

D = (∆, 0) ∈ Mν,µ(R) if m ≥ n,D =

∆

0

 ∈ Mµ,ν(R) if n ≥ m

with ∆ = diag(di) ∈ Mν(R), ν = min(m,n), µ = sup(m,n) or in a synthetic way

D =

diag(di)ν,ν 0ν,m−ν

0n−ν,ν 0n−ν,m−ν


(and where allow with one non-positive size are empty!).

In this setup, the sequence (*) becomes (**)

(∗∗) Rm = Rµ × Rν−µ

X

Y

=D

X

Y

=7→∆X

−−−−−−−−−−−−−−−→ Rn = Rµ
r 7→(ri mod di)i−−−−−−−−−−−→

µ∏
i=1

R/(di) → 0 if m ≥ n

or

(∗∗) Rm = Rν

X7→DX=

∆X

0


−−−−−−−−−−−→ Rn = Rµ×Rν−µ

(r,r′)7→((ri mod di)i,r
′)−−−−−−−−−−−−−−−−→

µ∏
i=1

R/(di)×Rν−µ → 0 if m ≤ n

Lemma 5.6.0.1. The sequence (**) is exact. In particular, one has a canonical isomorphism

Coker(D) =

µ∏
i=1

R/(di)× R(ν−µ)+ .

Proof. Let’s deal with the case m ≥ n, the other case being completely analogous.

The arrow Rn = Rµ
r 7→(ri mod di)i−−−−−−−−−−→

µ∏
i=1

R/(di) being surjective as product of surjective maps, we have to

prove the exactness of the middle.

The composition of the two non trivial arrows is

X

Y

 7→ (dixi mod di)i and is therefore zero proving

the inclusion Im ⊂ Ker.

If r ∈ Rµ maps to zero, we have ri mod di = 0 for all i and therefore there exists xi ∈ R such that

ri = dixi for all i. We have D

(xi)i

0

 = r proving Ker ⊂ Im hence the exactness. The last point is just

the functoriality of the cokernel 5.4.0.1.

With this generality, it’s impossible to recover the diagonal coefficient only from the cokernel. It is even

true for n = m = 1 : the cokernel of the [6] ∈ M1(Z) is Z/6Z but also Z/2Z×Z/3Z thanks to the usual

Chinese lemma. Let’s fix this problem.
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5.7 Invariant ideals of modules

Mimicking the definition of finite dimensional vector space, we say that a module M is of finite type if it

has a finite generating family or, equivalently, if there exists a surjective morphism Rn → M.

Let M be a finite type module. We will define in general an increasing sequence of ideals depending

only on M which are effectively computable in most of the case: its Fitting ideals8. If they do not fully

determine M, they give a deep insight on M and even determine M when R is a PID as we will see later.

5.7.1 Determinantal ideals

Let A,B ∈ Mp,q(R). Let’s recall that for any integer subsets I ⊂ [1, · · · , p] and J ⊂ [1, · · · , q] of the same

cardinality n, the minor AI,J of A the size n square matrix AI,J = (ai,j)i∈I,j∈J. Its determinant is defined

up to sign, depending on orderings on I and J.

Definition 5.7.1.1. For n ∈ Z, we define

∧n(A) = ⟨det(AI,J, I ⊂ [1, · · · , p], J ⊂ [1, · · · , q] and Card(I) = Card(J) = p⟩

the ideal generated by the determinant of all size n minors A.

If n ≤ 0, the minors are the empty matrix whose determinant is 1 and ∧n(A) = R. If n > min(p, q),

we have not any minor and ∧n(A) = {0}. Using the development of a matrix with respect to a row or

column gives that ∧n(A) is a decreasing sequence of ideals.

Example(s) 5.7.1.2. If A ∈ Mp(R) is triangular and invertible, we have ∧n(A) = R for n ≤ p and

∧n(A) = R for all i > p.

For instance,

Lemma 5.7.1.3. Let A,B ∈ Mp,q(R) and C ∈ Mq,r(R).

1. ∧n(AC) ⊂ ∧n(A) for any n ∈ Z.

2. If A and B are equivalent then ∧n(A) = ∧n(B) for all n ∈ Z.

Proof.
8Our presentation is sort of mix between the original approach of H. Fitting ([10]) and the nice simple presentation by

M. Hochster.
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1. Each column of AP is a linear combination of columns of A. The multilinearity of the determinant

then ensures that the minor (AP)I,J is a linear combination of determinants of size n matrices whose

columns are columns of A (possibly equal) and rows are indexed by I. If two columns are equal, the

determinant is zero (the determinant is alternating). Otherwise, the set of columns in question is

indexed by a set K of cardinality n and the determinant in question is of the form AI,K which implies

that det(AP)I,J is a linear combination of det(AI,K) with Card(K) = n, and therefore is indeed in

∧n(A).

2. If C ∈ Mq(R) is invertible, applying (1) to AC and C−1 yields an equality ∧n(AC) ⊂ ∧n(A) in this

case. Since the determinant of a matrix is equal to that of its transpose, we get ∧n(A) = ∧n(tA) for

all n and therefore ∧n(CA) ⊂ ∧n(A) if C ∈ GLp(R) hence the result.

If R = k is a field, we know (Gauss algorithm for instance) that a r matrix in Mp,q(k) is equivalent to

Dr = diag(Idr, 0). Moreover, we have by direct computation ∧n(Dr) = {0} for n > r and ∧n(Dr) = k if

n ≤ r. We deduce

Corollary 5.7.1.4. If A,B ∈ Mp,q(k), then rank(A) ≤ n if and only of ∧n+1(A) = {0}. It is equal to n

if moreover ∧n(A) ̸= {0}. Equivalently, A,B are equivalent if and only if ∧n(A) = ∧n(B) for all n ∈ Z.

We will see later that this remains true if R is a PID.

5.7.2 Fitting ideals

Let #»m = (mi)1≤i≤n be generators of M and π : Rn
(m1,...,mn)−−−−−−−→ M the corresponding surjective morphism.

By definition (xj) ∈ Rn belongs to Ker(π) if and only if its a relation
∑
xjmj = 0 between these

generators.

Let KJ = (Kj)j∈J be any family or relations (finite or not), i.e.Kj ∈ Ker(π). We denote ∧p( #»m,KJ) be the

the ideal generated by the size p minors extracted from KJ (meaning a size p minor of the (n, p) matrix

Kj1 , . . . ,Kjp where j1, . . . , jp ∈ J).

• If p > n, there is not any such minor and ∧p( #»m,K) = 0.

• f p ≤ 0, the matrix is empty whose determinant is 1 and ∧p(K) = R.

Let J ⊂ J′. We certainly have ∧p( #»m,KJ) ⊂ ∧p( #»m,KJ′) for all p. We observe the two obvious properties

(∗) Kj′ = 0 if j′ ∈ J′ −K then for all p, ∧p( #»m,KJ) = ∧p( #»m,KJ′)
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or, in down to earth term, adding 0 column -i.e.trivial relations- does not change ∧p (a minor of KJ′ is

either 0 or a minor of KJ depending if all the corresponding columns belong to J or not). More generally,

if

(∗∗) Kj′ ∈ +j∈JKj then for all p, ∧p( #»m,KJ) = ∧p( #»m,KJ′)

We have to prove ∧p( #»m,KJ′) ⊂ ∧p( #»m,KJ). Because any minor of KJ′ involves finitely many columns

which in turn are a linear combination of finitely many columns of KJ, one can assume J, J′ finite. If we

write Kj′ =
∑
aj,j′Kj for each j′ ∈ J′, we get K′

J = KJA where A is a matrix of HomR(R
J′
,RJ). This

shows that (KJ,KJ′) = (KJ, 0)

Id A

0 Id

 and (KJ,KJ′) and (KJ, 0) equivalent. They have therefore the

same invariant ideals and we get ∧p( #»m,KJ,KJ′) = ∧p( #»m,KJ, 0)
(∗)
= ∧p( #»m,KJ). Property (**) immediately

gives

Corollary 5.7.2.1. If both KJ and K′
J generate Ker(π), then ∧p( #»m,KJ) = ∧p( #»m,KJ′) for all p. We will

denote these common values by ∧p( #»m).

In other words, the determinantal ideals ∧k does not depend on the system of generators of Ker(π). Let

us prove in a analogous way that it does not depend neither of the choice of generators in the following

sense.

Lemma 5.7.2.2. Let m′ ∈ M. Then ∧p+1( #»m,m′) = ∧p( #»m) for all p ≥ 0. In other words,

∧n+1−p( #»m,m′) = ∧n−p( #»m) for all p ≤ n.

Proof. Let us write m′ =
∑
i ximi and let π′ : Rn+1 ( #»m,m′)−−−−→ M. Then π′(t(yi)) = 0 if and only if

0 =
∑
yimi + yn+1m

′ =
∑

(yi − yn+1xi)mi = π(t(yi − yn+1xi)) = 0 giving Ker(π′) = Ker(π) ⊕t

(−x1, . . . ,−xn, 1). If KJ is a family of generators of Ker(π) seen as a family of vectors of Rn ⊂ Rn+1

with last coordinate 0, we have K′ = (KJ,



−x1
...

−xn
1


) generate Ker(π′). To compute a p + 1 minor of K′,

we can assume J finite and consider K′ as a matrix in

K′ =

K ∗

0 1

 ∈ Mn+1,q+1

where q = Card(J). But K′ is equivalent (Gauss operations) to K′ =

K 0

0 1

 whose p + 1 minors are

either those of K of size p or 0 depending if the last line and column is among the lines/rows defining the

minor or not. By invariance of determinantal ideals under equivalence, the lemma follows.
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Thanks to the above independence lemma, the following definition makes senses.

Definition 5.7.2.3. Let #»m = (m1, . . . ,mn) be a finite generating family of M. Let p ≥ 0. We define the

sequence of Fitting ideals9Φ•(M) = (Φp(M))p of M by the formula

Φp(M) = ∧n−p( #»m).

Example(s) 5.7.2.4. If M = Rn, using the canonical basis as generators of Rn to compute the Fitting

ideals, we get Ker(π) = {0} and all the minors are empty and therefore have determinant 1.

The main immediate but deep properties of Fitting ideals are summarized below.

Proposition 5.7.2.5. Let M,M′ be a finite type module and A ∈ Mn,q(R).

1. We have Φp(M) = {0} if p < 0 and Φp(M) = R if p > n.

2. For I and ideal of R, the only non trivial Fitting invriant is Φ0(R/I) = I.

3. The sequence Φ•(M) is increasing.

4. If f : M → M′ is is an isomorphism, then Φ•(M) = Φ•(M
′).

5. If M = Coker(A), the determinantal ideals ∧n−p(A) = Φp(M) does not depend on A but only on M.

6. Φp(M⊕M′) =
∑
i+j=p Φp(M)Φj(M

′).

Proof.

1. By definition (see 5.7.1).

2. Use the projection R → R/I to compute the (1) minors.

3. Developing a determinant with some row gives ∧n+1(A) ⊂ ∧p(A) giving (1).

4. If π : Rn → M is onto, so is f ◦ π : Rn → M′ and π, f ◦ π have the same kernel. Therefore, their

Fitting ideals are equal because the corresponding set of relations are equal!

5. This is the independance of Fitting ideals from the generator set.
9In his seminal paper [10], Fitting considered the ideals associated to the family of Ker(π) generated by all its elements.

But it’s quite clear that it knew that a generating family is sufficient. His goal was to define invariants of modules.
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6. If π, π′ are surjective morphisms Rn → M,Rn
′ → M′ respectively, so is π⊕π′ : Rn+n

′
= Rn⊕Rn

′ →

M⊕M′. The corresponding minors are diagonal matrices of minors of of π and π′ whose determinant

is their product.

5.8 Properties to handle with caution

Let us first summarize the notions we will be talking about. Unless their definitions are just mimicking

classical linear algebra, their properties in the module case are heavily different as we will discuss.

Finiteness and Freeness

Property/Definition Vector space Module

Free family (xi)i∈I

∑
λixi = 0 ⇒ λi ≡ 0 or R(I) λi 7→

∑
λixi−−−−−−−→ M injective

Generating family (xi)i∈I ⟨xi⟩ = M or R(I) λi 7→
∑
λixi−−−−−−−→ M surjective

Base (xi)i∈I (xi) free and generating or R(I) λi 7→
∑
λixi−−−−−−−→ M bijective

Free module M M ≃ R(I) i.e. M admits a base

Finite type module M finite generating family or Rn → M surjective

5.8.1 Finiteness

We have defined the Fitting ideals of any finite type module M and we have seen that they are just deter-

minants of minors of a matrix A provided M
∼→ Coker(A). These modules are called finite presentation

modules.

Definition 5.8.1.1. A module M is of finite presentation if there is an exact sequence Rm → Rn →

M → 0.

In down to earth term, this exactly means that the kernel Rn → M is finitely generated. Contrary to

the vector space case, for general rings, its is not true that a submodule of a finite type module is of

finite type.. As we will see in full detail in chapter 7, rings for which this pathology does not happen �

are Noetherian rings, a huge generalization of fields containing almost all rings appearing naturally in

9Se 5.8.2.2 for the finite type case and chapter 7 in general.
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algebra or number theory. In a first approach10, let us explain here how they are defined and what this

is relevant for our finiteness problem.

Definition 5.8.1.2. A ring is Noetherian if every ideal is finitely generated.

For instance, fields and PID are Noetherian. By definition, any finite type module over a Noetherian ring

is of finite presentation.

Exercise 5.8.1.3. Show that the rings of continuous real functions on R is non Noetherian.

Proposition 5.8.1.4. Let M be a finite type module over a Noetherian ring R and N ⊂ M a submodule.

Then N is of finite type.

Proof. Induction on the minimal number n of generators of M (obvisously true for n = 0!). Assume M

is generated by n + 1 element : we have a surjective morphism π : Rn+1 → M inducing a surjection

N = π−1(N) → N. We just have to prove that N is of finite type. The kernel of the projection

p :

 Rn+1 → R

(x1, . . . , xn+1) → xn+1

is Rn and we have an exact sequence 0 → N ∩ Rn → N → p(N) → 0. By induction, N ∩ Rn has a finite

number of generators gi. But p(N) is an ideal of R which has a finite number of generators of the form

p(γj). The finite family (gi, γj) generates N.

Exercise 5.8.1.5. Adapt the proof below and prove that if R is a PID, any submodule of Rn is free (we

will give a far more general statement in 8.4.0.1).

5.8.2 Free modules

The reader will convince himself that the data of a basis (ei)i∈I of M is equivalent of the data of an

isomorphism R(I) ∼→ M. When such a data exists, we say that M is free. As soon as R is not a field,

there are plenty of non free module . Indeed, if x is neither 0 or invertible, the R-module R/(x) is never�

free (exercice).

Example(s) 5.8.2.1. 1. R is a free module with base 1. More generally, Rm is free with base (canon-

ical) (ej = E1,j)1≤j≤m or even R(I) is free with basis (ej)j∈J withej = δi,j , i ∈ I.

2. R<n[T] is a free R-module with base Ti, i < n therefore of rank n for n ∈ N = N ∪ {∞}.

10See 7.2 and 7.2.0.2 below
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3. Mn,m(R)is a free module with the standard base (Ei,j)1≤i≤n,1≤j≤m.

4. The module Rm is free with base (canonical) (ej = E1,j)1≤j≤m.

5. If (ei)1≤i≤n is a basisof the k-vector space V, the ei seen as constant polynomials of V[T] form a

basis for V[T], a module which we will thus identify with k[T]n through this means. Exolicitely, once

V has been identified to kn thanks to the basis ej,

6. the formula (
∑
j λi,jT

j)i =
∑
j(λi,j)iT

j identifies (k[T])n and (kn)[T] = V[T] which we will do

henceforth.

Proposition 5.8.2.2. Let M be a finite type module which is free. Then, there exist a unique integer n

such that M is isomorphic to Rn. This integer is called the rank of M.

Proof. Let (mi)i∈I be a basis of M and π : RN → M a surjection (M is of finite type). Let J ⊂ I be

the finite set of indices involved in the decomposition of each π(ek), k = 1, . . .N. The image Im(π) is

generated by (mi)i∈J. Because this subfamily is free, it generates a submodule M′ of M isomorphic to RJ.

By surjectivity of π, one has M′ = M and we get therefore RJ ∼→ M hence the existence of n = Card(J).

By (4) of 4.2.0.1, n is uniquely determined by M.

Exercise 5.8.2.3. Using Krull’s theorem, how can you generalize the proposition for general free modules

?

�

Remark(s) 5.8.2.4.

• This property fails if R is no longer assumed to be commutative (see 5.9.0.5).

• We already know that ⊕i∈IMi →
∏
i∈I is not an isomorphism unless all but a finite number of Mi are

zero. In fact, if I is infinite, the direct product RI is usually not even a free module11 (see5.9.0.7)!

5.8.3 Torsion

A torsion element of a module is an element of M annihilated by a nonzero element of R. If R is a field

(vector space situation) this notion is empty : 0 is the only torsion element. A module whose all elements

are torsion is called a torsion module.
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Example(s) 5.8.3.1. Any finite ring is torsion. In finite dimension, the k[T]-module Va associated

to a ∈ End(V) is torsion (use 4.1.2.2 for instance). More generally12, if I is a nonzero ideal of R, the

quotient module R/I (which will acquire a ring structure in the next chapter) is torsion.

If R is an integral domain13 and M a module, the set Mtors of torsion elements of M is a submodule called

torsion module . It is no longer true if R is no integral (observe that 2 mod 6 and 3 mod 6 are torsion�

in Z/6Z but that 5 mod 6 is not). We will prove in the sequel that if R is PID, finite type modules are

free8.4 if an only if they have no torsion. Not this not true in general (exercice TBD).

5.8.4 Summary of some specifics of Modules

Bases, Finiteness, Complements

Property/Definition Vector space Module

Torsion x ̸= 0 free x ̸= 0 free iff x non torsion

Permanence of finiteness

subvector spaces of kn are of

finite dimension

submodules of Rn of finite

type iff R Noetherian

Bases Always free

Plenty of non free modules if

R ̸= k

Complement submodules Always exist Usually don’t exist

Exact sequences Always split Usually don’t splitt

5.9 Exercises

Exercise 5.9.0.1. 1. Show that an abelian group is finite if and only if the associated Z-module is of

finite type and torsion.

2. Show that if Va corresponds to (V, a) (refer to 5.2.4), then V is finite-dimensional if and only if Va

is of finite type and torsion.

Exercise 5.9.0.2. Let k be a field and R a ring.

• Show that the invertibles of k[T] are the non-zero constant polynomials from k∗.
12The advanced reader will notice that Va is isomorphic to k[T]/(µa) where µa is the minimal polynomial of a in the

case where a is a cyclic endomorphism. We will shortly discuss in detail these topics.
13Recall that this means that R is not zero and that the product of two nonzero elements is nonzero.
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• Show that a matrix from Mn(R) is invertible if and only if its determinant is an invertible of R×.

Deduce that M ∈ Mn(k[T]) is invertible if and only if det(M) ∈ k∗.

Exercise 5.9.0.3 (Snake Lemma). Consider a commutative diagram of modules with exact rows:

A
i //

f

��

B
p //

g

��

C //

h
��

0

0 // A′ i′ // B′ p′ // C′

1. Show that i sends Ker f into Ker g and p sends Ker g into Kerh.

2. Show that i′ induces a morphism Coker f → Coker g and that p induces a morphism Coker g →

Cokerh.

3. Show that there exists a unique morphism δ : Kerh → Coker f such that the following sequence is

exact:

Ker f −→ Ker g −→ Kerh
δ−→ Coker f −→ Coker g −→ Cokerh.

Show that if i is injective and p is surjective, then the following sequence is exact:

0 −→ Ker f −→ Ker g −→ Kerh
δ−→ Coker f −→ Coker g −→ Cokerh −→ 0.

4. (Bonus) Retrieve the Five Lemma from the Snake Lemma.

Exercise 5.9.0.4. Consider an exact sequence of modules 0 → M1
f1−→ M2

f2−→ M3 → 0. It is said that

σ ∈ HomR(M3,M2) is a section of f2 if f2 ◦ σ = IdM3
. When such a section exists, the sequence is said

to be split.

1. Assuming such a section exists, show that the application (m1,m3) 7→ f1(m1) + σ(m3) defines an

isomorphism M1 ⊕M3 ≃ M2. Deduce that M1 ≃ f1(M1) then admits a supplement.

2. Conversely, assume that M1 ≃ f1(M1) admits a complement S. Show that f3 defines an isomorphism

S ≃ M3.

3. Show that a submodule N of M is a direct factor if and only if the exact sequence 0 → N → M →

M/N → 0 is split. In this case, show that every supplement of N is isomorphic to M/N.

4. Show that if n > 1, the canonical exact sequence 0 → Z → Z → Z/nZ → 0 is not split. In particular

nZ has no complement in Z. �

5. Let π : Rn+m → Rm be the projection onto the last m coordinates. Show that there is an exact

sequence 0 → Rn → Rn+m
π−→ Rm → 0 and that this sequence is split.

6. Suppose there are three square matrices A,B,C with coefficients in R of size n, n+m,m making the

diagram commutative
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0 // Rn //

A

��

Rn+m //

B
��

Rn //

C

��

0

0 // Rn // Rn+m // Rn // 0

Show that B is block triangular and identify the diagonal blocks. State and prove a reciprocal and

compare with the preceding remark.

Exercise 5.9.0.5. We will show that if the ring R is not assumed to be commutative, then it may occur

that the R-modules Rn, n ≥ 1 are all isomorphic. To this end, we fix a real vector space V equipped with a

countable base (ek)k∈N and we denote R the ring of linear applications on V (equipped with composition),

identified as «infinite matrices» of

cRN×N. Define two linear applications T and T′ on V by the following relations for n ∈ N:T(e2n) = en,

T(e2n+1) = 0,

and

T′(e2n) = 0,

T′(e2n+1) = en.

Write the «matrices» of T and T′. Given n ∈ N∗, we consider Rn as an R-module for scalar multiplica-

tion:

R× Rn → Rn,


r,



T1

T2

...

Tn




7→



r ◦ T1

r ◦ T2

...

r ◦ Tn


.

1. Provide a one-element base for the R-module R1.

2. Show that (T,T′) is also a base for the R-module R1.

3. Show that R1 and R2 are isomorphic as R-modules then that Rn is isomorphic to R for every n ∈ N∗.

Exercise 5.9.0.6. Let d ≥ 1 be a natural number, R a principal ring and M = Rd. Let N be a submodule

of M. We aim to prove by induction on d that N is isomorphic to Rδ with δ ≤ d. Assume d ≥ 1 and the

theorem proven for submodules of Rd
′
if d′ < d.

1. Let ν = (ν1, · · · , νd) ∈ Nd − {0} and i such that ni ̸= 0. The map πi : (x1, · · · , xd) 7→ xi induces an

exact sequence

(iii) 0 → K → N
πi−→ C → 0

where C is a nontrivial submodule of A and K ⊂ Rd−1.

2. Show that there exist d′ < d and an exact sequence

0 → Rd
′ j−→ N

π−→ R → 0.

3. Show that there exists a section σ = A → N of π, i.e., satisfying π ◦ σ = IdA.



5.9. EXERCISES 73

4. Show that the map

 Rd
′ ⊕ R → N

(x, y) 7→ j(x) + σ(y)
is an isomorphism.

5. Conclude.

Exercise 5.9.0.7. Let N = Z(N) (direct sum of countable many copies of Z). It is a free submodule of

M = ZN (product of countable many copies of Z) with basis en = (δn,p)p∈N. Let φ ∈ HomR(M
∗,M) be

the morphism u 7→ (u(en))n∈N. We will prove that φ defines an isomorphism M∗ → N and then conclude

by a cardinality argument that M is not free14.

A. Determination of Ker(φ)

Let d ≥ 2 be an integer.

1. Show that Kerφ
∼→ G∗, where G = M/N.

2. Let Hd be the set of elements of G divisible by dk for all k. Show that Hd is a submodule of G.

3. Show that any linear form u : G → Z vanishes on Hd.

4. Determine H2 +H3. Conclude.

B. Determination of Im(φ)

For any x = 2vy ∈ Z, with y odd, we define |x|2 = 2−v; we set |0|2 = 0.

1. Check that (x, y) 7→ |y − x|2 is metric on Z. Show that if x1, . . . , xn are integers such that the |xi|2
are pairwise distinct, then

∑
|xi|2 is the largest among the |xi|2.

2. For x = (xn)n∈N ∈ M, define |x|2 = sup |xn|2. Show that |x|2 is a real number and ∀u ∈ M∗,∀x ∈

M, |u(x)|2 ≤ |x|2.

3. Let x = (an)n∈N. Under what condition does the sequence (|x−
∑
k akek|2)n∈N converges to 0?

4. Let u ∈ M∗ and denote by S = {n | u(en) ̸= 0} the support of φ(u). Show that there exists x ∈ M be

an element whose support is S and such that the mappings S → |xs|2 and s 7→ u(es)|xs|2 from S to

R are strictly decreasing.

5. Let A ⊂ {0, 1}N be the set of all sequences with value in {0, 1} vanishing outside S. For ε ∈ A, define

Ψ(ε) = u(εx), where εx = (εnxn)n∈N. Determine |Ψ(ε)−Ψ(ε′)|2 as a function of s0 = inf{s | εs ̸=

ε′s}. Deduce that Ψ : A → Z is injective.

6. Prove Im(φ) = N by considering the cardinality of A [Hint: use for instance the map ε 7→
∑∞
k=0 ε

k2−k ∈

[0, 1] and use that [0, 1] is not countable.]

C. Conclusion

1. Describe M∗.
14This method of proof of Baer’s result comes from [9]
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2. Prove that M is not free by a cardinality argument?

3. Show that the evaluation biduality morphism N → N∗∗ defined by x 7→ (φ 7→ φ(x)) is an isomorphism,

even though N is freely generated over Z with infinite rank.



Chapter 6

Rings and Modules

6.1 Introduction

Perspective

We will illustrate how modules are an important tool to study rings and... conversely.

In particular, we will emphasize the role of matrices which is crucial, the first step

towards the advanced notion of resolution of a module/ring.

6.2 Quotient rings

Recall that an ideal I of a ring R is a submodule of R, that is an additive subgroup of R such that

∀r ∈ R, rI ⊂ I. By 5.2.3, there exists a unique group structure on R/I making the projection π : R → R/I

a morphism.

6.2.1 Definition

The main (simple but important) result goes as follows:

75
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Proposition 6.2.1.1. There exists a unique group structure on R/I making the projection π : R → R/I

a morphism whose kernel is I. One has the following universal property (cf. 5.5.2.1) : for any ring T,

the natural sequence

0 → Homring(R/I,T) → Homring(R,T) → HomZ(I,T)

is exact. Moreover, if f ∈ Hom(R,R′), then f induces a canonical isomorphism of rings f : R/Ker(f) ≃

Im(f) (cf. 5.2.3.4).

In a diagrammatic way, the main point summarizes as

T

If ψ(I) = 0 then I �
� // R

ψ

>>

// R/I

∃!φ

OO

Proof. The proof goes straightforward as in the module case except for the fact that π is multiplicative

which follows from the computation

π(r1)π(r2) = (r1 + I)(r2 + I) + I = r1r2 + r1I + r2 + I2 + I = r1r2 + I

because r1I + r2 + I2 ⊂ I (recall that if I, J are ideals, IJ denotes the ideal generated bay all products ij

where i ∈ I, j ∈ J).

Exercise 6.2.1.2. With the above notations, show that the map J 7→ J = π−1(J) identifies ideals J of

R = R/I and ideals J of R containing I. Show that π induces an isomorphism R/J
∼→ R/J.

Definition 6.2.1.3. An ideal I of R is prime if an only if R/I is an integral domain, maximal if R/I is

a field (cf. 6.6.0.5).

6.2.2 Product Rings

The group
∏

Ri has a natural ring structure defined by (xi)(yi) = (xiyi) for xi, yi ∈ Ri. When the rings

are fields, its ideals are easy to understand. Indeed, let Kt, t ∈ T be a finite family of fields, KT =
∏
t∈T Kt

and ptKT → Kt, t ∈ T the projection. For S ⊂ T, let IS be the ideal

IS = {(xt)| ∈ KT|xt = 0, ∀t /∈ S} = Ker(pS : KT → KS).

Lemma 6.2.2.1. Let I be an ideal of KT and S = {t ∈ T|pt(I) = {0}}. Then I = IS and KT/I = KS.
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Proof. Let et = (δt,t′)t′∈T ∈ KT. We have pS(I) = {0} by definition of S implying I ⊂ Ker(pS). Conversely,

let (xt) ∈ Ker(pS) and t ̸∈ S. Then pt(I) is a nonzero ideal of the field Kt and therefore is equal to Kt.

We can choose it ∈ I such that pt(it) = 1 ∈ Kt and therefore et = etii ∈ I. Then, x =
∑
t ̸∈S xtet ∈ I as

wanted.

6.2.3 Cyclic modules and quotient rings

As in the group case, a R-module is said cyclic if it can be gerated by a single element. If R = Z, it is well

known that that any cyclic group is isomorphic to Z/nZ. and that its supgroups are cyclic isomorphic

to Z/dZ with nZ ⊂ dZ, i.e.d|n. In general, we get

Lemma 6.2.3.1 (Cyclic modules). A module M is cyclic if and only if it is isomorphic to R/I for some

ideal I. In this case we have I = AnnR(M) = {λ ∈ R|λM = {0}} and the map J ⊃ I 7→ JM
∼→ J/I

identifies the ideals of J ⊃ I and the submodules of N. In particular, if the ideals of R can be generated

by a single element, all submodules of a cyclic module are cyclic.

Proof. Let x be a generator of M. Then, the map R/I
x−→ M is an isomorphism. The last point is the

formula I = AnnR(R/I) and the fact that the submodules of R/I are in one to one correspondence to

ideals of J containing I..

Exercise 6.2.3.2. Let M a cyclic module over a principal ideal ring (PID) R with annihilator AnnR(M) =

I. Prove that the submodules N of M are cyclic and are in one to one correspondence with ideals J

containing I. If R = k[T] or R = Z, prove that their number is finite unless M
∼→ R (or equivalently

I = {0})1. Prove that the ideal of real R[X,Y] vanishing at (0, 0) is not cyclic but is a submodule of cyclic

module.

6.3 Algebras

Let us be given two rings A,B. We say that B is an A-algebra if B is further equipped with an A-module

structure compatible with the product in the sense that

a · (bb′) = (a · b)b′ ∀a ∈ A, b, b′ ∈ B.

1As we will see, this result is true for all PID.
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It is equivalent to giving a ring morphism f : A → B since we can then define the module structure by

a · b = f(a)b for a ∈ A, b ∈ B. For example, C is an R-algebra, and a ring is a Z-algebra.

A morphism f ∈ HomA(B,B
′) of A-algebras is an A-module which is multiplicative with f(1B) = 1B′ .

Proposition 6.3.0.1. Let B be an A-algebra and b ∈ B. There exists a unique algebra morphism

A[X] → B that sends X to b. Moreover, all morphisms are of this type.

Proof. Let φ be such a momorphism. Then, necessarily, φ(
∑
i aiX

i) =
∑
i aiφ(X)i and thus is determined

by b = φ(X). Conversely, we know (4.1.2.1) that this A-module morphism∑
i

aiX
i 7→

∑
i

aib
i

is also an A-algebra morphism.

Using the identification A[X,Y] = A[X][Y], we obtain that the algebra morphisms from A[X1, . . . ,Xn]

to B are identified with n-tuples b = (b1, . . . , bn) ∈ Bn (to such an element is associated the morphism

(P 7→ P(b))).

Note that if B is an A-algebra and I an ideal of B, the quotient ring B/I is also an A-module (since B

and I are A-modules) and thus B/I is canonically an A-algebra.

Exercise 6.3.0.2. Describe an isomorphism of R-algebras between R[X]/(X2 + X + 1) and C on one

hand, and between R[X]/(X(X + 1)) and R2 on the other hand.

6.4 Integrality

Let us illustrate how the close relation between rings and modules allows to prove stability results for

algebraic or integral elements.

6.4.1 An Application of Cayley-Hamilton

Proposition 6.4.1.1 (Determinant Trick). Let f be an endomorphism of a finitely generated R-module

M. There exists a monic polynomial P ∈ R[T] that annihilates f . If additionally f(M) ⊂ IM, it can be

assumed that the coefficients of f with index < deg(P) belongs to I.

Proof. Let mi, 1 ≤ i ≤ n be a finite family of generators of M and consider a matrix A = [ai,j of f ,

i.e.for each j, write (in a non-unique way)

f(mj) =
∑
i

ai,jmi.
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Note that if f(M) ⊂ IM, we can assume ai,j ∈ I. It is then enough to look at P = det(T Id−A) and

invoke Cayley-Hamilton theorem (4.1.2.2) for A ∈ Mn(R).

By applying the proposition to f = IdM, we obtain the famous Nakayama Lemma which is very important

in advanced commutative algebra.

Corollary 6.4.1.2 (Nakayama). Let M be a finitely generated module and I an ideal such that M = IM.

Then, there exists i ∈ I such that (1+ i)M = 0. In particular, if 1+ i is invertible (e.g., if i is nilpotent),

then M = 0.

6.4.2 Rings of Integers

Let R′ be an R-algebra (in other words, consider a ring morphism R → R′). An element x ∈ R′ is said

to be integral over R if it is annihilated by a monic polynomial with coefficients in R.

Lemma 6.4.2.1. x ∈ R′ is integral over R if and only if it belongs to a subring of R′ which is of finite

type over R.

Proof. If x is canceled by a monic degree d poynomial of R[T], then R[x] is generated by 1, . . . , xd−1

hence the direct part. Conversely, if x belongs to a subring R′′ of R′ which is of finite type over R, the

determinant trick applied to the homotethy hx of ratio x on R′′ produces a monic annihilator PiR[T] and

therefore P(hx)(1) = hP(x)(1) = P(x) = 0.

Corollary 6.4.2.2. The subset O of R′ of elements which integral over R forms a subring of R′. Moreover,

any element of R′ which is integral over O belongs O.

Proof. If x, y ∈ O are canceled by monic polynomials of degree d1, d2, then R[x, y] ⊂ R′ is generated by

the monomials xiyj , i < d1, j < d2 and therefore is made of integral elements by the above lemma.

If x is integral over O, the subring of R′ generated by x and the coefficients of a monic polynomial of

O[T] canceling x is of finite type over R and therefore x ∈ O.

Corollary 6.4.2.3. Let k be a subfield of a field k′. Then the subset of elements of k′ that are algebraic

over k forms a subfield of k′.
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Proof. Following 6.4.2.2 applied to R = k, it suffices to show that the inverse of a nonzero algebraic

element x ∈ k′ is still nonzero. Suppose therefore P is a unitary annihilator of x. But then, Tdeg(P)P(1/T)

is a nonzero annihilator of 1/x.

Remark(s) 6.4.2.4. For instance, the set Q of complex numbers which are algebraic over Q is a subfield

of C and the Z of complex numbers which are integral over Z is a subring of Z. One can show without too

much difficulty that Q is algebraically closed (6.6.0.9), which is a good news, and that Z is non Noetherian

(10.2.2.4), which in bad news in some extent.

Remark(s) 6.4.2.5. With a slight abuse, one often simply say that a complex number which is alge-

braic over Q is algebraic, the non algebraic complex numbers being the transcendental ones. A simple

countability argument shows that a randomly chosen complex number is almost surely (for the Lebesgue

measure) transcendental. For instance, both e (due to C. Hermite, 1873) ans π (F. Lindemann, 1883)

are transcendental.

Exercise 6.4.2.6. 1. Show that a rational number is integral over Z if and only if it is an integer.

2. Show that the minimal degree monic polynomial P ∈ Q[T] that annihilates exp( 2iπn ) has integer

coefficients.

6.5 The Chinese remainder lemma

We know that the rings Z/nmZ and Z/nZ×Z/mZ are isomorphic if n and m are coprime and the reader

probably knows that more generally that R/(ab)
∼→ R/(a)× R/(b) for corime ideals (a), (b) in a PID R.

This latter condition can also be written as (a) + (b) = R according to Bézout’s identity. We will give a

useful (fortunately quite straightforward) generalization in the case where R is a (commutative with unit)

algebra over some ring (rif we have just a ring structure, recall that any ring is uniquely a Z-algebra).

Let us give a slightly more general version.

«When General Han Ting arranges his soldiers in threes, there remain two soldiers, when he arranges

them in fives, there remain three, and when he arranges them in sevens, there remain two. How many

soldiers does Han Ting’s army consist of? », Sun Zi, around the 4th century.

Proposition 6.5.0.1 (Chinese remainder lemma). Let I1, . . . , In, n ≥ 2 be ideals of R which are pairwise

coprime, i.e., such that Ii + Ij = R for i ̸= j and let M bean R-module. Let I(−j) = I1 · · · Îj · · · In be the

ideal product of the ideals Ii distinct from Ij
2
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Terracotta Army

Mausoleum of Emperor Qin

1.
∑
j I(−j) = R and I1 ∩ · · · ∩ In = I1 · · · In.

2. The canonical morphism R →
∏

R/Ij factors through ∩Ij to give an algebra isomorphism

φ : R/I1 ∩ · · · ∩ In ≃
∏

R/Ij .

Let εj ∈ I(−j) such that
∑
εj = 1 and ej = εj mod I1 . . . In.

3. φ(ej) = (δi,j)i and therefore eiej = δi,jei and
∑

ei = 1 (complete family of orthogonal idempotents)3.

4. The canonical morphism M →
∏

M/Ij factors through ∩Ij to give an module isomorphism

φM : M/(I1 ∩ · · · ∩ In)M ≃
∏

M/IjM

whose inverse is (mj) 7→
∑

ejmj

5. The canonical morphism ⊕AnnM(Ij) → M is an isomorphism of inverse m
∑
εjm.

Proof.

1. we can proceed by induction on n. If n = 2, this is the hypothesis I2 + I1 = R. Otherwise, we

apply the induction hypothesis to I1, . . . , In−1. We then obtain that the sum of the n − 1 ideals

I1 · · · Îj · · · In−1 is R. Multiplying by In, we get
∑
j<n I(−j) = In and the sum

∑
j I(−j) contains In.

Reapplying the same process to I2, . . . , In, we obtain that the sum contains I1. Since I1 + In = R,

the sum equals R.

2. The kernel of R → R/I1 × · · · × R/In is the intersection I1 ∩ · · · ∩ In. By the universal property of

the quotient, we thus have an injective algebra morphism. Let us verify that φ is onto. We write

1 =
∑
j εj , εj ∈ I(−j). Let xj mod Ij be arbitrary classes. Set x =

∑
j εjxj . Observe that

(∗) εj ≡ 0 mod Ii if i ̸= j and εj ≡ 1 mod Ij

3Recall that by definition its is the ideal generated by products of
∏

i ̸=j xi with xi ∈ Ii.
3By definition, an idempotent of a ring is an element e such that e2 = e. Two different idempotents are said to be

orthogonal if there product vanishes. A finite family of orthogonal idempotents is complete if there sum equals to 1.
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and therefore x ≡ xjεj ≡ xj mod Ij for all j.

3. The other items follow directly from (*)

Remark(s) 6.5.0.2. The reader should notice that the quotient rings R of a finite product of rings∏
i∈I Ri (as in (2) above) is a finite direct product of quotient rings of Ri. For, let Ker be the ideal

Ker = Ker(
∏

Ri → R) and ei = (δi,j)j the i-th idempotent of
∏

Ri. Then, x =
∑

eix ∈ Ker if and

only if eix = 0 proving Ker =
∏

eiKer and R′ =
∏

Ri/eiKer . The ideals of fields being trivial, we

get in particular that any quotient
∏
i∈I Ki of a finite product of fields is isomorphic to

∏
j∈J Kj where

J = {i ∈ I|eiKer = {0}}.

6.6 Exercises

Exercise 6.6.0.1. TBD

Exercise 6.6.0.2. Solve the following systems of equations, with the unknown x ∈ Z:


x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

Exercise 6.6.0.3 (Resultant). Let R be a ring and P,Q ∈ R[T] be two polynomials of degrees p, q > 0.

Let Res(P,Q) denote the resultant of P and Q, defined as the determinant, in canonical bases (cf. 5.2.4),

of the linear map between free modules of rank p+ q

ρ(P,Q) :

 R<q[T]× R<p[T] → R<p+q[T]

(A,B) 7→ AP+ BQ

1. Calculate Res(P,Q) if P has degree 1.

2. By considering the comatrix of ρ(P,Q), show that there exist A,B ∈ R[T] of degrees q, p respectively

such that AP+BQ = R(P,Q). Hence deduce that if P,Q have a common root in R, then R(P,Q) = 0.

3. If P,Q are also monic, show that ρ(P,Q) is the matrix of the multiplication µ : R[T]/(Q)×R[T] →

R[T]/(PQ) in canonical bases (of monomial classes Ti).

4. Still assuming P,Q are monic, show that there is a commutative diagram with exact rows

0 // R[T]/(PQ)
(T−r) // R[T]/((T− r)PQ)

evr // R // 0

0 // R[T]/(Q)× R[T]/(P)
(1,(T−r))//

ρ(P,Q)

OO

R[T]/(Q)× R[T]/((T− r)P)
evQ(r) //

ρ((T−r)P,Q)

OO

R //

Q(r)

OO

0
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where ev(A) = A(r) and evQ(A,B) = A(r). Hence deduce that ρ((T − r)P,Q) is block triangular

with diagonal diag(ρ(P,Q),Q(r)), and then that Res((T− r)P,Q) = Q(r)Res(P,Q).

5. If Q is monic, show that Res(
∏

(T − ri),Q) =
∏

Q(ri). What happens if Q is not assumed to be

monic?

6. If R = k is a field, show that deg(PGCD(P,Q)) > 0 if and only if there exist nonzero A,B ∈ k[T]

of degree < q and < p respectively such that AP = BQ. Deduce that P,Q are coprime if and only if

their resultant Res(P,Q) ̸= 0.

Exercise 6.6.0.4. Let
√
d ∈ C be a square root of the square free integer d and K = Q(

√
d) = {a +

b
√
d, a, b ∈ Q}. Let x ∈ K.

1. Prove Q[T]/(T2 − d)
∼→ K and K is a field of dimension 2 over Q.

2. Compute the characteristic polynomial of the multiplication hx of x on the Q-vector space K.

3. Show that x is integral over Z if and only if det(hx), tr(hx) ∈ Z.

4. Prove that the subring of K of integral elements over Z is Z[
√
d] if d ≡ 2, 3 mod (4) and Z[(1 +

√
19)/2] if d ≡ 2, 3 mod (4).

Exercise 6.6.0.5. Let M be an R-module and I an ideal.

1. Show that I is prime if and only if I is a proper ideal and xy ∈ I ⇒ x ∈ I or y ∈ I.

2. Show that I is maximal among the family of proper ideals of R if and only if R/I is a field.

3. Show that M is of finite type if and only if there exists a surjective R-linear mapping Rn → M for

some n ∈ N.

4. Show that if f ∈ HomR(R
m,Rn) = Mn,m(R) is surjective then m ≥ n.

Hint: Consider a maximal ideal I of R and see that after reduction modulo I, the application f

remains surjective modulo I.

5. Show that if f is an isomorphism, then n = m.

6. Show that a free module of finite type L has a finite basis and that all its bases have the same

cardinality: the rank of L.

7. Show that the rank of L is the minimal cardinal of a finite generating family.

Exercise 6.6.0.6. Let P be a polynomial with integer coefficients P without rational root, d its degree

and x ∈ R a real root of P. Let (p, q) ∈ Z×N∗.

1. Show d > 1 .

2. Show |P(pq )| ≥
1
qd

.
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3. Show there exists C > 0 such that if p
q ∈ [x− 1, x+ 1] then∣∣∣∣x− p

q

∣∣∣∣ ≥ C

qd
.

4. Show that ℓ =
∑
n≥0

10−n! is transcendental [Hint : what can you say about the periodicity of a decimal

expansion of a rational number ?].

Exercise 6.6.0.7. Let n be a positive integer and z1, . . . , zn be complex numbers. Define Pm(T) =∏
i(T− zmi ) for m ≥ 0 and suppose that 0 < |zi| ≤ 1 for all i and that P1 ∈ Z[T].

1. Show that the Pm(T) have integer coefficients.

2. Show that the set {Pm, m ≥ 0} is finite.

3. Conclude that the zi are roots of unity.

Exercise 6.6.0.8. Existence corps alg clos.TBD

Exercise 6.6.0.9. TBD k is algebraically closed.

Exercise 6.6.0.10. Let R be a ring and P =
∑n
i=0 aiT

i ∈ R[T].

1. Let x be a nilpotent element of R. Show that 1 + x is invertible.

2. Show that P is nilpotent if and only if for all i ∈ N, ai is nilpotent.

3. Show that P is invertible in R[T] if and only if a0 is invertible and for all i ≥ 1, ai is nilpotent. Hint:

if Q =
∑m
i=0 biT

i is an inverse of P, one could start by showing that for all r ≥ 0, ar+1
n bm−r = 0.



Chapter 7

Noetherianity

David Hilbert Emmy Noether

7.1 Introduction

Perspective

We will illustrate how the intertwining between finite type properties of modules

(Noetherian conditions) and matrix computations allows to obtain quite general and

non trivial result in an easy way like the structure theorem for finite type abelian

groups (8.4.0.3) or more generally of finite type modules over PID (8.4.0.1).

The notion of Noetherian ring inevitably leads back to Hilbert’s foundational paper from 1890 [14] with its

three major theorems, the first being the Basis Theorem 7.2.2.1 in the case of polynomial rings. However,

as a student rightly pointed out to me, talking only about this (tremendous) paper1 is unfair. Indeed,

it was Emmy Noether who developed the general vision as early as 1920 ([17]). We will give the basics

about Noetherian rings and modules and explain the link with linear algebra.

7.2 Noetherian Modules

The image of a family of generators of a module through a morphism generates the image module. Thus,

every quotient of a finitely generated module is still finitely generated. However, while a submodule of a
1The other two theorems in the article are none other than the Nullstellensatz and the Syzygy Theorem!

85
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finitely generated R module is still finitely generated when R is a field, this is generally not the case (cf

5.2.4). However, it is the case in a Noetherian setting.

Lemma 7.2.0.1. Let M be an R module. The following properties are equivalent.

1. Every submodule of M is finitely generated.

2. Every increasing sequence of submodules eventually stabilizes.

3. Every non-empty family of submodules of M has a maximal element for inclusion.

Proof. 1 ⇒ 2. Let Mi be an increasing sequence of submodules. Then, ∪Mi is a submodule of M, thus

finitely generated. Choose a finite family of generators: for n large enough, they all belong to Mn and

therefore Mi = Mn if i ≥ n.

2 ⇒ 3. Let F be a non-empty family of submodules M without any maximal element (proof by contra-

position). We construct a strictly increasing sequence of elements of F ̸= ∅ by induction by choosing M0

one of its elements arbitrarily then by induction, assuming the sequence built for i ≤ n, we observe that

Mn is not maximal thus there exists Mn+1 in F which strictly contains Mn .

3 ⇒ 1. Thus, let N be a submodule of M and let F be the family of its finitely generated submodules. As

{0} ∈ F, this family is non-empty. Let N′ be a maximal element. It is finitely generated contained in N

by construction. Conversely, let n ∈ N. The module Rn+ N′ is in F and contains the maximal element

N′: therefore, it is equal to it, so that n ∈ N′. We thus have N′ = N and therefore N is finitely generated.

Definition 7.2.0.2.

1. A module that satisfies the previously mentioned equivalent conditions is said to be Noetherian.

2. A ring that is Noetherian as a module over itself is said to be a Noetherian ring.

Thus, a ring R is Noetherian if it satisfies one of the following three equivalent propositions:

1. Every ideal is finitely generated.

2. Any increasing sequence of ideals eventually stabilizes.

3. Every non-empty family of ideals has a maximal element for inclusion.
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Example(s) 7.2.0.3. Submodules of Noetherian modules are Noetherian (tautological), as are the quo-

tients of Noetherian modules (easy exercise). Fields, principal rings, and quotient rings of Noetherian

rings are Noetherian. However, a subring of a Noetherian ring is generally not Noetherian (for example,

a polynomial ring over a field with an infinity of variables is not Noetherian, whereas it is a subring of

its field of fractions which is!).

7.2.1 Stability under exact sequences

Proposition 7.2.1.1. Consider an exact sequence of modules

0 → M1
j−→ M2

p−→ M3 → 0.

Then M2 is Noetherian if and only if M1 and M3 are.

Proof. The direct part has already been observed in the previous example. Conversely, assume M1 and

M3 are Noetherian, and let M′
2 be a submodule of M2. We have an exact sequence

0 → j−1(M′
2) → M′

2 → p(M′
2) → 0.

But j−1(M′
2) and p(M′

2) are finitely generated as submodules of M1 and M3. Therefore, one can choose a

finite family of generators for p(M′
2) of the form p(g′2,i) and a finite family of generators g1,k for j−1(M′

2).

The finite family j(g1,k), g′2,i of M′
2 generates it.

In particular, if R is Noetherian, then Rn is a Noetherian module, and thus so is any quotient. This leads

to the following important corollary.

Corollary 7.2.1.2. The Noetherian modules over a Noetherian ring are exactly the finitely generated

modules.

Remark(s) 7.2.1.3. Every Noetherian module is of finite presentation, meaning that there exists an

exact sequence Rm
A−→ Rn → M → 0 or equivalently Coker(A)

∼→ M. For, because M is of finite type,

there exists a surjective morphism Rn → M whose kernel K is again of finite type as submodule of he

Noetherian module Rn. There exists therefore a surjective morhism Rm → K and the composition with

the inclusion K → Rn gives the wanted exact sequence. By functoriality of the cokernel, two equivalent

matrices define isomorphic modules: this is the reason of the deepness of the interplay between equivalence

of matrices and modules study at least in the Noetherian situation.
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7.2.2 Hilbert’s Basis Theorem

Theorem 7.2.2.1. Let R be a Noetherian ring.

1. The polynomial ring R[T] is Noetherian.

2. Every finitely generated R-algebra is a Noetherian ring.

Proof. The second point is an immediate consequence of the first (by induction, any polynomial ring over

R with n variables is Noetherian, and thus so is any quotient). Let’s consider the first point.

Let I be an ideal of R[T] and I∗ = I − {0}. If P is a non-null polynomial, denote dom(P) its highest

degree non-null coefficient. The formula dom(TnP) = dom(P) ensures that {0}∪dom(I∗) is an ideal of R

(exercise). It thus has a finite number of generators of the form dom(Pi),Pi ∈ I∗ which can be assumed

to be of the same degree d ≥ 0 according to the previous formula. An immediate induction then shows

I ∩ R≥d[T] = ⟨Pi⟩. But I ∩ R≤d[T] is a sub-R-module of R<d[T] ≃ Rd: therefore, it is a Noetherian

module like Rd (7.2.1.2). One can thus take a finite number of generators Qj (as an R-module) and the

finite family (Pi,Qj) generates I.

We have in fact reused the argument of Euclidean division used to show that k[T] is principal, the problem

being that one can only divide in R[T] if the leading coefficient of the polynomial is an invertible of R×.

This is the reason for introducing the ideals of leading coefficients of I.

7.3 Exercises

Exercise 7.3.0.1. Let k ∈ N ∪∞ and R = Ck(R,R).

1. Show there exists a unique fn ∈ Rsuch that fn(x) = exp(−2−nx−2) for all x ̸= 0.

2. Prove that the sequence of ideals (fn) is strictly increasing.

3. Prove that R is not Noetherian.

Exercise 7.3.0.2. Let R be the ring of holomorphic functions on C.

1. Prove that R is a domain.

2. Prove that for any n ≥ 0 there exists a unique fn ∈ R, such that fn
∏n
k=0(z − k) = sin(πz).

3. Compute fn(k) for k ∈ Z.

4. Prove that R is not Noetherian.

Exercise 7.3.0.3. Let G be a finite group operating (on the left) on a ring R. Assume that the cardinality

n of G is invertible in R and denote RG the subring of R of elements invariant by G. Denote π : R → R

the application x 7→ 1
n

∑
g∈G gx.
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1. Show that p is a projector of image RG.

2. Show that p is RG linear.

3. Show that if R is Noetherian, RG is Noetherian.

Exercise 7.3.0.4. Let M be a non zero finite type module of a Noetherian ring R.

1. Prove that there exists m ∈ M− {0} such that AnnR(m) is a prime ideal p of M.

2. Prove that there exists a module injection A/p ↪→ M.

Exercise 7.3.0.5. Let R be any ring and A ∈ Mm,n(R).

1. Prove Krull’s theorem for Noetherian ring without the axiom of choice.

2. Prove that R is injective (resp. surjective) if and only if there exists a subring R0 of A such that

A ∈ Mm,n(R0) and the associate morphism A0 : Rn0 → Rm0 defied by A has the same property.

3. Give another proof of (2) and (4) of 4.2.0.1.

4. Using 7.3.0.4, give another proof of (3) and (4) of 4.2.0.1.
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Chapter 8

Matrix and modules over PID

8.1 Introduction

Perspective

As explained in 7.2.1.3, equivalence of matrices is deeply linked to module structure.

We will show how this remark yields general and non trivial results like the structure

theorem for finite type abelian groups (8.4.0.3) or more generally of finite type

modules over PID (8.4.0.1).

We study the equivalence relation ∼ on Mp,q(R) for R a PID (or if the reader is specifically interested in

applications to abelian groups or similarity of matrices over fields (see chapter 9), he can restrict himself

to the Euclidean rings R = Z or R = k[T]). We will explain where the equivalence relation ∼ of matrices

coincides with the Gauss equivalence ≡ when R is Euclidean giving an efficient algorithm to handle this

problem in this case. We have added a "cultural" chapter (8.6) giving some hints about advanced results

explaining the deep and subtle differences between these two equivalence relations which already arise in

this "simple" case of PID.

We address two questions.

1. Describe Mp,q(R)/ ∼ by giving a canonical representative in each similiraty class. This is achieved

in 8.3.1.2 (3).
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2. Describe the map by giving an algorithmic way to decide when A ∼ B. This is achieved in 8.3.1.2

(1).

8.2 Survival kit for PID and Euclidean rings

As usual, for x ̸= 0, y elements an integral ring R, we say that x|y if there exists z ∈ R such that y = xz.

We the write x|y. Recall that a principal ring is an integral ring whose ideals can be generated by a

single element. The usual examples of PID are fields, the ring of integers Z or the rings of polynomials

with field coefficients k[T]. Their common pattern is the existence of an Euclidean division.

Definition 8.2.0.1. An integral ring R is said Euclidean if there exists a function δ : R∗ → N such that

for any (a, b) ∈ R× R∗ there exists1q, r ∈ r such that a = bq + r and r = 0 or f(r) < f(b).

Lemma 8.2.0.2. An Euclidean ring is principal.

Proof. Ler I be a non zero ideal of an Euclidean ring R. One can choose a nonzero b ∈ I such that f(b)

is minimal in f(I − {0}) (which is a nonempty subset of N). Certainly, (b) ⊂ I. Let a ∈ I and write

a = bq + r with r = 0 or f(r) < f(b). Then, r = a − bq ∈ I. By minimality of f(b), one has r = 0 and

I ⊂ bR.

Definition 8.2.0.3. Let (xi) be a family of elements of an integral ring R and assume at least one of

them is nonzero. We say that d ∈ R is a Greatest Commun Divisor of (xi) if d divides all the xis and if

d|xi for all i implies d′|d. We write d = GCD(xi).

A GCD, when it exists, is unique up to multiplication by u ∈ R× (exercise) : strictly speaking, the GCD

is an element of R∗/R×.

Proposition 8.2.0.4 (Bézout’s theorem). Let (xi) be a family of elements of an principal ring R and

assume at least one of them is nonzero. Then, any generator of the ideal (xi) generated by the xi’s is a

GCD of (xi). In particular, 1 = GCD(xi) of if and only if there exists an almost zero family yi ∈ R such

that
∑
yixi = 1. We say in this case that the xi’s are (globally) coprime

1We do not require the uniqueness of (q, r).
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Proof. Let d such a generator of the ideal I generated by (xi). Its is ̸= 0 because at least one of the xi

is nonzero and therefore so is I. Because xi ∈ I = (d), we get d|xi. Conversely, assume that d′|xi for all

i, i.e.there exists yi|xi = yid
′. Because d belongs to I, one can write d =

∑
finite zixi = d′

∑
finite ziyi

hence d′|d and d = GCD(xi).

In particular, 1 = GCD(xi) implies the Bézout property : there exists a almost zero family yi ∈ R such

that
∑
yixi = 1. Conversely, if we have such a relation, we get 1 ∈ I and therefore I = R = R.1.

Proposition 8.2.0.5 (Gauss lemma). Let R be a PID and a, b, c ∈ R∗. If GCD(a, b) = 1 and a|bc then

a|c.

Proof. Write a Bézout identity 1 = au+ bv and, multiplying by c we get c = au+ bcv, whic is a sum of

two terms divisible by c.

Exercise 8.2.0.6. Prove that any non zero prime ideal of a PID is maximal.

8.3 Matrix equivalence in PID and Euclidean rings

8.3.1 Invariant ideals of a matrix

In this section, R is a PID, A = [ai,j ] ∈ Mn,m(R) is a matrix and ν = min(p, q) }. Let us adapt Gauss

elimination method 4.3.1.1 to prove the following proposition. We will need more than Gauss elementary

operations in this case.

Definition 8.3.1.1. Two matrices are if they differ by a series of left and right multiplications by

transvections and matrices of the form diag(A, Id) with A ∈ SL2(R) (we call them Bézout matrices).

We denote by ≃ the Bézout equivalence of matrices and by ω(A) the corresponding equivalence class of

A. The main observation is that (a, b) ≃ (GCD(a, b), 0) for any (a, b) ∈ R2 − {0}. Indeed, by Bézout

theorem, there exists u, v ∈ R|au+ bv = GCD(a, b) and therefore

(a, b)

u b/GCD(a, b)

v −a/GCD(a, b)

 = (GCD(a, b), 0).

We say that A′ = [a′i,j ] ∈ ω(A) is extremal if one of its coefficient is maximal in the (nonempty) set of

ideals F = {(a′i,j),A′ ∈ ω(A)}, the corresponding coefficient a′i,j being called an extremal coefficient.

Theorem 8.3.1.2.
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1. A is Bézout equivalent to a diagonal matrix diag(dν , . . . , d1) with (d1) ⊂ · · · ⊂ (dν).

2. Coker(A)
∼→ ⊕nj=1R/Ij where (Ij)1≤j≤n is the increasing sequence

Ij = (0) for j = 1, . . . , n− ν and Ij+n−ν = (dj) for j = 1, . . . , ν

3. The Fitting ideals of Φi(Coker(A)), i ≥ 0 are equal to In . . . Ii+1 and therefore to (dν . . . dν−i+1) for

0 ≤ i ≤ ν − 1 and to R if i > ν.

4. The ideals and Ij depends only on the equivalence class of A. They are called the invariant ideals2of

A.

5. Two matrices are equivalent if and only if they have the same invariant ideals.

6. Equivalent matrices are Bézout equivalent. In particular the invariant factors of A are those of Idn,

they are equal to 1.

Proof.

1. We use induction on n+m starting with the obvious case n+m = 2. We can assume A ̸= 0

• Transposing if necessary, one can assume m ≤ n = ν ≥ 1. Recall that the ideal ∧1(A) ∧1(A)

generated by the coefficients of A is invariant by matrix equivalence (5.7.1.3).

• Assume first n = 1 (A is a line matrix). I claim that A ≃ (d, 0, · · · , 0) with ∧1(A) = (d). This

is true if m = 1 and, using the invariance of ∧1(A) by equivalence, is reduced by an immediate

induction to the m = 2 case which we already know to be true. By a transpose argument, this

shows that we can replace a line or a column by a line or a column with all their coefficients

being zero except the first one: we refer to that as Bézout replacement. So we are done if either

n = 1 or m = 1.

• Assume now n,m > 1. One can assume that A is extremal with some ai,j an extremal coefficient.

By Bézout replacement, A is equivalent to A′ with a′1,1 = ai,j . Because (a′1,1) = (ai,j) is maximal

in F, A′ is still extremal. One can therefore assume that dν = a1,1 is extremal and dνnot = 0

because A ̸= 0.

If a1,j , j > 1 is not divisible by a1, then (dν) is strictly contained in (∧1(dν , a1,j)). But using

Bézout replacement, this contradicts the maximality of (dν).

Therefore, dν |a1,j and (same argument dν |ai,1 for all i, j. By using usual Gauss operations, one

can assume that a1,j = ai,1 = 0 for all i, j > 1, without loosing extremality as before.

2By a slight language abuse, one says often that the di’s are the invariant factor of the matrix, even they are defined up

to multiplication by an invertible element.
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• I claim that in this situation dν |ai,j . If i > 1 say, the change L1 7→ L1 + Li changes L1 to

(dν , 0 . . . , 0, ai,j , 0, . . . , 0) and therefore dν |ai,j by the preceding Bézout replacement argument.

The matrix A is therefore of the form dν diag(1,A) with A ∈ Mn−1,m−1(R) and we conclude by

induction.

2. This is the functoriality of the cokernel and the computation of the cokernel in the diagonal case

(5.6.0.1).

3. Direct consequences of the calculations of the Fitting ideals of a direct sum (5.7.2.5).

4. The number N of indices such that di = 0 is the largest i ≥ 0 such that Φi(Coker(A)) = (0) showing

that independance of the number ρ = n − ν + N of zero ideals Ii. For the others, observe that

the sequence of product dj . . . d1 determines the di, i ≤ j provided di ̸= 0 because R is an integral

domain.

5. Direct consequence of (1) and (3).

6. Direct consequence of (4) and (1).

Exercise 8.3.1.3. Let K be the fraction field of R. Show that the rank of A considered as a matrix in

Mn,m(K) is equal to r = Card{j|Ij ̸= (0)} and that rank(Coker(A)) = n− r.

8.4 Invariant factors of a module

Let us reap the benefits of our labor.

Theorem 8.4.0.1 (Structure theorem of finite type modules over PID). Let M be a finite type module

over a PID R.

1. Every submodule of M is of finite type.

2. There exists an exact sequence Rm
A−→ Rn → M → 0 and M

∼→ ⊕R/Ij where (Ij) is the sequence of

proper invariant ideals of A.

3. The Fitting ideals Φi(M), i ≥ 0 are equal to In . . . Ii+1.

4. The proper invariant ideals of A does depend only on M : they are called the invariant factors of M.

5. M is (non canonically) isomorphic to Mtors ⊕ Rr with r = rank(M) = Card{j|Ij = (0)} and

Mtors
∼→ ⊕j>rR/Ij = ⊕Ij ̸=(0),RR/Ij
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6. M is free if and only if M has no torsion.

7. Every submodule N of a rank n free module M is free of rank r ≤ n. Moreover, there exists a basis

e1, . . . , en of M and 0 ̸= dr| . . . |d1 such that (diei)1≤i≤r is a (so called adapted) basis of N.

Proof. Let us explain why it is a reformulation of (8.3.1.2).

1. R is Noetherian and so is M (7.2.1.2).

2. The existence of the exact sequence is (7.2.1.3) and the remaining part is (8.3.1.2) taking into account

accont that R/Ij = {0} if Ij is not proper.

3. Cf. (8.3.1.2).

4. Cf. (8.3.1.2).

5. Direct consequence (2).

6. Direct consequence of the previous item and of 4.2.0.1.

7. By choosing basis of M and N, the inclusion N → M becomes Rr
A−→ Rn with A ∈ Mn,r(R) an

injective matrix. Therefore, there exists D diagonal and P,Q invertible with A = PDQ (8.3.1.2).

Then, N = PDQ(Rr) = PD(Rr) and we set ej = (Pi,j)i the j-th column of P ∈ GLn(R) and di = Di,i

for Di,i ̸= 0.

Exercise 8.4.0.2. With keep the notation above. Assume that M is not cyclic with infinite cardinality.

Prove that there the number of submodules of M is infinite. Prove the converse if R = k[T] or R = Z (cf.

6.2.3.2)3.

Corollary 8.4.0.3 (Structure theorem of finite type abelian groups). Let G be a finite type abelain group.

There exists a unique sequence of integers 2 ≤ dn| . . . |d1 and r ≥ 0 such that G ∼→ ⊕iZ/diZ⊕ Zr.

Proof. Set M = G and R = Z in the previous structure theorem.

8.4.1 The Euclidean case

3As we will see, this result is true for all PID (10.2.2.2).
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Proposition 8.4.1.1. Assume R is Euclidean. Then

equivalence ⇔ Bézout equivalence ⇔ Gauss equivalence

Proof. By 8.3.1.2 we just have to show Bézout equivalence ⇔ Gauss equivalence, Let L = (a0, a1) ∈

R × R∗ and a0 = a1q0 + a2 with f(a2) < f(a1) or a2 = 0. Using the Gauss operation a0 7→ a0 − q0a1,

we get (a0, a1) ≡ (a1, a2) and we know GCD(a0, a1) ≡ GCD(a1, a2). By induction, we construct ai such

that (ai, ai+1) ≡ (ai+1, ai+2) with GCD(ai, ai+1) ≡ GCD(ai+1, ai+2) and f(ai) strictly decreasing until

ai+1 = 0 whre in this case ai+1 = GCD(a0, a2). It follows that for any a, b, one has (a, b) ≡ (GCD(a, b), 0).

If know B =

a b

c d

 is a Bézout matrix, it follows that B ≡

GCD(a, b) 0

γ δ

 with GCD(a, b)δ = 1

because det(B) = 1. By a Gauss operation, because δ is invertible one can further assume γ = 0 and

we have B ≡ diag(δ, δ−1) and therefore B ≡ Id2 thanks to the previous lemma. Therefore, any Bézout

operation is a Gauss operation.

In particular, this shows that deciding whether two matrices with coefficients in an Euclidean ring are

equivalent or not is an algorithmic question because the following Gauss equivalence is.

Exercise 8.4.1.2. Write a software computing the invariant ideals of a matrix with coefficients in Q[T]

or Z. What can you say about its complexity? About its numerical stability?

Corollary 8.4.1.3. If R is Euclidean, every invertible matrix A ∈ GLn(R) is Gauss equivalent to

(det(A), Idn−1).

Proof. If A is invertible, we know (8.3.1.2) that their invariant factors are equal to 1 proving that A is

Gauss equivalent to an invertible diagonal matrix and we apply lemma 4.3.2.1. In particular, SLn(R) is

generated by transvections.

8.5 About uniqueness of invariant ideals

This section can be skipped in a first reading not because it is difficult but because the results are more

or less rather cultural than useful. In the PID situation, we have seen that any finite type module M is

isomorphic to a direct sum ⊕ni=1Mi with AnnR(M1) ⊂ AnnR(M2) ⊂ · · · ⊂ AnnR(Mn). In other words,

M is isomorphic to ⊕ni=1R/Ii where I1 ⊂ I2 ⊂ · · · ⊂ In is an increasing sequence of proper ideals which

depends only on M. In general, they are a lot of modules that are not of this form. But in the case where

such a decomposition exist, let us show that the ideals are uniquely defined as in the PID case4

4This is well known, and easy, in the Noetherian case, using the existence of enough irreducible elements, see below.

With this generality, I learned this nice argument form https://math.stackexchange.com/q/3147043.

https://math.stackexchange.com/q/3147043
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Assume therefore that M has such a decomposition but that R is no longer assumed to be a PID.

Lemma 8.5.0.1. Let Then

1. The minimal number of generators of M is n.

2. For k = 1, . . . , n, the ideal Ik is equal to the set of all x ∈ R such that xM can be generated by fewer

than k elements.

We say in this situation that the (Ik) as the invariant factor sequence of M (which generalize the PID

terminology).

Proof.

1. M is a quotient of Rn and has therefore a generating set consisting of n elements. Conversely, if we

have a generating family of d elements, we get a surjection Rd 7→ ⊕R/Ik ⊕ (R/In)
n which factors

through a surjection (R/In)
d → (R/In)

n implying d ≥ n by 4.2.0.1.

2. Let x ∈ R, and let k ≤ n. For any ideal I of R,let Ix = {y ∈ R|xy ∈ I}. By construction, the ideal

Ix = R if and only if x ∈ I. The multiplication by x defines an isomorphism xM ∼= ⊕n(x)k=1R/(Ik)x

where n(x) is the largest k such (Ik)x ̸= R. Because (Ik)x is increasing, one can apply (1) to xM

and therefore xM can be generated by fewer than k elements if and only if the k-th factor R/(Ik)x

is zero i.e.when x ∈ Ik.

Remark(s) 8.5.0.2.

• We recover the fact that Rn and Rm are isomorphic if and only if n = m.

• One could hope that Fitting ideals would give the result as in the PID case. This is not the case (cf.

exercice 8.7.0.12).

8.6 Supplementary Section: Insight into K-Theory

This section is cultural and can therefore be skipped at the first glance. It aims

to introduce an important idea in mathematics: how to measure the obstruction

to a result being true. Here, the question is how to measure the potential

impossibility of diagonalizing matrices by means of Gaussian elimination in a

ring R.
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The precise question one naturally addresses is then: is the group GLn(R) generated by the elementary

matrices of transvections of pivot type (1.2)? We will consider the matrices of permutation and dilatations

(because they can be easily handled through the determinant function below).

The first step is to move away from n: for this, we view GLn(R) as the subgroup of GLn+1(R) consisting

of block diagonal matrices of the form diag(M, 1), where M ∈ GLn(R). This allows us to consider their

infinite union GL(R), seen as the set of matrices of infinite size, containing all finite-sized linear groups.

We then define E(R) = ∪En(R) as the subgroup of GL(R) generated by all transvections (cf. 4.3), i.e. the

determinant 1 matrices that we can reach by Gauss elimination (even if we allow enlarging the matrices).

The first result is both simple and remarkable, especially in the proof provided by [16].

Lemma 8.6.0.1 (Whitehead). For any ring R, the group E(R) is the derived group [GL(R),GL(R)]

generated by the commutators [A,B] = ABA−1B−1 of matrices in GL(R).

In particular, E(A) is a normal subgroup, and the quotient K1(R) = GL(R)/[GL(R),GL(R)] is a com-

mutative group, as it is the abelianization of GL(R)! This is the group of algebraic K-theory of degree 1.

As the determinant of any commutator is 1, the determinant map passes to the quotient (6.2) to define

the special group of algebraic K-theory of degree 1:

SK1(R) = Ker (GL(R)
det−−→ R×).

This group avoids considering dilations and permutation matrices, which do not play a crucial role in

pivoting. The inclusion R× = GL1(R) ↪→ GL(R) followed by the quotient projection GL(R) ↠ K1(R)

allows us to define a map:

R× × SK1(R) → K1(R),

which is visibly an isomorphism.

Remark(s) 8.6.0.2. This result is far from being banal. Precisely, E2(R) is not normal in GL2(R) for

R = k[T1,T2]. Precisely, the matrix A =

1 + T1T2 T2
1

−T2
2 1− T1T2

 /∈ E2(k[T1,T2] and one can show

that AM(1,2)A
−1 /∈ E2(R). More surprising, if R = Z[1/2 + θ] with θ =

√
−19/2, Cohn ( op. cit.) has

shown that A =

 3− θ 2 + θ

−3− 2θ 5− 2θ

 /∈ E2(R) and again AM(1,2)A
−1 /∈ E2(R) (Lam, op. cit.). And we

know that R is a PID (8.7.0.5)! On the other hand, Suslin has shown that En(k[T1, . . . ,Tm]) is normal

in GLn(k[T1, . . . ,Tm]) for n > 2 and any m These deep results are far from being easy (cf. T. Y. Lam,

Serre’s problem on projective modules, Springer Monographs in Mathematics, Springer, Berlin, 2006,

§I.8).
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The group SK1(R) is evidently the obstruction to the Gauss eliminaition algorithm (infinite) being able to

diagonalize matrices. And our results prove that if R is Euclidean, SK1(R) = 0. It is noteworthy that this

obstruction is very sudden. For example, in the case of the non-Euclidean principal ring R = Z[ 1+
√
−19
2 ],

we have SK1(R) = {1} (this follows from a general deep theorem about so-called Dedekind rings, [2]).

In other words, this is not an example where the pivot with elementary matrices is insufficient, at least

when allowing to increase the size of matrices. Finding a principal R such that SK1(R) is non-trivial is

difficult. An example is given in [12]: take the subring of Z(T) generated by Z[T] and the (Tm − 1)−1

for m ≥ 1. This is a principal ring (!) whose SK1 is even infinite.

8.7 Exercises

Exercise 8.7.0.1.

1. Show that R = Z[i] ⊂ C is Euclidean (for (a, b) ∈ R × R∗ with a/b = x + iy, x, y ∈ R, define

q = [x] + i[y] and f(z) = |z|).

2. Show that R = Z[j] ⊂ C is Euclidean with j = exp( 2iπ3 ) (for (a, b) ∈ R×R∗ with a/b = x+yj, x, y ∈

R, define q = [x+ 1/2] + j[y + 1/2)] and f(z) = |z|).

Exercise 8.7.0.2. Prove that R[T] is a PID if an only if R is a PID.

Exercise 8.7.0.3. Let R be an integral ring K its with fraction field . Prove that the R-module K is free

if and only if R is a field and therefore if and only if R = K. Deduce that if R is a PID, K is torsion free

but not free as a R-module.

Exercise 8.7.0.4. Let R be a Euclidean ring. Show that there exists x ∈ R \R∗ such that the restriction

of the natural surjection π : R → R/(x) to R∗ ∪ {0} is surjective. Show that then R/(x) is a field.

Exercise 8.7.0.5. Let R = Z
[
1+i

√
19

2

]
= Z[α] ⊂ C.

1. Check that R is an integral ring isomorphic to Z[T]/(T2 − T+ 5).

2. Prove that (2) is a maximal ideal of R.

3. Prove that R× = {±1} (look at the square N(z) = |z|2 of the module of an invertible element z ∈ R×).

4. Deduce from the preceding exercise that R is not Euclidean.

5. Assume that for all a, b ∈ R \ {0}, there exist q, r ∈ A such that N(r) < N(b) and

a = bq + r or 2a = bq + r.

6. Prove that this implies that R is a PID.

7. Let a, b ∈ R \ {0}. Prove that x can be written x = u+ vα, where u, v ∈ Q.
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8. Let n = [v] and assume v /∈
[
n+ 1

3 , n+ 2
3

]
. Looking at the closest integers to u and v, prove that

there exists there exist q, r ∈ A such that N(r) < N(b) and a = bq + r.

9. Prove that if v ∈
[
n+ 1

3 , n+ 2
3

]
, there exist q, r ∈ A such that N(r) < N(b) and

2a = bq + r

.

10. Conclude that R is a PID.

Exercise 8.7.0.6. Base adaptée et équation diophantienne TBD

1. Give an algorithm to solve a finite number of linear equations with integral coefficients and test in a

suitable computer language like Python.

Exercise 8.7.0.7. Transform the proof of 8.4.1.1 into an algorithm and then to a Python program (use

SageMath for instance). What can you say about the complexity of this algorithm? About its numerical

stability?

Exercise 8.7.0.8. TBD

Exercise 8.7.0.9. TBD Let K be a nonempty compact connected subset of C. We say that two holo-

morphic functions defined on some open neighborhood of K are equivalent if they are equal in some

neighborhood of K.

1. Show that the set of equivalence classes R has a natural structure of ring.

2. Show that R is an integral domain.

3. Let f a representative of an element of R. Show that f has a finite number of zeroes in K and that

f is invertible if and only if f does not vanish on K

4. Show that the R is a PID.

Exercise 8.7.0.10. Let R be ring of complex power series with positive convergence radius. Prove that

R× is the set of series not vanishing at zero. Deduce that R is a PID and is even Euclidean (it is an

example of the so called discrete valuation rings).

Exercise 8.7.0.11. Let P,Q ∈ k[T] be monic polynomials and A =

P 0

0 Q

. Compute δ1(A) and δ2(A)

and deduce that the invariant ideals of A are GCD(P,Q),LCM(P,Q). Retrieve this result using Gauss

algorithm. Deduce another algorithm than the Gauss elimination algorithm to compute the invariants

ideals of a diagonal matrix in Mp,q(R).

Exercise 8.7.0.12. Let R = Q[T1,T2]/(T
2
1 −T2

2). Show that Mi = R/(Ti,T1T2)⊕R/(T1,T2) have the

same Fitting ideals but their invariant ideal sequences in the sense of 8.5 are distinct. Can you produce

an analogous example with R an integral domain?
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Part II

Linear Algebra over Fields
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Chapter 9

Similarity in Mn(k)

9.1 Introduction

Perspective

We explain how the understanding of matrices with coefficients in the PID k[T]

allows to completely understand the similarity problem in Mn(k) in a completely

algorithmic manner (5.2.4).

The goal of the chapter is the study the similarity equivalence relation ≡ on Mn(k), in other words we

would like to understand the quotient map of sets Mn(k) → Mn(k)/ ≡. We need to answer two questions

1. Describe Mn(k)/ ≡ by giving a canonical representative in each similiraty class. This is achieved in

9.2.2.1.

2. Describe the map by giving an algorithmic way to decide when A ≡ B. This is achieved in 9.4.0.2.

The main point is the dictionary between k-endomorphisms and k[T]-modules (5.2.4) which allow to

translate this problem in terms of the equivalence class of T Id−A,A ∈ Mn(k) in Mn(R) where R = k[T]

and then to use our understanding of these classes in this Euclidean situation (cf. 8.3.1.2).

105
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9.2 Similarity in Mn(k)

The main theorem 8.4.0.1 has a version for polynomial rings. We use it to classify matrices of Mn(k)

up to similarity. The useful version in classical linear algebra come from the use of the k[T]-module Va

associated to an endomorphism of V .

9.2.1 Similiarity invariants

Let a, b ∈ Endk(V) be an endomorphism of an n dimensional vector space V.

Corollary 9.2.1.1 (Similarity invariants of vector space endomorphisms).

1. The torsion k[T]-module Va is of finite type and torsion.

2. The rank of Va is zero and its invariant ideals are nonzero.

3. Let Pi, 1 ≤ i ≤ m the unique monic generator of the invariant factor Ii of Va . We have Pm| . . . |P1

and Va
∼→ ⊕mi=1k[T]/(Pi).

4. m ≤ n. We define Pi = 1 for m < i ≤ n : the similarity invariants of a.

5. If Qm′ | . . . |Q1 are monic polynomials such that Va
∼→ ⊕m′

i=1k[T]/(Qi), then m = m′ and Pi = Qi for

all i.

6. a and b are similar if and only if there similarity invariant are equal1.

Proof.

1. Any finite generating family of the k-vector space V generates the k[T]-module Va which is therefore

of finite type. There exists a non zero P ∈ k[T] such that P(f) = 0 (use Cayley-Hamilton theorem

or more elementary a dependence relation between the n2 + 1 elements Id, f, . . . , fn
2

in the n2-

dimensional vector space Endk(V)) meaning by construction P(T).Va = {0}.

2. Use 8.4.0.1 or simpler that if v ∈ Va were not torsion, then k[T] = Rv ⊂ Va which cannot be for

dimension reason.

3. This is (5) of the structure theorem 8.4.0.1 taking into account rank(Va) = 0.

4. Direct consequence of (4) by a dimension argument.

5. This is (4) of 8.4.0.1.

6. Direct consequence of (3) and the dictionnary 5.2.4.

1Of course, we still have Va
∼→ ⊕n

i=1k[T]/(Pi).
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9.2.2 Explicit computations of similarity invariants

We keep in mind the notations and result of 5.3.2. Let B = (ei)1≤i≤n be a basis of V and A the matrix of a

in this basis. We definie the k[T]-module VA = kn by the rule P(T)X = P(A)X for all X ∈ kn = Mn,1(k).

Of course, the isomorphism kn
∼→ V defined by B induces an isomorphism VA

∼→ Va.

The map (Pi(T) =
∑
j Pi,jT

j) 7→
∑
i,j Pi, jeiT

j is an isomorphism of k[T]-modules (k[T])n
∼→ V[T] and

the exact sequence2.

V[T]
TId−ã−−−−→ V[T]

πa−→ Va → 0

becomes

0 → (k[T])n
TId−A−−−−→ (k[T])n

πA−−→ Va → 0

or in purely matrix terms

0 → (k[T])n
TId−A−−−−→ (k[T])n

πA−−→ VA → 0

where πA(
∑

XiT
i) =

∑
AiXi.

Because Va has no nonzero invariant ideals, we get by 9.2.1.1

the invariant ideals of T Id−A are the similarity invariants of a characterized by

T Id−A ≡ diag(P1, . . . ,Pn).

Taking this result int o account, we can rewrite 9.2.1.1.

Corollary 9.2.2.1. Let A,B ∈ Mn(k) be the matrices of a, b ∈ Endk(V) in some basis. Let

(Pn| . . . |P1)1,≤i≤n be a sequence of monic polynomials. The following assertions are equivalent

• (Pi) is the sequence of similarity invariant of a

• T Id−A ≡ diag(Pi).

• T Id−A ∼ diag(Pi).

• Va
∼→ ⊕k[T]/(Pi).

Moreover, the following conditions are equivalent.

• A and B are similar in Mn(k).

• T Id−A and T Id−B are equivalent in Mn(k[T]).

• The k[T]-modules Va and Vb are isomorphic.

We get then the following relations between the similarity invariants.

2Recall that we have already observed that the left arrows are injective but it is not crucial for us even it this fact is

hidden in the next argument
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Corollary 9.2.2.2. We have the following formulas.

1.
∏n
i=1 Pi = χa(T).

2. P1|χa|Pn1 . In particular χa and P1 have the same roots in any extension of k (hence have the same

irreducible factors3).

3. P(a) = 0 if and only if P1|P. In other words, P1 is the minimal polynomial of a (often denoted by

µa).

.

Proof.

1. There exists ,QQ′ ∈ GLn(R) such that T Id−A = Qdiag(Pi)Q
′. Because det(P) ∈ k∗, their

determinant χa(T) and
∏

Pi(T) differ by a multiplication by a scalar which is 1 because both

polynomials are monic.

2. Because P1 is a multiple of each Pi, by taking the product, we find that Pn1 is a multiple of χa, thus

P1|χa|Pn1 .

3. P kills Va
∼→ ⊕k[T]/(Pi) iff and only if P kills all the k[T]/(Pi) in other words when Pi|P. Because

Pi|P for all i, we are done.

Remark(s) 9.2.2.3.

• Notice that the above proposition 9.2.2.2 reproves the very existence of µa without any previous

knowledge. By construction, it is the unique monic polynomial of least degree annihilating a.

3Cf. chapter 10
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• The interested reader can check that we did not use the Cayley-Hamilton theorem (4.1.2.2) to prove

these results. Therefore, the divisibility P1 = µa|χa is another (too complicated) proof in the field

case.

• As we will see later (for example 9.4.0.4), the last Pi are often equal to 1. They contribute by the

zero module to Va as we have already observed.

• Unlike the characteristic polynomial, the similarity invariants do not vary continuously with a. For

instance, the similarity invariant of diag(0, t) are 1,T(T− t) if t ̸= 0 and are T,T if t = 0. We will

discuss this phenomenon in full generality in chapter 14.

�

Finally, let us give two classical results.

Corollary 9.2.2.4. Let A,B ∈ Mn(k) and K a field containing k. We have

1. A and tA are similar.

2. A,B are similar in Mn(k) if and only if they are similar in Mn(K)

Proof. 1. Observe that T− IdA = Qdiag(Pi)Q
′ implies T− Id tA = tQ′ diag(Pi)

tQ.

2. If Pi, P̃i are the similarity invariants of A in Mn(k) and Mn(K), we have T Id−A ≃ diag(Pi) in

Mn(k[T]) and therefore T Id−A ≃ diag(Pi) in Mn(k[T]) because GLn(k[T]) ⊂ GLn(K[T]). But by

definition of P̃i, we have also T Id−A ≃ diag(Pi) in Mn(K). By uniqueness, we get Pi = P̃i, hence

the result.

9.3 An important example: diagonalization

Although diagonalizing endomorphisms is not necessary to understand similarity of matrices, let us

illustrate our results in this special case. We will denote by kλ the k[T]-module kλ = k[T]/(T− λ). Its

is of dimension 1 as a k-vector space, and conversely any k[T]-module of k-dimension 1 is of this form

for a unique λ characterized by T.1 = λ.

By definition, let us recall that a ∈ Endk(V) is diagonalizable if and only if V has a basis of eigenvectors,

i.e.if

Va = ⊕Ker(a− λ Id)

Equivalently, a if diagonalizable if its matrix in an arbitrary matrix is similar to a diagonal matrix. The

similarity invariants theory reads as follows in this case.
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Proposition 9.3.0.1. The following assertions are equivalent.

1. a is diagonalizable.

2. a is canceled by some non zero P ∈ k[T] which is split with GCD(P,P′) = 1.

3. µa is split with GCD(µa, µ
′
a) = 1.

4. Va is a direct sum of dimension 1 module kλ.

In particular, the restriction of a diagonalizable morphism to a stable subspace is diagonalizable.

Proof. We prove (1) ⇒ (2) · · · ⇒ (4) ⇒ (1).

1. If D is the diagonal matrix of a in a diagonalization matrix, then the product P =
∏

(T− di) where

di runs over the distinct diagonal terms of D cancels a hence (2).

2. µa|P hence (3).

3. Each similarity invariant of Pi divides P1 = µa and therefore is a product of distinct linear factors.

By the Chinese Reminder Lemma applied to Iλ = (T− λ), λ ∈ Spec(a), we get

Va = ⊕λAnnM(T− λ) = ⊕Ker(a− λ Id)

and any series of basis of Ker(a− λ Id) defines the required sum by (4).

4. Tautology.

The last point follows from (2) because if P cancels a it cancels any restriction of a to a stable subspace.

As we will see in chapter 12, diagonalizable endomorphisms is the typical example of semi-simple endo-

morphisms.

9.4 Frobenius Decomposition

Ferdinand Georg Frobenius

We will rephrase the previous results in terms of companion matrices providing

a canonical representative C(P) in each similarity class A.
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Definition 9.4.0.1. Let χ = Tn +
∑n−1
i=0 aiT

i ∈ k[T]

1. A type (or n-type) P is a sequence P = (Pn| · · · |P1) a sequence of monic polynomials with∑
deg(Pi) = n. It is a χ-type if moreover

∏
Pi = χ

2. The companion matrix C(χ) of χ is the matrix of the muliplication by T on k[T]/(χ).Thus, C(P) is

the empty matrix if P = 1

3. The generalized companion matrix of a type P is C(P) = diag(C(Pi)) ∈ Mn(k).

Explicitly, one has

C(χ) =



0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1


.

We already know (apply (3) of 4.3.2.1 with R = k[T] and t 7→ −T, ai 7→ −an−i−1)

(∗) T Idn−C(χ) ≡ diag(χ, 1, . . . , 1) ∈ Mn(k).

Using deg(Pi) = n, we get more generally (using (1) of 4.3.2.1)

C(P) ≡ diag(P1, . . . ,Pn)

We rewrite the similarity invariant theorem 9.2.2.1 as follows.

Corollary 9.4.0.2 (Frobenius Reduction). Let P = (Pn| · · · |P1) be a type and A ∈ Mn(k). Then,

A ≈ C(P) (i.e. A and C(P) are similar) if and only P is the sequence of similarity invariants of A.

Remark(s) 9.4.0.3 (Frobenius decomposition).

• Using 6.2.3.1, we can rephrase the Frobenius reduction theorem above as follows. With the above

notations, P is the sequence of similarity invariants of a if and only if there exists a direct sum

decomposition Va =
∑

Vi into cyclic modules with Annk[T](Vi) = (Pi).

• The degree condition n = deg(Pi) forces very often a lot of components of a type P to be equal to 1.

This is the case for the type associated to a companion which will be appear the most likely (14.5.2.2).

• The reader will deduce easily (*) from 9.2.2.1 in the field case, which is the usual way to prove that.

We wanted to stress that this equivalence is formal and does not depend on the coefficient ring.
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Using 6.2.3.1, we get the more or less classical result in the case of a unique companion block C(P)

Corollary 9.4.0.4. Let a ∈ Endk(V). The following statements are equivalent4:

1. The matrix of A in a suitable basis is the companion matrix C(χ).

2. µa = χa = χ.

3. The similarity invariants are (1, · · · , 1, χ).

4. Va and k[T]/(χ) are isomorphic k[T]-modules.

5. Va is cyclic as (k[T]-module) and χa = χ.

9.5 Applications

9.5.1 Stable subspaces

We know that the stable subspaces by a ∈ Endk(V) are its submodules (5.2.4). Therefore if Va is cyclic

they are also cyclic because k[T] is a PID (6.2.3.1) and in one to one correspondence to ideals J containing

(µa) = AnnVa. Therefore, the stable subspaces of a cyclic endomorphism are exactly the P(a)(V) with P

being monic divisors of χ. In particular, they are finite in number. Remarkably, the converse is essentially

true.

Proposition 9.5.1.1. If k is infinite, an endomorphism that has only a finite number of stable subspaces

is cyclic.

Proof. Let a be such an endomorphism. We have to find some cyclic vector for a. The family of stable

strict subspaces) of V is a finite family of strict subspaces. Since k is infinite, their union is not the

entire V. Indeed, in the opposite case, their union would be the entire V. Let us then choose for each

of these strict subspaces W a non-zero linear form that vanishes on W. The product of these forms is

a polynomial functionwhich is identically zero. Since k is infinite, the ring of polynomial functions on

V = kn is isomorphic to the ring of polynomials in n variables, a ring that is integral. Thus, one of the

forms that is a factor of the product would be identically zero, a contradiction.

Obviously, if k is finite the proposition is false since there is only a finite number of subspaces of V in

this case, stable or not.

4This also equivalent for infinite fields that V has a finite number of subspaces stable by a (9.5.1.2).
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Remark(s) 9.5.1.2. When k = C, any endomorphism a in dimension > 1 admits non-trivial stable

spaces (take proper lines). When k = R, either it admits stable lines (real eigenvalues) or stable planes

(take for example the plane defined by the real and imaginary parts of the coordinates of a non-zero

eigenvalue vector of the matrix of a in a base or, what comes to the same, consider an irreducible degree

2 polynomial characteristic factor). If k = Q and if P ∈ Q[X] is irreducible of degree n (take for example

P(X) = Xn − 2), then the multiplication endomorphism by X on Q[X]/(P) has no non-trivial stable

subspaces since it is cyclic and its minimal does not have a strict divisor: the stable subspaces of an

endomorphism depend strongly on the arithmetic of the base field. See chapter 12 for more results about

stable subspaces about the existence of stable complements.

9.5.2 Commutant

It is then easy to study the commutant (see 5.2.4.1)

Endk[T](Va) ≃ Endk[T](⊕k[T]/(Pi)).

for example, to calculate its dimension.

Proposition 9.5.2.1. The dimension of the commutant of a is
∑

(2i − 1) deg(Pi). In particular,

dimEndk[T](Va) ≥ n with equality if and only if a is cyclic.

Proof. We have

Endk[T](⊕k[T]/(Pi)) = ⊕i,j Homk[T](k[T]/(Pi),k[T]/(Pj))

Since k[T]/(Pi) is cyclic generated by the class of 1, an element of

Homk[T](k[T]/(Pi),k[T]/(Pj))

is determined by its image (P mod Pj) where P satisfies

(∗) PiP ≡ 0 mod Pj

(universal property of the quotient 6.2.1.1). If i ≤ j, we have Pj |Pi, and this condition is automatically

satisfied so that

Homk[T](k[T]/(Pi),k[T]/(Pj)) ≃ k[T]/(Pj) if i ≤ j

If i > j, we have Pi|Pj so the condition (∗) reads P ≡ 0 mod Pj/Pi so that

Homk[T](k[T]/(Pi),k[T]/(Pj)) ≃ Pj/Pik[T]/(Pj) ≃ k[T]/(Pi) if i > j
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We therefore have

dimk(Endk[T](Va)) =
∑
i≤j

deg(Pj) +
∑
i>j

deg(Pi)

=
∑
j

j deg(Pj) +
∑
i

(i− 1) deg(Pi)

=
∑

(2i− 1) deg(Pi)

Usin n =
∑

deg(Pi), we get dimEndk[T](Va) − n = 2
∑n
i=1(i − 1) deg(Pi) ≥ 0. Furthermore, equality

implies (i− 1) deg(Pi) = 0 for every i, thus deg(Pi) = 0 if i > 1 so that equality is equivalent to the the

fact that a is cyclic.

9.6 Appendice : Algorithm from equivalence to similarity

We know therefore that if TId−A and TId−B are equivalent, i.e., if there exist P(T),Q(T) polynomial

and invertible matrices such that

P(T)(TId−A) = (TId− B)Q(T)−1,

then there exists P ∈ GLn(k) such that B = PAP−1.

Proposition 9.6.0.1 (Thanks to O. Debarre). There exists an algorithm for computing such a P.

Proof. We can perform the divisions by monic (here of degree one) in R[T] with R = Mn(k[T])

P(T) = (TId− B)P1(T) + P0,

Q(T)−1 = Q̃1(T)(TId−A) + Q̃0,

with P0 and Q̃0 in Mn(k) (let’s stress that R is not in a commutative ring5. We obtain by substituting

((TId− B)P1(T) + P0)(TId−A) = (TId− B)(Q̃1(T)(TId−A) + Q̃0)

or also

(TId− B)(P1(T)− Q̃1(T))(TId−A) = (TId− B)Q̃0 − P0(TId−A).

The left-hand side is therefore of degree at most 1 in T, which is only possible if P1(T) = Q̃1(T). Thus

(TId−B)Q̃0 = P0(TId−A) (argue by contradiction and look at the highest degree term). The equality

of the coefficients of T gives Q̃0 = P0, that of the constant coefficients gives BQ̃0 = P0A. It remains to

show that Q̃0 is invertible. We perform another division i R[T]

Q(T) = Q1(T)(TId− B) + Q0

5See 1.3.1.1
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and we write

Id = Q(T)−1Q(T)

= (Q̃1(T)(TId−A) + Q̃0)Q(T)

= Q̃1(T)(TId−A)Q(T) + Q̃0Q(T)

= Q̃1(T)P(T)
−1(TId− B) + Q̃0(Q1(T)(TId− B) + Q0)

=
(
Q̃1(T)P(T)

−1 + Q̃0Q1(T)
)
(TId− B) + Q̃0Q0.

Again, as Q̃0Q0 is constant, the factor of TId− B is zero and Q̃0Q0 = Id, hence the conclusion.

9.7 Summary on Similiraty Invariants

Collating what we have proved, we have the following results which was wanted in 7.1.

Let A,B ∈ Mn(k) and P = (Pn| · · · |P1) a family of monic polynomials.

• A and B are similar if and only if they have the same similarity invariants or equivalently if VA
∼→ VB.

• The family of similarity invariants of C(P) is P and the similarity invariants of C(P) are (1, · · · , 1,P).

If P is the family of similarity invariants of A, we have:

• A and C(P) are similar (Frobenius Reduction).

• VA ≃ ⊕k[T]/(Pi) where A also denotes the endomorphism of V = kn associated.

• T Id−A is equivalent to diag(P1, · · · ,Pn).

• The GCD of minors of T Id−A of size i is equal to δi =
∏
j≥n−i+1 Pj .

• P is calculated by Gauss elimination by "diagonalizing" T Id−A in Mn(k[T]).

• We have χA = P1 · · ·Pn and P1 = µA.

The proof strategy is illustrated by the following diagram.
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TId-B1TId-A1

diag(P1)

TId-B2TId-A2

diag(P2)

diag(P)| ∑deg(Pi)≠ n

A3(T) B3(T)Polynomial Invariants
P=(Pn,…,P1)

Mn(k[T])/∼

A1 B1

C(P1)

A2 B2

C(P2)

Mn(k)/≈

Similiraty 
classes

Equivalence
Classes 

A--->TId-A

diag(P)| ∑deg(Pi)= n

A3 B3

9.8 Exercises

Exercise 9.8.0.1 (difficult). Show that the inclusion k[a] in his bicommutant, that is the set of endo-

morphisms that commute with all elements of Endk[T](Va), is an equality.



Chapter 10

The Irreducible Toolbox

10.1 Introduction

Perspective

Even it is difficult or even almost impossible to compute the decomposition of an

integer into prime factors, the existence of this unique decomposition is certainly

of first importance. Analogously, even if computing the eigenvalues of an endo-

morphism is most often impossible, the existence of a unique decomposition of the

characteristic polynomial into linear factors if k = C or in irreducible polynomials

in general is crucial. We explain the general theory underlying these notions.

In this chapter, R denotes a domain (i.e. an integral commutative ring commutative with unit) and k is

its field of fractions(cf. exercice TBD).

10.2 An UFD Criterion

Definition 10.2.0.1. We say that x ∈ R∗ is irreducible if it is non-invertible and if x = x1x2 implies x1

or x2 is invertible.

117



118 CHAPTER 10. THE IRREDUCIBLE TOOLBOX

In other words, x ∈ R∗ is irreducible if its divisors are up to multiplication by a unit equal to 1 or x.

Notice that whether x is irreducible only depends on the ideal (x).

Example(s) 10.2.0.2.

• Irreducible elements of Z are ±-prime numbers.

• Irreducible polynomials in k[T] are degree one polynomial for k = C and degree one polynomial plus

degree two polynomial without real root if k = C (exercise).

10.2.1 Uniqueness Condition

We know that positive irreducible integers are precisely prime numbers. Generally, we only have one

implication

Lemma 10.2.1.1. Let x ∈ R∗. If the ideal (x) is prime then x is irreducible.

Proof. If x = x1x2, the product x1x2 is zero in R/(x) which by definition is integral. Hence, the class

(x1 mod x) for example is zero so that x1 = y1x and x = y1xx2. Simplifying by x (integrity), we get

x2 ∈ R×.

The converse is the so called Euclid property and is the heart of the uniquess property of irreducible

decomposition.

Definition 10.2.1.2 (Euclid’s Property). We say (by abuse) that R satisfies Euclid property if the ideal

generated by an irreducible element is prime, that is if any irreducible dividing a product divides one of

the factors.

We will use the following proposition at length in the sequel, specially for irreducible polynomials in k[T].
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Proposition 10.2.1.3. The maximal ideals in a PID R which is not a field are ideals generated by

irreducible elements.

Proof. Assume p is irreducible and let a ̸≡ 0 mod (p), then by Bézout theorem, there exists u, v such

that au+pv = 1 and u mod p is the inverse of a mod (p) ∈ R/(p). Moreover, because p is not invertible,

R/(p) is nonzero and R/(p) is a field.

Conversely, if R/(p) is a field, it is a domain and (p) is prime and therefore p is irreducible.

Lemma 10.2.1.4. PID satisfies Euclide’s property.

Proof. Let x, x1, x2 ∈ R∗ with x|x1x2 irreducible and let d = GCD(x, x1). Because d|x and x irreducible,

up to R×, we have d = 1 or d = x. In the second case, we have have done because x = d|x1 by definition.

In the first case, we apply Gauss lemma for PID (8.2.0.5) and we get x|x2.

Definition 10.2.1.5. Let R be a domain nd x ∈ R∗ − R×.

1. R is a Unique Factorization Domain (UFD) if

• every nonzero element x has a unique decomposition x = u
∏n
i=1 pi with u ∈ R× and pi irre-

ducible;

• if x = u′
∏n′

i=1 p
′
i, with u′ ∈ R× and p′i irreducible is another decomposition, then,e n = n′ and,

up to renumbering, (pi) = (p′i) for all i.

2. y2|x⇒ y ∈ R×.

If x = u
∏n
i=1 pi is a decomposition as above, we can therefore define for any irreducible element p the

integer vp(x) = Card{i|(pi) = (p)}. The reader will check that vp(x) is the maximal power of p dividing

x and that x is square free if vp(x) ≤ 1 for all p (exercice).

Lemma 10.2.1.6 (Uniqueness Lemma). Let R be an integral domain such that every element of R∗

admits a decomposition into irreducible elements. Then R is UFD if and only it satisfies Euclid’s property.

Proof. Assume R is UFD and let x be irreducible. Suppose we have a decomposition x = x1x2. We

decompose each xi into irreducibles xi = ui
ni∏
j=1

pi,j giving x = u1u2
∏
i,j

pi,j . Thus, we have two decompo-

sitions of x into irreducibles, one having of length 1, the other of length n1 + n2. Thus, by uniqueness,

1 = n1+n2 and for instance n1 = 0 which proves that x1 is invertible hence R satisfies Euclide’s property.
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Assume now that R satisfies Euclid’s property. We prove the uniqueness by induction on the sum ℓ of

the lengths of two possible decompositions of the same non-zero element. If ℓ = 0, there is nothing to

prove. Assume that we have (with the previous notation)

u1

n1∏
j=1

p1,j = u2

n2∏
j=1

p2,j

with ℓ = n1 + n2 ≥ 1. We have for instance n1 ≥ 1 and p1,1|
∏
p2,j . By Euclide’s property, renumbering

if necessary, one has (p1,1) = (p2,1) implying at once n2 ≥ 1. Changing u2 to another unit, we get by

integrality of R

u1

n1∏
j=2

p1,j = u2

n2∏
j=2

p2,j

and we conclude by induction.

Corollary 10.2.1.7. The number of divisors of a nonzero element of an UFD is, up to multiplication

by R×, finite.

10.2.2 Existence Criterion

Lemma 10.2.2.1. Every nonzero and non-invertible element in a Noetherian domain R is a product of

irreducible elements.

Proof. Then, let F be the set of proper and nonzero principal ideals (x) of R with x is not a product of

irreducible elements. If F were non-empty, it would have a maximal element (x) ∈ F for inclusion. But

x is not irreducible because otherwise (x) ̸∈ F, so x can be written x1x2 with x1 and x2 non-invertible.

Thus (x) ⊊ (xi). By maximality, (xi) /∈ F so that each xi is a product of irreducibles, and so is their

product x. A contradiction.

We summarize the main preceding results in the following corollary.

Corollary 10.2.2.2.

• An integral Noetherian domain is UFD if and only if it satisfies Euclid’s Property.

• A PID is UFD.

• In a PID, the number of divisors (up to multiplication by a unit), is finite.

In particular, k[T] is UFD. Using the Chinese Remainder lemma and (6.2.2.1), we get
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Corollary 10.2.2.3. P ∈ k[T] is square free if and only if k[T]/(P) is a product of fields and more

generally, any quotient of k[T]/(P) is a product of fields

Notice that lemma 10.2.2.1 implies that the existence of decomposition into irreducible elements is very

often automatic, but, unfortunaletly, more or les useless without uniqueness. For example, according to

the above, the ring R[T1,T2]/(T
2
1 − T3

2) is Noetherian, obviously integral (exercise). But T1 and T2

are irreducible in the quotient and the element T2
1 = T3

2 of the quotient has two distinct decompositions

(exercise).

Remark(s) 10.2.2.4. The ring Z of complex algebraic integers over Z has no irreducible element and

therefore is neither Noetherian nor UFD. We already know that Z ∩ Q = Z therefore Z is not a field

(because 1/2 ̸∈ Z for instance). If Z were Noetherian or UFD, there would therefore exist at least one

irreducible element p 10.2.2.1. But √p is canceled by T2 − p

barZ[T] and therefore √
p ∈ Z (6.4.2.2). The formula p = (

√
p)2 contradicts the irreducibility of p.

10.3 GCD, LCM in UFD

Let (xi) be a finite family of non zero elements of an integral domain R. Recall that an element x ∈ R∗ is

a GCD of (xi) if it is maximal among the common divisors to the xi. Because R is a domain, a GCD of a

family, when it exists, is defined up to multiplication by a unit. Considering minimal common multiples,

we obtain the notion of LCM. As with integers, we have

Lemma 10.3.0.1. If R is UFD, the GCD and the LCM of (xi) exist. Moreover, GCD and LCM are

homogeneous : for any x ∈ R∗, we have1GCD(xxi) = xGCD(xi) and LCM(xxi) = xLCM(xi)

Proof. For each ideal generated by an irreducible element, let us chose one generator and let P be the

set of all these elements. Then, there is a unique decomposition in a finite product (almost all terms are

equal to 1)

xi = ui
∏

p∈P
pvp(xi), ui ∈ R×

and we define

GCD(xi) =
∏

p∈P
pmini(vp(xi)) and GCD(xi) =

∏
p∈P

pmaxi(vp(xi))

1Let’s emphasize that GCD,LCM and below contents c(P) are only defined up to multiplication by a unit. Therefore

any equality involving them has to be understood as equality up to multiplication by a unit. The cautious reader will

probably prefer to work in the monoid R∗/R× . . . .
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which are verified to be suitable. The equality vp(xxi) = vp(x) + vp(xi) gives the homogeneity.

Note GCD(xi) is also the greatest communicator divisor of (0, xi) allowing to define the GCD for a finite

family with at least one non zero element.

10.4 Transfer of the UFD property

We know demonstrate the following UFD transfer theorem to polynomial rings

Theorem 10.4.0.1. If R is UFD, then R[T] is UFD.

We must therefore handle both the uniqueness of decompositions (thus Euclid’s property) and their exis-

tence. For this, we will compare the notion of irreducibles in R[X] and k[X] (where k is the fraction field

of R) using the notion of content (due to Gauss). We will look carefully at the irreducible decomposition

of P ∈ R[T] in the UFD ring k[T] by comparing the irreducibility of P in R[T] and k[T].

Let us recall the equality (R[T])× = R× which is true for any domain R (just because in this case we

have deg(PQ) = deg(P) + deg(Q), see exercise 6.6.0.10 for the general case).

10.4.1 Gauss’ content

In the remainder of this chapter section, R denotes an UFD domain.

Definition 10.4.1.1. Let P ∈ R[T] be a nonzero polynomial. We define the content c(P) of P as the

GCD of its coefficients. A polynomial with content c(P) = 1 is said to be primitive.

For example, monic polynomials of R[T] are primitive. The content is homogeneous of weight 1 with

respect to multiplication by nonzero element like the GCD.

Theorem 10.4.1.2 (Gauss). Let P,Q be be nonzero polynomials of R[T]. Then, c(PQ) = c(P)c(Q).

Proof. By homogeneity, we may assume P,Q are primitive and we must demonstrate that PQ is primitive.

Otherwise, let p be an irreducible of R dividing c(PQ). Since R is UFD, it satisfies Euclid’s lemma and

the quotient R = R/(p) is integral. The coefficient reduction morphism R → R induces a ring morphism

R[T] → R/(p)[T] such that 0 = PQ = P ·Q. Since R[T] is integral like R, for example P = 0, i.e.p|c(P),

a contradiction because c(P) = 1.
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Corollary 10.4.1.3. The irreducibles of R[T] are

1. The irreducibles of R;

2. Primitive polynomials of R[T] that are irreducible in k[T].

Proof. Recall the equality (R[T])∗ = R×. The first point follows immediately for degree reasons.

Assume now that P of > 0 degree is irreducible in R[T]. Then P is primitive according to the first point.

Suppose that P is the product of two polynomials P̃1, P̃2 ∈ k[T]. By reducing to a common denominator

di ∈ R∗ of the coefficients of P̃i, we can write P̃i = Pi/di with Pi ∈ R[T]. We then have

(∗) d1d2P = P1P2

so that d1d2 = d1d2c(P) = c(P1)c(P2) (homogeneity and multiplicativity of content). Replacing in (*),

we get

P = P1/c(P1)P2/c(P2)

with Pi/c(Pi) ∈ R[T] by definition of content.Because P is irreducible in R[T], we deduce for example

that P1/c(P1) ∈ R[T]× = R×. Therefore, deg(P1/c(P1)) = deg(P̃1) = 0 hence the irreducibility of P

k[T].

The converse is tautological (who can do more can do less)

10.4.2 The Transfer Theorem

We can now prove the transfer theorem 10.4.0.1.

Proof. As before, the defining properties of UFD being invariant under multiplication by a unit, for

simplicity we simply write during the proof an equality for an equality up to R×. We knwo that R[T] is a

domain. We just have to prove the existence and uniqueness of decompositions into irreducible elements.

• Existence. Let P ∈ R[X] be non-zero. If P is a constant x ∈ R∗, we write the decomposition x =
∏
pi

into irreducible factors in R and invoke (10.4.1.3). If P is of degree > 0, by factoring out a GCD of

its coefficients, we can assume P is primitive. As in the proof of 10.4.1.3, a common denominator

argument then allows us to write its decomposition in the principal therefore UFD k[T]

P =
∏

Pi/di

with Pi ∈ R[T] irreducible in k[T] and di ∈ R∗. By taking the contents, we have c(P) =
∏
di and

P =
∏

Pi/c(Pi) which is the sought decomposition.

• Uniqueness. Let’s demonstrate that R[T] satisfies Euclid’s lemma (10.2.1.2). Suppose then P irre-

ducible divides the product of P1,P2 ∈ R[T]. If P is of degree > 0, it is primitive and irreducible
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in k[T] according to (10.4.1.3). As k[T] is UFD since principal, P|P1 for example (in k[T] ) and a

common denominator argument allows once more to write dP1 = Q1 ·P with d ∈ R∗,Q1 ∈ R[T]. By

taking the contents we again have dc(P1) = c(Q1) and therefore P1 = c(P1)Q1/c(Q1)P and thus P

divides P1 in R[T].

For example, a polynomial ring in n variables over a field, a principal ring more generally, is UFD. But

beware, this remarkable stability of factorality does not pass to quotients as does the property of being

Noetherian. The knowledgeable reader will relate this to the notion of non-singularity in geometry.

10.5 Irreducibility of the Cyclotomic Polynomial Over Q

From now on, in the rest of this chapter, k = Q and Ω = C.

We can take here ζn = exp
(
2 Idπ
n

)
so that the primitive n-th roots of unity (in C) are the complex

numbers of the form ζmn = exp
(
2 Idπm
n

)
, where m ∈ (Z/nZ)∗.

Definition 10.5.0.1. We define the n-th cyclotomic polynomial

Φn(T) =
∏

m∈(Z/nZ)∗

(
T− exp

(
2 Idπm

n

))
.

We will show that Φn is irreducible and has integer coefficients.

Lemma 10.5.0.2. We have Φn(T) ∈ Z[T].

Proof. Then, every n-th root of unity has an order d that divides n: it is a primitive d-th root of 1.

Conversely, if ζ is a primitive d-th root of 1 with d|n, it is an n-th root of 1. We deduce that the set of

n-th roots of 1 is the disjoint union parameterized by the divisors d of n of the primitive d-th roots. As

Tn − 1 =
∏

ζ∈µn

(T− ζ),

we deduce the formula

(i) Tn − 1 =
∏

d|n
Φd(T).

Starting from Φ1(T) = T − 1 ∈ Z[T], we assume by induction on d that Φd has integer coefficients

according to whatever d < n. We just have to recall that the quotient of an integer coefficient polynomial

by a monic integer coefficients polynomial is an integer coefficient polynomial (1.3.1.1) to conclude his is

also true for d = n.
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But we have in our case the transfert theorem

Lemma 10.5.0.3 (Gauss). Let P ∈ Z[T] be a non-constant polynomial.

1. If P is irreducible in Z[T], it is irreducible in Q[T].

2. If P is monic, then the monic irreducible factors of the factorization of P in Q[T] have integer

coefficients.

Proof. It is just an immediate consequence of (10.4.0.1) with R = Z.

Recall that complex number is said to be an algebraic integer if it is the root of a monic polynomial with

integral coefficients. For example, ζn is an algebraic integer, but 1/2 is not (cf. Exercise 10.5.0.4).

The consistency of the terminology is ensured by the following result.

Exercise 10.5.0.4. Show that x ∈ Q is an integer over Z if and only if it is in Z.

Gauss’s Lemma 10.5.0.3 for polynomials immediately gives the following result.

Corollary 10.5.0.5. The minimal polynomial of an algebraic integer has integral coefficients.

Then:

Theorem 10.5.0.6. The cyclotomic polynomial Φn is irreducible over Q.

The proof, due to Gauss, is very clever.

Proof. Let P be the minimal polynomial of ζn. It suffices to prove Φn|P, or that all primitive roots of

unity cancel P.

Let p be a prime not dividing n and let ζ be a root of P. Then ζ is necessarily a primitive root because

P|Φn. The key is the following lemma.

Lemma 10.5.0.7. ζp is a root of P.

Proof. Suppose, by contradiction, the opposite. Write

Tn − 1 = P(T)S(T)
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with S(T) ∈ Q[T]. Since ζn is an integer, we have P(T) ∈ Z[T] according to Corollary 10.5.0.5. P(T)

being moreover monic, S(T) ∈ Z[T]. Since P(ζp) is assumed to be non-zero, we have S(ζp) = 0. Thus,

the polynomials P(T) and Q(T) = S(Tp) have a common complex root. Their GCD (calculated over Q)

is therefore non-constant, so that P divides Q in Q[T] (irreducibility of P) and also in Z[T] since P is

moreover monic. Reduce modulo p. We obtain

Q(T) = S(Tp) = (S(T))p

using the Frobenius morphism. Since by hypothesis n ̸= 0 in Fp, Tn − 1 and its derivative nTn−1 have

no common root in Fp, so that Tn − 1 and P have no common factor in Fp[T]. Let Π be an irreducible

factor of P. As it divides S
p
, it divides S, so that Π2|Tn − 1 in Fp[T]. We obtain a contradiction since P

is separable.

We can now finish the proof of Theorem 10.5.0.6.

Let then ζ be a root of P and ζ ′ be any root of Φn. We write ζ ′ = ζm with GCD(m,n) = 1 (because ζ ′

is primitive). By decomposing m into a product of prime factors, a repeated application of the lemma

gives that ζ ′ is a root of P and therefore Φn|P.

10.6 Exercices

Exercise 10.6.0.1. Prove that if x, x′ are nonzero elements of a UFD R and if p is irreducible

vp(rr
′) = vp(x) + vp(x

′) and vp(x+ x′) ≥ min(vp(x) + vp(x
′))

Exercise 10.6.0.2. Show that if R is principal, the GCD(xi) is a generator of the ideal generated by the

(xi). Provide a characterization of the LCM in terms of ideals.

Exercise 10.6.0.3. Let R = Z[2i] = {a + 2bi | a, b ∈ Z} ⊂ C and P1 = 2iT + 2, P2 = −2iT + 2. For

P ∈ R[T], we define its content ideal c(P) ⊂ R as the ideal generated by its coefficients2 . Show that

c(P1P2) ̸= c(P1)c(P2). Deduce that R is not UFD.

Exercise 10.6.0.4. Show that the ring R[X,Y]/(X2 − Y3) is an integral Noetherian domain but not

UFD.

2This example is due to Kaplanski



Chapter 11

Primary decomposition in PID

Camille Jordan

11.1 Introduction

Perspective

We will explain how to decompose torsion modules over PID using its IFD property

and the Chines Remainder Lemma. We will illustrate this result to get the Jordan

reduction theorem of a ∈ Endk(V) from the Frobenius reduction of Va immediately

leads to the Jordan reduction of endomorphisms under the assumption that the

characteristic polynomial χa is split.

11.2 Torsion Modules over PID

Let M be a torsion module (M = Mtors) over a PID R and let P be the set of nonzero prime ideals of R.

127
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11.2.1 Primary Decomposition

Definition 11.2.1.1. Let (p) = p ∈ P. The p-primary part (or p-primary part) of M is the submodule

M[p] = M[p] = {x ∈ M|∃n ≥ 0}pnx = 0}.

Observe that the primary components are functorial in the following sense. For any p ∈ P, diagram

M[p]

��

� � // M

��
N[p] �

� // N

commutes. Int this context, the Chinese reminder lemma (6.5.0.1) applies to give the following important

result.

Proposition 11.2.1.2. Let M be a torsion module and x =
∏
pvii be an irredundant1prime decomposition

of x ∈ R∗ .

1. For all j, there exists εj ∈ (
∏
i̸=j p

ni
i ) such that

∑
j εj = 1.

2. If xM = {0}, the natural map ⊕p∈PM[p] → M is an isomorphim of inverse m 7→
∑
εim. In

particular, the scalar multiplication by εi is the projection πi : M
∼→ ⊕iM[pi] → M[pi] ↪→ M and∑

πi = IdM and πi ◦ πj = δi,jpi.

3. If M is only torsion, the natural map ⊕p∈PM[p] → M is still an isomorphim.

Proof.

• We just have to check that the Chinese reminder lemma applies for Ij = (p
vj
j ), that is Ii+Ij = R for

i ̸= j. But in an PID (or more generally in a UFD), we have GCD(x, y) = 1 ⇒ GCD(xn, ym) = 1

for any n,m. For instance, in our PID situtaion, write a Bézout relation ax+ by = 1 and rise to the

n +m-power using the Newton’s formula to obtain a Bézout relation Axn + Bym = 1. This shows

that if i ̸= j, we have Ii + Ij = R and (1)+(2) are just (5) of the Chinese lemma.
1i.e. (pi) ̸= (pj) if i ̸= j or equivalently vi = vpi (x) for all i.
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• Because M = ∪x∈R∗ AnnM(x), we have M[p] = ∪x∈R∗ AnnM(x). Applying (1) and (2) to each

AnnM(x), the functoriality of primary components gives (3).

Example(s) 11.2.1.3. Let a ∈ Endk[V].

• Let P,Q ∈ k[T] coprime polynomials. Applying 11.2.1.2 to Va, we get the famous "kernel lemma"

Ker(PQ(f)) = Ker(P(a))⊕Ker(Q(a)).

• If µa(T) =
∏
λ∈Spec(a)(T− λ)vλ is splits, we have µa(T)Va = {0} and

Va[T− λ] = ⊕λ∈Spec(a) Ker(a− λ Id)vλ

which is the also famous "characteristic spaces decomposition2"

11.2.2 Invariant ideals and primary decomposition

Assume that

M
∼→ R/(di)

is of finite type and torsion. Its invariant ideals (d1) ⊂ · · · ⊂ (dn) are proper and non zero (because M is

torsion).

Let d1 =
∏
j

p
d1,j
j be a prime irredundant decomposition of d1 (i.e. (pi) ̸= (pj) if i ̸= j). Then, up to unit,

each di can be uniquely written

di =
∏
j

pdi,jj with d1,j ≥ d2,j · · · ≥ dx,j ≥ 0.

By the Chinese Remainder Lemma, we get

M[pj ]
∼→ ⊕iR/(p

di,j
j ).

Conversely, assume that we have some direct sum decomposition

M
∼→ ⊕i,jR/(p

di,j
j ).

Reordering if necessary, we can assume that each sequence (di,j)i≥1 is decreasing with di,j = 0 for i large

enough. Then, we define

di =
∏
j

pdi,jj .

The sequence of ideals (di) is decreasing and its proper terms are the invariant ideals of M.

2These terminologies are only French Universal.
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Graphically, for each prime (pj), we order powers that appear in descending order (di+1,j ≤ di,j) in the

jth column,

d1 → p
d1,1
1 p

d1,2
2 · · ·

d2 → p
d2,1
1 p

d2,2
2 · · ·

...
...

...

and read off the invariant factors d1, d2, etc., from the rows (starting from the first one).

11.3 Application: Jordan Reduction

We retain the previous notations (and remind that a matrix of size ≤ 0 is an empty matrix).

Let A ∈ Mn(k) and P = (Pn| . . . |P1 = µa) the similarity invariants of A. Assume χA, or equivalently3

µA, splits over k and denote by Λ the set of its distinct roots. One gets

χA(T) =
∏

Λ
(T− λ)dλ .

If we specialize to the case χA = Tn, we have Pi = Tdi with di ≥ 0 decreasing and
∑
di = n.

Definition 11.3.0.1. A partition of an integer n ≥ 0 is a decreasing sequence d = (di)1≤i≤n of integers

≥ 0 such that
∑
di = n.

Since each Pi divides χA, we have

(i) Pi =
∏

Λ
(T− λ)dλ,i where dλ = (dλ,i)iis a partition of dλ.

The primary decomposition of the Frobenius decomposition of VA implies

VA[T− λ] = Ker(a− λ Id)dλ
∼→ ⊕ik[T]/((T− λ)dλ,i

and

VA
∼→ ⊕λ ⊕i k[T]/((T− λ)dλ,i).

Let Bλ,i = ((T− λj) mod (T− λ)dλ,i)j<dλ,i
. It is a k-basis of k[T]/((T− λ)dλ,i . The formula

T(T− λ)j = (T− λ)j+1 + λj(T− λ)j

ensures that the matrix MatBλ,i
(T) theof multiplication by T on k[T]/((T− λ)dλ,i is λ+ Jdλ,i

where

Jm = C(Tm)

3see 9.2.2.2
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the standard Jordan block

Jm =



0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


is the standard Jordan block of size m . Using 11.2.2, we get

Theorem 11.3.0.2 (Jordan Reduction). Under the above assumptions and notations above, we have

with

χA(T) =
∏

Λ
(T− λ)dλ

1. A is similar to a unique diagonal matrix diag(λ + Jdi,λ) with for every λ the sequence (di,λ)i being

a partition of dλ.

2. In particular, if χA = Tn (i.e., A is nilpotent), there exists a unique partition d = (di) of n verifying

A is similar to the diagonal block matrix Jd = diag(Jdn , · · · , Jd1). The similarity invariants of A are

Tdn ,Tdn−1 , · · · ,Td1 .

11.3.1 Examples

(1) The elementary divisors of the Jordan reduction

λ 1 0 0 0 0

0 λ 0 0 0 0

0 0 λ 1 0 0

0 0 0 λ 0 0

0 0 0 0 λ 0

0 0 0 0 0 µ


(where λ ̸= µ), are

(T− λ)2 (T− µ)

(T− λ)2

(T− λ).

The similarity invariants are thus

(T− λ) , (T− λ)2 , (T− λ)2(T− µ).
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(2) If M =


0 4 2

−1 −4 −1

0 0 −2

, we have

TI−M =


T −4 −2

1 T + 4 1

0 0 T + 2

 .

Let’s perform elementary operations according to the algorithm - or rather its outline - described in the

proof of the proposition 8.3.1.2 :


T −4 −2

1 T + 4 1

0 0 T + 2

 L1↔L2−−−−→


1 T + 4 1

T −4 −2

0 0 T + 2



L2→L2−TL1−−−−−−−−→


1 T + 4 1

0 −4− T(T + 4) −2− T

0 0 T + 2


C2→C2−(T+4)C1

C3→C3−C1

−→


1 0 0

0 (T + 2)2 −2− T

0 0 T + 2



L2→L2+L3−−−−−−−→


1 0 0

0 (T + 2)2 0

0 0 T + 2


C1↔C2

L1↔L2

−→


1 0 0

0 T + 2 0

0 0 (T + 2)2

 .

The similarity invariants are thus T+2 and (T+2)2 and the Jordan reduction is


−2 1 0

0 −2 0

0 0 −2

. An

endomorphism with matrix M is not cyclic.

(3) If M =


3 1 0 0

−4 −1 0 0

6 1 2 1

−14 −5 −1 0

, we obtain as the reduction for TI−M the matrix


(T− 1)2 0 0 0

0 (T− 1)2 0 0

0 0 1 0

0 0 0 1

 .

The invariant factors are (T − 1)2 and (T − 1)2, and the Jordan reduction is


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

. An

endomorphism with matrix M is not cyclic.
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(4) An endomorphism is cyclic if and only if, for each eigenvalue, there is only one Jordan block.

11.4 Exercises

Exercise 11.4.0.1. Let M ∈ Mn(k) be a nilpotent matrix.

1. Show that rk(M) = n− 1 if and only if the Jordan reduction is Jn.

2. If k = R, show that the set of nilpotent matrices of rank n − 1 is the largest open set of the set of

nilpotent matrices on which the Jordan reduction is continuous (with the topology defined by a norm

on Mn(R)).

3. Show that rk(M) = n−2 if and only if M has exactly two Jordan blocks Jp, Jn−p where p is the index

of nilpotency of M. Show that p ≥ n/2.

4. Let p ≥ n/2, an integer q = n− p, and set for t ∈ k, let Mt = diag(Jp, Jq) + tEp+q,p (adding t at the

bottom of the p-th column). Calculate the index of nilpotency of Mt depending on t. Deduce that the

Jordan reduction of Mt is diag(Jp+1, Jq−1) if t ̸= 0 and diag(Jp, Jq) otherwise.

5. Assume k = R. What is the set of continuity of the Jordan reduction application restricted to the

subset of nilpotent matrices of rank n− 2 (with the topology defined by a norm on Mn(R))?

Exercise 11.4.0.2. Let A ∈ Mn(k) and x ̸= 1 (we assume Card(k) > 2). Show that A and xA are

similar if and only if A is nilpotent. Deduce an example of a pair of nilpotent commuting matrices in

M2(k) which do not admit a common Jordan basis (compare with (13.2.0.2) below).
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Chapter 12

Semisimplicity

Jorge Luis Borges

Simplicity// It opens, the gate to the garden/ with the docility of a page/ that

frequent devotion questions and inside, my gaze/ has no need to fix on objects/

that already exist, exact, in memory.// I know the customs and souls/ and that

dialect of allusions/ that every human gathering goes weaving./ I’ve no need to

speak/ nor claim false privilege;/ they know me well who surround me here,/

know well my afflictions and weakness.// This is to reach the highest thing,/

that Heaven perhaps will grant us:/ not admiration or victory/ but simply to

be accepted/ as part of an undeniable Reality,/ like stones and trees.

12.1 Introduction

Perspective

Following Descartes philosophy, we look at stable subspaces of endomorphisms trying

to simplify them into more simple peaces. The best situation is the diagonalizable

situation, or more generally the semisimple situation as we will explain.

12.2 Semi-simple Modules

Definition 12.2.0.1. Let M be the set of maximal ideals of R and (µ) ∈ M. Let M be an R-module.

1. We define M(µ) = {m ∈ M|(µ)m = {0}} and k(µ) = R/(µ) (which is a field by definition).

2. M is said

• semi-simple if every submodule of M has a complement;

135



136 CHAPTER 12. SEMISIMPLICITY

Ryoan-ji, Kyoto

• simple if M non-zero and has no non-trivial submodules.

3. An endomorphism a ∈ Endk(V) is semi-simple if the k[T]-module Va is.

In this commutative situation, the theory is very... simple.

Let us observe that, (µ) canceling M(µ), the R-module structure on M defines a canonical k(µ)-vector

space structure on M(µ). The key lemma is the following.

Lemma 12.2.0.2. Let M be a semi-simple module and N a submodule and S a complement of S.

1. N is isomorphic to the quotient M/S and M = M/N is isomorphic to the submodule S.

2. Submodules and quotient modules of M are semi-simple.

Proof.

1. Clear.

2. Enough to prove that M/N is semi-simple by (1). Let π : M → M b the canonical surjection and S′

a complement of π−1(N) in M. Then π(S′) is a complement of N in M (check !).

Example(s) 12.2.0.3. Simple modules are certainly semi-simple as all modules if R is a field. On the

other hand, if p is irreducible in a UFD say, R/(p2) is certainly not semi-simple: if pR/(p2) ∼→ R/(p)

had a complement S, we would have R/(p2)
∼→ R/(p)⊕ S

∼→ R/(p)
∼→ R/(p). In particular, R/(p2) would

be canceled by p, which is not the case.
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Proposition 12.2.0.4. Let M be an R-module.

1. M is semi simple if and only if the natural morphism ⊕(µ)∈MM(µ) → M is an isomorphism.

2. A direct sum of semi-simple modules is semi-simple.

3. Up to isomorphism, {k(µ), (µ) ∈ M} is the set of all simple modules.

4. A semi-simple module is a direct sum of simple modules.

Proof.

1. Let us observe that ⊕M(µ) → M is always injective.Let (mµ ∈ M(µ))µ ∈ F a finite family such

that
∑

Fmµ = 0 (∗). Let eµ ∈ R/I be the complete family the Chinese Remainder Lemma where

I =
∏
µ∈F(µ). The action of R on ⊕µ∈FM(µ) factors through R/I and we have eµmν = δµνmµ.

Multiplying (*) by each eµ we get mµ = 0 for all µ ∈ F hence the injectivity.

Assume M is semi-simple. Let S be a complement of (the image of) ⊕M(µ) in M. If S ̸= {0}, let s

nonzero in S and µ ∈ M containing I = AnnR(s) (Krull’s lemma 1.3.2.4). Then Rs is semi-simple

(12.2.0.2) and isomorphic to R/I which is also semi-simple (12.2.0.2 again). But k(µ) = R/(µ) is a

quotient of R/I = Rs and therefore isomorhic a submodule of Rs ⊂ S. But the image of 1 in S is

cancelled by (µ) and therefore belongs to M(µ), a contradiction.

Conversely, assume ι : ⊕(µ)∈MM(µ) → M is surjectove and let N be a a submodule of M. The

injection N(µ) → ⊕N is surjective because ι is. Let Sµ be a complement of the N(µ) in M(µ) as

k(µ)-vector spaces. Then S = ⊕Sµ is complement of N in M.

2. (2), (3) and (4) follow immediately from (1).

Remark(s) 12.2.0.5.

• It follows that every semi-simple module is a torsion module except R is a field.

• If R is a field any module is semi-simple : this the existence of complement of vector spaces which is

at the earth of the preceding proof and depens on Zorn’s lemma.

• If M is of finite type, semiseimple modules are Noetherian modules thanks to 12.2.0.2. The reader

will check by himself (exercise) that the use of Zorn’s lemma is unnecessary in this case (which would

be sufficient for our purpose).

• If R is a PID, Krull’s lemma is elementary once we know that R is an UFD and that nonzero prime

ideals are maximal.
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Corollary 12.2.0.6. Let a ∈ Endk(V) with V of finite dimension. The following conditions are equiva-

lent.

• a is semi-simple.

• µa is square free in k[T].

• k[a] is a (finite) product of fields containing k.

• k[a] is reduced1

Proof.

• (1) ⇒ (2). If P1 = µa is divisipble by a square P2 of some irreducible polynomial P, the quotient

k[T]/(P2) of Va is not semi-simple (12.2.0.3) and therefore Va neither.

• (2) ⇒ (3). Because k[a]
∼→ k[T]/(µa), 12.2.0.3 gives the result.

• (3) ⇒ (4). A product of fields has no nilpotent elements.

• (4) ⇒ (1). If k[a] ∼→ k[T]/(µa) is reduced, then µa is square free (if µa is divisible by P2, then the

square of the non zero element µa/P mod (µa) is zero). Therefore, all similarity invariants Pi are

square free because they divide µa implying that k[T]/(Pi) is a product of fields (12.2.0.3), an so is

Va
∼→ ⊕k[T]/(Pi) which is therefore semi-simple by 12.2.0.4.

Example(s) 12.2.0.7. If χa is split, semi-simple means diagonalizable. More generally, if GCD(P,P′) =

1 then P is square free. Therefore, GCD(µa, µ
′
a) = 1 ⇒ a is semi-smple. The converse being true for

characteristic zero or more generally for fields (12.3.0.2). Semi-simple endomorphisms is the appropriate

generalization in the nonsplit case. We will discuss in full details this topoic and more generally the

diagonalizable endomorphisms in the next chapter.

12.3 «Reminder» on perfect fields

On a general field K, it may happen that a polynomial without squared factors has multiple roots in a

larger field. For example, this is the case with T2+ t in K = F2(t), the field of fractions of the polynomial

ring F2[t] [t is assumed to be transcendental over F2]. This does not occur in perfect fields. Let p be a

1A ring is reduced is 0 is the only nilpotent element, i.e.if it the only element which has a positive power equal to 0.
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prime number and R a ring such that pR = {0}. The well-known divisibility p|

p
n

 for 1 ≤ n ≤ p − 1

and the binomial formula ensure that the application F : r 7→ rp is a ring morphism called the Frobenius

morphism. If R is a field, it is additionally injective as any morphism of fields.

Definition 12.3.0.1. A field of characteristic p is said to be perfect if p = 0 or if every element admits

a p-th root, i.e. if its Frobenius morphism is an isomorphism.

Thus, every finite field is perfect since an injection between finite sets is bijective. Therefore, we must

prove the following statement.

Lemma 12.3.0.2. Let k be a perfect field and P ∈ k[T].

• Then, P is square-free if and only if GCD(P,P′) = 1. In particular, if k is perfect and P irreducible,

then GCD(P,P′) = 1.

• If K is a field containing k, than A ∈ Mn(K) is semi-simple if and only if it is semi-simple in Mn(K).

Proof. The second item follows from the first and the invariance of the GCD from k[T] to K[T].

The direction ⇐ immediately follows from Bézout’s identity. Let’s consider the direct direction. Suppose

P is without squared factors and write P =
∏

Pi with Pi irreducible. If GCD(P,P′) ̸= 1, one of the Pi

divides P′ =
∑
i P

′
i

∏
j ̸=i Pj and thus Pi|P′

i. By comparing degrees, we have P′
i = 0. This implies that

the characteristic of k is a prime number p and that all coefficients of Pi of indices not multiples of p are

zero: Pi =
∑
n anpT

np. But in this case, we have Pi = (
∑
n a

1/p
np Tn)p because the Frobenius of k[T] is a

ring morphism. A contradiction with the irreducibility of Pi

This corollary is false in the imperfect case.

Remark(s) 12.3.0.3. When the base field K is not perfect, there are semi-simple matrices over K which,

considered in a superfield, are no longer so. With the notations of 12.3, this is the case with A =

0 t

1 0


over K = F2(t) because χA(T) = T2 + t is irreducible over K but not over K(t1/2) = K[τ ]/(τ2 − t) and a

fortiori over Ω ⊃ K. Moreover, A + t1/2 Id is even nilpotent! The correct notion in the non-perfect case

is that of absolute simplicity defined by the condition GCD(µa, µ
′
a) = 1, stronger than semisimplicity.

Exercise 12.3.0.4. Let V be a k-vector space of finite dimension and φ an automorphism of k. Denote

[φ] ⊗ V as the vector space with underlying group V and external law λ.[φ]v = φ(λ)v. Show dim(V) =

dim([φ]⊗V). Deduce that any field of finite dimension over a perfect field is still perfect.
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12.3.1 Sums of semi-simple endomorphisms

The next lemma is a generalization of the classical diangonalizability result for two commuting diagonal-

izable endomorphisms (result which will be discussed in the next chapter). In our context, one has to be

a little bit cautious.

Lemma 12.3.1.1. Let a, b ∈ Endk(V) which commutes and let P ∈ k[T1,T2]. Assume a is semi-simple

and GCD(µb, µ
′
b) = 1 (in the perfect case, this is equivalent to a, b semi-simple by 12.3.0.2). Then P(a, b)

is semi-simple. In particular a+ b is semi-simple.

Proof. Because k[c] ⊂ k[a, b] ⊂ Endk(V), its enough to show that k[a, b] is reduced. But the k-algebra sur-

jective morphism k[T1,T2] defines by T1 7→ a, T2 7→ b factors through R = k[T1,T2]/(µa(T1), µb(T2)) =

k[a][T2]/(µb(T2). But k[T1] is a finite product of fields Ki (containing k) by 12.2.0.6. Because the GCD

does not depends on the subfield where it is calculated by Euclide’s algortithm, µb is alos square free in

Ki[T] and R =
∏

Ki[T]/(µB(T) is therefore a product of fields and so is its quotient k[a, b] by 12.2.0.3.

12.4 Jordan-Chevalley Decomposition

Let’s begin with a very important result, although easily demonstrated, which allows the construction of

polynomial roots step-by-step (adaptation of Newton’s method).

12.4.1 Hensel’s lemma and existence

Lemma 12.4.1.1 (Hensel-Newton). Let I be a nilpotent ideal (IN = 0) of an arbitrary ring R and

P ∈ R[T]. Assume there exists x0 ∈ R such that P(x0) ≡ 0 mod I and P′(x0) mod I is invertible. Then,

there exists x ∈ R such that x ≡ x0 mod I and P(x) = 0.

Proof. First, observe that if a mod I is invertible, then a is invertible in a. Indeed, if b mod I is its

inverse, ab = 1− i with i ∈ I. Formally expanding 1/(1− i) into a series, we deduce that 1− i is invertible

with the inverse
∑
k<N i

k since ik = 0 for k ≥ N and thus b/(1− i) is the inverse of a.

We will compute (algorithmically) an approximate root

xk mod I2
k

|P(xk) ≡ 0 mod I2
k

and xk ≡ x0 mod I

by successive approximations. Proceed by induction on k ≥ 0 (with tautological initialization). Assuming

the property holds at rank k, we then seek xk+1 in the form xk+1 + ε, ε ∈ I2
k

so that xk+1 is indeed an

approximation of xk mod I2
k

.
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Kurt Hensel

Gotlib

Isaac Newton

The entire Taylor formula gives

P(xk+1) = P(xk) + εP′(xk) + ε2Q(xk, ε)

with Q[T,Y] ∈ R[T,Y] (check this!). Since xk ≡ x0 mod I, we have P′(xk) ≡ P′(x0) mod I and therefore

P′(xk) mod I2
k

is invertible. We then set ε = −P(xk)/P
′(xk). ε ∈ I2

k

is guaranteed by the construction

of xk. As ε2 ∈ I2
k+1

, this choice is suitable. To conclude, we choose k such that 2k ≥ N + 1 and set

x = xk: the algorithm converges exponentially!

Corollary 12.4.1.2 (Existence). Let a ∈ Endk(V) (with k a perfect field). There exist d, ν ∈ k[a] ⊂

Endk[a] such that a = d+ ν and d semi-simple, ν nilpotent. In particular, d and ν commute.

Proof. Let π ∈ k[T] be the product of the irreducible factors of the minimal µa of a. As it is without

squared factors, it is coprime with its derivative. Choose α, β ∈ k[T] such that απ + βπ′ = 1.

Let I be the ideal π(a)k[a] of k[a]. We have µa|πn and therefore πn(a) = 0 so that In = 0. Furthermore,

we have β(a)π′(a) = 1 mod I and thus π′(a) mod I is invertible. By setting x0 = a ∈ k[a], we deduce

the existence of x ∈ k[a] such that x = a mod I and π(x) = 0 mod In = (0). We then set d = x and

ν = a−P(a). As π(d) = 0, d is absolutely semi-simple. Since ν = a−P(a) ∈ I and In = 0, ν is nilpotent.

■
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Remark(s) 12.4.1.3. This is essentially Chevalley’s proof. Beyond its algorithmic character (very fast),

it is important because it allows the definition of semi-simple and nilpotent parts within the context of Lie

algebras and algebraic groups (on a perfect field), see for example the excellent [4].

12.4.2 Uniqueness

Theorem 12.4.2.1 (Jordan-Chevalley). We still assume k is a perfect field. For any a ∈ Endk(V), there

exists a unique pair (d, ν) with d semi-simple, ν nilpotent, d and ν commuting with a = d+ ν. Moreover

d, ν ∈ R = k[a] ⊂ Endk[a].

Proof. Only uniqueness requires an argument given the above. Suppose d, ν as in the theorem and a pair

d′, ν′ ∈ k[a] as in Corollary 12.4.1.2. Since d, ν commute with each other, they commute with d+ ν = a.

They therefore also commute with d′, ν′ because these are polynomials in a. But d + ν = d′ + ν′ i.e.,

d− d′ = ν′ − ν. However, ν′ − ν is nilpotent (as a sum of commuting nilpotents) and d− d′ semi-simple

(as a sum of commuting semi-simples, 12.3.1.1); an endomorphism that is both semi-simple and nilpotent

being zero since its minimal polynomial has no squared factors and divides Tn, we indeed have d = d′

and u = u′.

�

A diagonalizable endomorphism a thus decomposes into d = a and ν = 0. Thus a =

1 2

0 2


decomposes into a+ 0 and not into

1 0

0 2

+

0 2

0 0

 as one might be tempted to write.

Furthermore, the assumption of k being a perfect field cannot be relaxed: the matrix

0 t

1 0

 from

12.3.0.3 does not have a Jordan-Chevalley decomposition. If one wants such a decomposition in the

imperfect case, one must restrict to endomorphisms with separable characteristic polynomials and replace

semi-simple with absolutely semi-simple. The proof is then identical.

12.4.3 Similarity class of the components

We retain the previous notation. a = d+ ν. The invariant factors of the semi-simple part d are entirely

determined by χa since two diagonalizable endomorphisms with the same characteristic polynomials

are similar over Ω and the invariants do not depend on the base field (cf. 12.4.4.1). Similarly, the

similarity invariants of a determine the nilpotent type da of ν. One way to see this is to observe that the

nilpotent parts of two similar matrices have similar nilpotent parts by uniqueness of the Jordan-Chevalley

decomposition.
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12.4.4 Appendix: What about the algorithmic nature of the decomposition?

On re-examining the proofs supra, one easily convinces oneself that finding d and ν is algorithmic once

one knows the product π of the distinct irreducible factors of Pn. SageMath does this very well thanks

to the factor command. But what if this command did not exist? In characteristic zero, one is easily

convinced of the formula

π = Pn/GCD(Pn,P
′
n)

so that the process is algorithmic thanks to Euclid’s GCD algorithm in k[T]. In characteristic p > 0, it

is more complicated because there are polynomials with a null derivative: the polynomials in Tp. The

following exercise provides an «algorithm» to find π for a perfect field of characteristic p >0. The quotes

are justified by the assumption that the inverse of the Frobenius2 F : x 7→ xp of k is known algorithmically.

Exercise 12.4.4.1. Let k be a field and χ =
∏
πni
i the decomposition into unitary irreducible factors of

P a unitary polynomial of degree n. We denote χred =
∏
πi. In the first four questions, k is assumed to

be a perfect field of characteristic p > 0 and I the set of indices i such that ni is coprime with p.

1. Show that χ/GCD(χ, χ′) =
∏
i∈I πi.

2. Show that
∏
i/∈I πi is a p-th power in k[T].

3. Write an algorithm computing
∏
i∈I πi and

∏
j /∈I π

nj/p
j .

4. Deduce an algorithm computing χred.

5. What is χred in characteristic zero?

6. Program the algorithm on Fp? On Fpn? On a general perfect field?

7. How to generalize on a non-perfect field?

8. Always for k a general field, consider the sequence of polynomials χ
red

= (χi)1≤i≤n defined by

χ1 = χred, χi+1 = (χ/(
∏
j≤i χj)red. Show that χ

red
is the sequence of invariant factors of the

semi-simple endomorphisms with characteristic polynomial χ.

9. Assuming again k perfect and let D,N be the Jordan-Chevalley decomposition of M ∈ Mn(k). What

are the similarity invariants of D based on the invariants P of M [Use the previous question]? Can

you similarly describe the invariants of N based on Pi [Place yourself in k and study the application

Pi 7→ Pi/Pi,red and its iterates]? Program the obtained algorithm for example on Fp.

Regarding Hensel’s lemma, the very writing of the proof is an algorithm that lives in k[a] ⊂ Md(k) where

d = dim(V). It involves calculating the inverse of P′(xn) as long as 2n < d. This is a small number of

times, but if the matrices are large, the calculation is heavy. One way to lighten it is to consider the

2Which is the case, for example, for finite fields.
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algebra isomorphism k[T]/µa
∼−→ k[a] that sends T to a (exercise) and to work within this quotient, which

is less computationally demanding.

Despite this, these algorithms are very unstable. For two reasons. The first is that the Gaussian pivot is

a numerically unstable algorithm. And working with polynomial coefficients does not help. The second

is more serious. As will be seen below, the similarity invariants do not vary continuously with the

coefficients of the matrix (see, for example, the theorem 14.2.0.3). Therefore, approximating the values

of the coefficients becomes perilous. When the matrices have rational coefficients, or are in finite fields,

one can, with great care, control the height of the coefficients and thus work with true equalities. Even

though these algorithms tend to explode the sizes of the integers involved... In short, a real subject

for reflection, one of the motivations that led us to include the topological study of similarity classes in

chapter 14.

12.4.5 d-th roots in GLn

If A ∈ Mn(k) with χA(T) =
∏

(X − λ)vλ split, we thus find the usual definition encountered in linear

algebra. If prλ = eλ(A) is as above, the spectral projector on V[T− λ] = Ker(A− λ)vλ(χ)), the Jordan-

Chevalley decomposition A = D+N is simply calculated by

d =
∑

λeλ(A) and N = A−D

as we have just seen. An immediate and useful application is the existence of polynomial d-th roots in

the algebraically closed case.

Proposition 12.4.5.1. Let d be an integer > 0 and assume k is algebraically closed with characteristic

prime to d. Let χ be unitary of degree n. There exists Pd,χ ∈ k[T] such that for any matrix A ∈ GLn(k)

with χA = χ we have Pd,χ(A)d = A.

Proof. Since χ(0) ̸= 0, the polynomials χ and T are coprime and we can write a Bézout identity UT+Vχ =

1 in k[T]. With the previous notations, since χD = χA = χ, the matrix D is invertible with inverse U(D).

Since D and N commute,

A = D(Id+D−1N) = D(Id+U(D)N)

with D−1N being nilpotent. We can then write a d-th root of D as

D1/d =
∑

λ1/deλ(A)

which is therefore a polynomial depending only on χ and d evaluated in A. Furthermore, the coefficients

of the power series (1 + z)1/d are the generalized binomial coefficients

1/d

i

 , i ≥ 0 and thus are in
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Z[1/d]. Since d is invertible in k and (D−1N)n = 0, we have a d-th root

(D−1N)1/d =
∑
i<d

1/d

i

 (D−1N)i

which is indeed a polynomial depending only on χ and d evaluated in A as are D−1 and N, which is what

we wanted.

We cannot hope for better. On one hand, the statement is clearly false in the general case of non-

algebraically closed fields, already in the case n = 1. On the other hand, a non-zero nilpotent matrix N

does not admit a d-th root. Indeed, it would be nilpotent so that its n-th power would be zero but also

equal to n!

12.5 Exercises

Exercise 12.5.0.1. Let λ be an eigenvalue of a and dλ its multiplicity as root of χa. Prove dim(a−λ Id) ≤

dλ (∗). Prove that a is diagonalizable if and only if χa spits over k with equality in (*) for all eigenvalues.

Exercise 12.5.0.2. Let M be a complex square matrix of size n > 1. We denote by Mnil the nilpotent

component of its Jordan-Chevalley decomposition. The goal is to give some properties of Mnil. Recall

that the exponential of M is defined by the absolutely convergent series (for any norm on Mn(C)):

exp(M) =

∞∑
k=0

Mk

k!

and that the exponential of the sum of two commuting matrices is the product of their exponentials.

1. Compute exp(M)nil in terms of Mnil and M.

2. Show that exp(M)nil = 0 if and only if Mnil = 0. What can be deduced from this?

3. Show that the set of diagonalizable complex matrices is dense in Mn(C).

4. Show that the map M 7→ Mnil is not continuous on Mn(C).

5. What is the set of points of continuity of the map M 7→ Mnil (Difficult)?

Exercise 12.5.0.3. Recall that the exponential of a complex square matrix of M is defined by the abso-

lutely convergent series (for any norm on Mn(C)):

exp(M) =

∞∑
k=0

Mk

k!

and that the exponential of the sum of two commuting matrices is the product of their exponentials.

1. If M ∈ Mn(R), prove that det(M) ≥ 0.

2. Show that exp(Mn(R) is the set of square of real matrices.
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3. If n > 1, show that there exists real matrices of size n with positive determinant but who are not

square of any real matrix.

Exercise 12.5.0.4. Let p be prime, K the field of fractions of Fp[T] and V = K[X,Y]/(Xp−T,Yp−T).

Show that V is of finite dimension over K and that the K-endomorphisms of V multiplying by X and Y

respectively are semi-simple, commute but their difference is nilpotent (this is exercise 14 chapter VII.5

[6] rewritten without tensor product).

Exercise 12.5.0.5. Let A,B ∈ Mn(k) be two commutting matrices. Show that the k-algebra k[A,B] is

a quotient of k[T1,T2]/(µA, µB). Deduce using 6.5.0.2 that if the minimals of A,B and their respective

derivatives are coprime, any element C of k[A,B] is semi-simple (without using 12.3.1.1). Is µC necessary

coprime with its derivative?

Exercise 12.5.0.6. Let d be the semi-simple part of a in its Chevalley-Jordan decomposition. Prove

χa = χd.

Exercise 12.5.0.7. Let (Pn, . . . ,P1) be the similarity invariants of a ∈ Endk(V). Assume that k is

perfect. Let Pi =
∏
j P

vi,j
i,j be an irredundant decomposition into irreducible factors. Compute the type

of the nilpotent part of the Jordan-Chevalley decomposition of a in terms of vi,j and deg(Pi,j). Can you

find an effective algorithm to compute this type ?



Chapter 13

Simultaneous reduction

13.1 Introduction

Perspective

This chapter give criteria to simultaneous reduce matrices in simpler form (diagonal,

triangular). These are fundamental tools to understand the general linear group

GLn(k).

We will use the important notion of irreducible action.

Definition 13.1.0.1. Let A be a nonempty subset of Endk(V) (or Mn(k) for V = kn). We say that A

acts irreducibly on V if the only subspaces which are stable by all elements of A are {0} and V. If A is

reduced to a single element a, we say that a acts irreducibly1.

The reason to be interest in this notion in our context is the following. If W is stable by A, the maps

V
a−→ V → V/W factors through V/W into aV/W ∈ Endk(V/W). In matrix terms, this simply means

that completing a basis of W in a basis B of V, we have for all a ∈ A

MatB(a) =

Mat(aW) ∗

0 Mat(aV/W)


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allowing to do induction on dim(V) for statements "passing" to the diagonal blocs. This will be our

"valuable stable space tool" for various induction arguments.

Example(s) 13.1.0.2. The following sets

1. act irreducibly: Endk(V), a plane rotation of angle ̸= 0, π, the so-called diedral group D6 of isometries

preserving an equilateral triangle. . . ;

2. do not act irreducibly: the set of upper-triangular matrices, any complex matrix, any real matrix of

size > 2, any commuting sets of complex matrices (see ). . .

The following formal observation is useful

Lemma 13.1.0.3. A ⊂ Endk(V) acts irreducibly on V if and only if tA = {ta, a ∈ A} ⊂ Endk(V∗) acts

irreducibly on V∗.

Proof. Observe that W is invariant under A if and only if its orthogonal W⊥ is invariant under tA

(3.8.0.2).

13.2 Commuting family of matrices

The main observation is the following.

Lemma 13.2.0.1. If a, b ∈ Endk(V) commute, then any eigenspace of a is b-stable.

Proof. Let v ∈ Ker (a−λ Id). One has a(b(v)) = b(a(v)) = b(λv) = λb(v) proving b(v) ∈ Ker (a−λ Id).

Proposition 13.2.0.2. Let A ⊂ Endk(V) be an arbitrary set of commuting endomorphism.

1. If χa splits for all a ∈ A, then there exists a common trigonalization basis B for A.

2. If a is diagonalizable for all a ∈ A, then there exists a common trigonalization basis B for S.

Proof.

1. Induction on dim(V): by the "valuable stable space tool", one can assume S acts irreducibly. By

13.2.0.1, any eigenspace of a is invariant under S and therefore is equal to V showing that a is scalar

(and dim(V) = 1) which proves (1).
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2. We use induction on n = dim(V) ≥ 0. We may assume that n > 0 and that the statement is true in

dimension < n. If all the ai are homotheties λi Id, any base is suitable. Otherwise, let i such that ai

is not a homothety. Then, ai has at least two distinct eigenvalues so that all its eigenspaces Ei(λ)

are of dimension < n. But they are stable by all the aj and their restrictions aj(λ) to each Ei(λ)

are diagonalizable for all j. For each λ, we then choose a common diagonalization base for the aj(λ)

and the union of these bases suits.

Remark(s) 13.2.0.3. These results are of fundamental importance in group theory. This shows that

commutative subgroups of GLn(C) of diagonalizable matrices are conjugate to subgroups of the groups of

invertible diagonal matrices the converse being obviously true (this (2) above (1)). For (1), this shows

that commutative subgroups of GLn(C) are are conjugate to subgroups of the groups of upper triangular

matrices the converse being obviously false. The good generalization of abelian groups is the notion of

solvable groups. In this case, one can show that connected solvable subgroups of GLn(C) are exactly

connected subgroups of GLn(C) (see 13.5). But the connectedness assumption cannot be dropped (see

exercice ??).

13.3 The Burnside-Wedderburn theorem

This result is important and classical2

Theorem 13.3.0.1. Let A ⊂ Endk(V) acting irreducibly on V. Assume moreover that χa is split and

that A is stable by product. Then A = {0} or A generates Endk(V).

Proof. We can assume A ̸= {0} and, changing A to Span(A) that A is a k-algebra (a priori without

unit). Let d = min{rk(a), a ∈ A− {0}}. We have d > 0 and we will first prove d = 1.

Assume d > 1 and let α ∈ A with rk(α) = d. One can therefore choose x, y ∈ V such that α(x), α(y)

are independent. But A.α(x) is invariant under A and therefore A.α(x) = V or A.α(x) = V. In the first

case, we would have k.α(x) invariant under A and therefore α(x) = 0 because k.x = V is prohibited

by d > 1. Thus A.α(x) = V and we can choose a ∈ A such that a(α(x)) = y implying αaα(x), α(x)

independent. If λ ∈ k, we have therefore β = αaα(x) − λα ̸= 0. But α(V) is invariant under αa and

we choose an eigenvalue of its restriction to λ(V) (χαa is split so is the charactersitic polynomial of the

2Our proof is a mild adaptation of the nice note I. Halperin and P. M. Rosenthal, Burnside’s theorem on algebras of

matrices, Amer. Math. Monthly 87 (1980), no. 10, 810.
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restriction αa|α(V)). Therefore, we have

0 < rk((aαa− λα) = dim(aα− λ Id)|α(V) < dim(α(V)) = d

and aαa− λα ∈ A, a contradiction and therefore d = 1.

If kx = Im(α), there exists a non zero elements φ ∈ V∗, x ∈ V such that α(v) = φ(v)x for all v ∈ V. By

13.1.0.3, we have tA.φ = V∗. The formula αa(v) = ta(φ)(v)x show that Ψ ⊗ x : v 7→ Ψ(v)x belongs to

A for every Ψ ∈ V∗. Analogously, the formulas aΨ⊗ x(v) = Ψ(v)a(x) and αa(v) = ta(φ)(v)x show that

Ψ⊗ y ∈ A for every Ψ ∈ V∗, y ∈ V and hence the theorem because it is a generating family of Endk(V)

[recall that Ei,j = e∗j ⊗ ei is a basis of Endk(V) if (ei) is some basis of V].

13.4 Stable family of nilpotent and unipotent matrices

Theorem 13.4.0.1 (Kolchin). Let ε ∈ {0, 1}. Assume3A ⊂∈ Endk(V) is stable by product and that

χa(T) = (T− ε)n for all a ∈ A. Then, then there exists a common trigonalization basis B for A.

Proof. Because the characteristic polynomial of a block triangular matrix a above

Mat(aW) ∗

0 Mat(aV/W)


is the product of the chracteristic polynomials of the blocks, the "valuable stable space tool" shows that

we just have to prove that all element have a (nonzero) common eigenvector, meaning

(∗). ∩a∈A Ker(a− Id) ̸= {0}

Let Ω be an algebraically closed field containing k. Choosing an arbitrary basis, (*) is equivalent to

the existence of a non zero solution of the linear systems with k-coefficients MatB(a)X = 0 in n the n

unknown X = (xi) (n equations for each a). But (*) has a solution if and only if it has a solution in Ω

(by a dimension argument, one can assume that the equations are in finite number and we know that the

ranks of a matrix in k computed in k or Ω are the same). In other words, we can assume k = Ω, i.e.we

can assume that k is algebraically closed.

Using the "valuable stable space tool" again, we can assume that A acts irreducibly on V.

If A = {0} (ε = 0 case), we are done. If not, we have ε = 1 and A generates Endk(V) by 13.3.0.1 (because k

is now assumed algebraically closed). But tr(a) = n = tr(ab) for any a, b ∈ A. Therefore, tr(a(Id−b) = 0

for any a ∈ A and therefore for any a ∈ Endk(V) But tr(AB) = 0 for any A ∈ Mn(k) ⇒ B = 0 because

0 = tr(Ei,jB) = Bj,i. This gives b = Id for all b ∈ A (and n = 1 but does not matter) hence the common

eigenvalue.

A subgroup of GLn(k) whose elements g satisfy Spec(g) = {1} is called unipotent.

3See I. Kaplansky, The Engel-Kolchin theorem revisited, in Contributions to algebra (collection of papers dedicated to

Ellis Kolchin), pp. 233–237, Academic Press, New York-London for some (mild) generalizations.
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Corollary 13.4.0.2. Every unipotent subgroup of GLn(k) is contained in a a maximal unipotent subgroup

which is conjugate to the group of upper triangular matrices with 1 in the diagonal.

13.5 Connected solvable matrix subgroups

This section can be skipped in a first reading. In this section we assume the reader to be familiar with

basics of quotient groups.

13.5.1 Basics on solvable groups

We will look at a large class of of groups which contains the example encountered int this chapter: the

commutative groups and all subgroups of the group of triangular matrices.

Definition 13.5.1.1. A group G is said to be solvable if it has a decreasing sequence of subgroups

{1} = Gn ⊂ · · · ⊂ G0 = G

such that for 0 ≤ i ≤ n − 1, the group Gi+1 ⊂ Gi is normal in Gi and the quotient group Gi/Gi+1 is

commutative.

Example(s) 13.5.1.2. Any commutative group is solvable. Any sous-group of the group of invert-

ible upper-triangular matrices is solvable (see 13.5.1.4 and 13.6.0.4). The groups S3 and S4 are non-

commutative and solvable (13.6.0.1).

Let us characterize solvable groups using the derived subgroup. Recall that the derived subgroup DG of

a group G is normal and that the quotient G/DG is the maximal commutative quotient of G.

Lemma 13.5.1.3. G is solvable if and only if DnG is trivial for n large enough.

Proof. If G is solvable and Gi is as in the definition, the image of a commutator in the abelian group

G0/G1 is trivial so that D1G is contained in G1. By induction, we show that DiG is contained in Gi and

therefore DnG is trivial. Conversely, if DnG is trivial, we set Gi = DiG.

We define for G solvable its length ℓ(G) = min{i ≥ 0|Di(G) = {1}.
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Corollary 13.5.1.4. If

1 → G1 → G2 → G3 → 1

is exact, then G2 is solvable if and only if G1 and G3 are solvable.

Proof. On the one hand, we have DnG2 → DnG3 surjective and DnG1 → DnG2 injective so that G2 being

solvable implies G1 and G3 are solvable. Conversely, if DnG3 is trivial, the image of DnG2 in G3 is zero

and therefore DnG2 is contained in G1. If now we also have DmG1 = 1, we deduce Dm+nG2 ⊂ DmG1 = 1,

hence the converse.

Remark(s) 13.5.1.5. Therefore, the class of solvable groups is the smallest class of subgroups stable by

isomorphism and exact sequence. In fact, we have better. If G has an increasing sequence of subgroups

1 = G0 ⊂ · · · ⊂ Gn = G

with Gi normal in Gi+1 and Gi+1/Gi solvable, then G is solvable.

13.5.2 The Lie-Kolchin theorem

In this section, we assume that k is a subfield of C induces a metric topology on Mn(k). The following

theorem is both classical and important.

Theorem 13.5.2.1 (Lie-Kolchin). Let G ⊂ GLn(V) be a solvable subgroup such that χg is split for every

g ∈ G. and assume If G is connected, then there exists a common trigonalization basis B for G.

Proof.

• As before, by the "valuable stable space tool", one can assume that G acts irreducibly on V.

• If Γ is any connected group, then D(Γ) is connected. Indeed, the set Γi of products of i commutators

[γ1γ2γ
−1
1 γ−1

2 is a continuous (product and inverse are polynomial maps and therefore are continuous)

image of the connected set Γ2i and is therefore connected. Then D(Γ) is a union of connected set

having Id as common point: it is connected.

• If ℓ(G) ≤ 1, then G is commutative and there is a common trigonalization basis B for G (13.2.0.2).

• Assume now ℓ(G) > 1 and set H = Dℓ(G)−1(H). The group H is connected and solvable with ℓ(H) = 1

and therefore it is commutative. By(13.2.0.2), one can choose a non zero common eigenvector v for
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H (with eigenvalue λ(h) ∈ k). Let (g, h) ∈ G × H and v∗ ∈ V∗ such that ⟨v∗, v⟩ = 1. Because H is

normal in G, one has

(∗) hg(v) = g(g−1hg(v)) = λ(g
−1hg)g(v)

Applying v∗◦g to *) we get ⟨v∗, g−1hg(v)⟩ = λ(g
−1hg) proving that (g, h) 7→ λ(g

−1hg) is continuous.

If h is fixed, g 7→ λ(g
−1hg) takes value in the finite set Spec(h) and therefore is constant because

G is connected. Taking its value at g = Id, we get λ(g−1hg) = λ(h). Using (*), we get that

hg(v) = λ(h)g(v) = gh(v).

• Because v was an arbitrary common eigenvector for H, hg and gh coincides on each such vector.

By (*), g(v) is such a vector proving hg − gh = 0 on SpanGv
irreducibility

= V: g and h commute.

An eigenspace of h is nonzero and invariant by G and therefore is equal to V proving that each

h = λ(h) Id. Because ℓ > 1, H ⊂ DG ⊂ SL(V) proving that λ(h) is a n = dim(V) root of 1.

Therefore H is finite hence H = {Id} because it is connected.

Corollary 13.5.2.2. Assume k is algebraically closed. Every connected solvable subgroup of GLn(k) is

contained in a a maximal connected solvable subgroup which is conjugate to the group of upper triangular

matrices.

13.6 Exercises

Exercise 13.6.0.1.

• Show that the hyperplane of equation
∑
xi = 0 of kn is invariant by A = {Mσ, σ ∈ Sn}.

• Show that A does not act irreducibly on kn but that its image in Endk(H) (through the restriction

M 7→ M|H) is irreducible.

• Show that S3 embedds in GL2(C) but that is not conjugate to any subgroup of the group of invertible

upper-triangular matrices.

• More generally, does the group of invertible upper-triangular matrices contain any group isomorphic

to S3?

Exercise 13.6.0.2.

1. Show that (1, 2, 3) generates a normal subgroup of S3.

2. Show that K = {Id, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)} is an abelian normal subgroup of S4.
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3. Deduce that neither S3 or S4 is solvable.

Exercise 13.6.0.3. Show that the set A of rotations of the Euclidean plane V acts irreducibly. Compute

Span(A) ⊂ Endk(V).

Exercise 13.6.0.4. We aim to show that the group B of matrices of GLn(k) that are upper triangular

is solvable (k is a field). Let U be the subgroup of B of matrices whose eigenvalues are all equal to 1

(unipotent matrices).

1) Show that we have an exact sequence of groups

1 → U → B → (k∗)n → 1.

Deduce that B is solvable if and only if U is solvable.

Let (ei) be the canonical basis of kn. For i ≤ n, let Fi be the subspace of kn generated by e1, . . . , ei. We

have Fi = (0) if i ≤ 0 and Fn = kn. For all f ∈ U, we denote by ln(f) the matrix f − Id. For all

j = 0, . . . , n, let Uj be the subset of U comprising the matrices f such that ln(f)(Fi) ⊂ Fi−j for i ≤ n.

2) Verify that we have

(1) = Un ⊂ Un−1 ⊂ · · · ⊂ U1 = U.

Show that Ui is a normal subgroup of U for all i ≤ n and therefore also of Ui−1.

3) Let f ∈ Uj. Show that for all i ≤ n, the restriction ln(f)i,j of ln(f) to Fi induces a

linear map of Fi/Fi−j−1 which is zero if and only if ln(f)(Fi) ⊂ Fi−j−1.

4) Show that the map

lnj :

 Ui →
∏
i End(Fi/Fi−j)

f 7→ (ln(f)i,j)

is a group morphism and calculate its kernel.

5) Deduce that U is solvable. Conclude.



Part III

About continuity of matrix reduction

155





Chapter 14

Topology of similarity classes

Hasse diagram of A5
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(5, 1) 28
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ppp LLL 26
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24

(3, 2, 1)
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(3, 13)
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(23)
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18

(22, 12) 16

(2, 14) 10

(16) 0

Baohua FU GeometryNilpOrbits

Hasse Diagram of M6

14.1 Introduction

Perspective

Here we provide a perspective on the geometry of similarity classes through their

topology. To avoid formalism, we restrict ourselves to matrices in Mn(k) with k any

subfield of C endowed with the metric topology1deduced from any norm on Mn(C).

We have chosen to keep our module theoretic method in high details even the proofs

could be a little bit shorten. The reason is to produce "natural proofs" and, more

important, to illustrate the modern notion of deformation/ family of modules.

We will investigate the topology of the set of matrices up to similarity. In other terms, we will study the

quotient map f : Mn(k) → Mn(k)/GLn(k) where P ∈ GLn(k) acts on A ∈ Mn(k) by P.A = PAP−1. In

concrete terms, f(M) = O(M) where O(M) is its conjugation class.

1As mentioned above, in the case of a general infinite field, the Zariski topology should be considered, which adds no

real difficulty once its definition is known (cf. exercice 14.6.0.6). In fact, the topology must be finer than that of Zariski,

the usual operations on matrices must be continuous, and the points of k must not be open, ensuring that the closure of

k∗ is k. This is where the infinitude of the field comes into play in the case of the Zariski topology.
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Because the action GLn(k) × Mn(k) → GLn(k) is certainly continuous, our quotient has a canonical

topological structure : the finest topology making f continuous. In other words, U ⊂ Mn(k)/GLn(k)

is open if and only if f−1(U) is open. The reader will verify the following universal property of this

topology, natural generalization of the quotient map universal property in our context. Be cautious that�

even this topology is very natural, it comes not from any metric as we will see in detail. But the reader

can convince himself right now of this fact.

Exercise 14.1.0.1. Assume n ≥ 2. Show that the image of f(tE11, 2), t ∈ k is constant except for t = 0.

Deduce that Mn(k)/GLn(k) is not separated.

Exercise 14.1.0.2. If T is any topological space, the map Homcont(Mn(k)/GLn(k),T) → Hominv(Mn(k),T)

φ 7→ φ ◦ f

is bijective where

Hominv(Mn(k),T) = {φ ∈ Homcont(Mn(k),T)|∀(P,A) ∈ GLn(k)×Mn(k), φ(P.A) = φ(P)}.

In particular, because the characteristic polynomial is invariant by conjugation, the map A 7→ det(T Id−A)

defines a continuous (polynomial!) map γ : Mn(k) → kn which is invariant and by the above universal

property defines

µ : Mn(k)/GLn(k) → kn

where we identify a monic degree n polynomial with its first n coefficients.

Exercise 14.1.0.3. Let g : Mn(k) → k be a continuous GLn(k)-invariant function. Show that there

exists a unique continuous function g on kn such that g = g ◦ f .

Because the image of µ is well understood (its just an affine space), we will mainly focus our study to the

topology of the various fibers µ−1(χ) or, which remains to the same, to the various fibers γ−1(χ). This

is achieved in 14.5.1.4.

14.2 χ-types

Let χ ∈ k[T] be a degree n monic polynomial and recall (9.4.0.1) that a χ-type is a sequence P =

(Pn| · · · |P1) of monic polynomials of k[T] such that
∏

Pi = χ.

Definition 14.2.0.1. We denote O(P) the set of matrices in Mn(k) similar to the companion matrix

C(P). We define the degree of P by deg(P) = n =
∑

deg(Pi).

Thus, O(P) is the orbit of C(P) under the action of GLn(k) by conjugation. The theory of similarity

invariants tells us that O(P) consists of matrices with similarity invariants P and that Md(k) is the
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disjoint union of O(P) as P covers all the n-types (9.7). In the perspective of the introduction 14.1, this

means that

the set of types of degree n is identified with Mn(k)/GLn(k).

Our goal is to study the closure O(P) of the orbits O(P).

We define a (topological) relation ⪯ on χ-types (or types for short) as follows.

P ⪯ Q if and only if O(P) is contained in the closure O(Q).

By continuity of the characteristic polynomial, we have P ⪯ Q ⇒
∏

Pi =
∏

Qj . allowing to restrict

ourselves to χ-types for a given χ. The relation ⪯ is reflexive and transitive relation on types2. Since

O(Q) is invariant by conjugation, it is a union of orbits and we have

O(Q) = ∪P⪯QO(P).

Our goal is to characterize this relation in a combinatorial manner.

We define a (combinatorial3) relation on degree n-types by

(*) P ≤ Q if and only if ∀i = 1, · · · , n,
∏
j≤i Pj |

∏
j≤iQj .

This relation is a (partial) order. For degree reasons, we have P ≤ Q ⇒
∏

Pi =
∏

Qj .

We will therefore restrict ourselves to χ-types.

Dividing (*) by χ, we get

(∗) P ≤ Q ⇔ ∀i = 2, · · · , n,
∏

j≥i
Qj |

∏
j≥i

Pj .

Example(s) 14.2.0.2. We have (T,T) ≤ (1,T2). Moreover O(T,T) = O(02) = {02} and O(1,T2) is the

set of all non zero nilpotent matrices in M2(k). In particular, 02 ∈ O(1,T2) because lim

0 1/m

0 0

 = 0

hence (T,T) ⪯ (1,T2).

Because we have only two types in this dimension 2 case, we deduce in this case P ⪯ Q ⇔ P ≤ Q.

The result is general.

Theorem 14.2.0.3. Let P,Q be two χ-types. Then, P ⪯ Q if and only P ≤ Q. In other words, the

topological and combinatorial orders on n-types coincide.

2At this stage, the anti-symmetry is not clear (cf. 14.3.0.2).
3Compare with cf. 14.4.2.
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Remark(s) 14.2.0.4. This theorem is a reformulation, more transparent in my opinion, of Theorem

4 from [11]. Indeed, to my knowledge, it was Gerstenhaber who fully elaborated the structure of orbit

closures, although I have not been able to find this statement stricto sensu.

14.3 P ⪯ Q ⇒ P ≤ Q

This implication follows from a the continuity of determinants using the calculation of similiraty invariants

using minors (9.7).

Lemma 14.3.0.1. Let α = (αk) be a converging sequence of degree d complex polynomials4. Assume

that each αk is a multiple of some monic polynomial β ∈ k[T]. Then, β| lim(α).

5Because all norms on k≤d[T] are equivalent, we can use any norm to define the convergence notion.

Notice that convergence suh of sequence of polynomials is equivalent to the convergence of each coefficients

sequences.

Proof. Let R be the k-subalgebra of the algebra of complex sequences generated by the d+ 1-sequences

of coefficients of α. All elements of R are converging sequences (because sums and products of converging

sequences are converging). By 1.3.1.1, one can perform the division α ∈ R[T] by the monic polynomial

β ∈ k[T] ⊂ R[T] to obtain α = βq + r with deg(r) < deg(β). Because β|αk for every k, we get that

rk ∈ k[T] is zero and finally r = 0. Because all elements of R are converging sequences, we get by

continuity of the product lim(α) = β lim(q).

Corollary 14.3.0.2. We have the direct implication P ⪯ Q ⇒ P ≤ Q. In particular, ⪯ is a ordering.

Proof. Let (Ak) be a sequence of matrices of with similarity invariants Q converging to some matrix

A∞ ∈ Mn(k) with similarity invariants P. Then, we know that δi(Q) =
∏
j≥n−i+1 Qj , i = 1, . . . , n

is the GCD of the minors of size i of all the matrices T Id−Ak (9.7). In particular, δi(Q) divides the

determinant of each these minors MI,J(Ak) which are converging to the corresponding det(MI,J(A∞)) of

A∞ by continuity of the determinant. By the lemma above, δi(Q)|δi(P). Using
∏
j≥1 Pj =

∏
j≥1 Qj , we

get
∏
j≤n−i Pj |

∏
j≤n−iQj , i = 1, . . . , n and therefore P ≤ Q because we have equality if i = 0 in the

preceding relation.
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The main point is to construct a family of matrices indexed by some parameter

ε which are similar to C(Q) for ε ̸= 0 and to C(P) if ε = 0. We will achieve this

goal in a simple but typical case using an important idea: constructing such

a family remains to construct a family of modules thanks to the dictionary

between modules and endomorphism. This is lemma 14.4.1.1. As the reader

will see, a new condition on our family of modules appear : the freeness property

of (4) in the lemma op. cit. . This is the flatness condition which is omnipresent

in modern algebraic or number theory.

14.4 P ≤ Q ⇒ P ⪯ Q

14.4.1 An elementary deformation

Let R = k[τ ] be the polynomial ring in the variable τ .

Lemma 14.4.1.1. Let (P2,P1) = P ≤ Q = (Q2,Q1) two χ-type of degree n and A(τ) ∈ M2(R[T]) =

EndR[T](R[T]
2) be the matrix

A(τ) =

P2 τQ2

0 P1


and C[τ ] the R[T]-module C[τ ] = Coker(A(τ)). For ε ∈ k, we define

C(ε) = C[τ ]/(τ − ε)

as a R[T]/(T− ε) = k[T]-module.

1. We have an isomorphism of k[T]-modules C(ε)
∼→ Coker(A(ε)).

2. If ε ∈ k∗, then the invariant ideals of C(ε) are Q.

3. If ε = 0 ∈ k∗, then the invariant ideals of C(0) are P.

4. The R-module C(τ) is free of rank n.

Proof. 1. By definition, we have an exact sequence

R[T]2
A(τ)−−−→ R[T]2 → C[τ ] → 0.

But in general, if M1 → M2 → M3 → 0 is exact then it is straightforward to check that M1/IM1 →

M2/IM2 → M3/IM3 → 0 is exact for any ideal I and follows from the fonctoriality of the cokernel.

2. P ≤ Q means Q2|P2 and therefore the GCD of the coefficients of A(ε)) is Q2 hence is its second

similarity invariant. Because its determinant of A(ε)) is P2P1 = χ = Q2Q1, the second is Q1.

3. Clear.
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4. Let φ be the natural composition φ : R<d2 [T] ⊕ R<d1 [T] → R[T] ⊕ R[T] → Coker(A(τ)) with

di = deg(Pi). Let us show that φ is an R-linear isomorphism.

Surjectivity. Let (X2,X1) ∈ R[T]2. We write X1 = Y1P1 + R1 with deg(R1 < d1) (division by the

monic polynomial P1) and X2 − τQ2Y1 = P2Y2 + R2 with deg(R2) < d2 (division by the monic

polynomial P2). We have X2

X1

 = A(τ)

Y2

Y1

+

R2

R1


hence the surjectivity.

Injectivity. Let (X2,X1) ∈ R<d2 [T]⊕ R<d1 [T] in Ker(φ), i.e.such thatX2

X1

 = A(τ)

Y2

Y1


for some (Y2,Y1) ∈ R[T]2. We have P1Y1 = X1. Because P1 is monic, we get d1 > deg(X1) =

deg(P1Y1) = deg(P1) + deg(Y1) = d1 + deg(Y1) hence Y1 = 0. The second relation X2 = P2Y2 +

τQ2Y1 = P2Y2 yields in the same way d2 > deg(X2) = deg(P2Y2) = deg(P2) + deg(Y2) = d2 +

deg(Y2) hence Y2 = 0.

Corollary 14.4.1.2. P ≤ Q ⇒ P ⪯ Q.

Proof. Let B be the basis (1, . . . ,Td2−1) ⊔ (1, . . . ,Td1−1) of R<d2 [T] ⊕ R<d1 [T]
∼→ Rn and H(τ) =

MatB(φ
−1 ◦hT ◦φ) ∈ Mn(R) where hT is the multiplication by T onC(τ). By just rephrasing the lemma

14.4.1.1 we get that the similarity invariants of H(ε) are Q is ε ̸= 0 and are P if ε = 0, hence P ⪯ Q.

Our family of k[T]-modules C(ε), ε ∈ k is the typical example of an (algebraic) deformation of our module

C(0).

14.4.2 ≤=⪯

Definition 14.4.2.1. Let P,Q be χ-types and P is the (finite) set of irreducible divisors of χ. We say

that P is an elementary deformation of Q if there exists π ∈ P, monic polynomials P̃i and n ≥ j > i ≥ 1

such that

P = (P̃n, . . . , πP̃j , . . . , P̃i . . . , P̃1), and Q = (P̃n, . . . , P̃j , . . . , πP̃i, . . . , P̃1)

i.e.

Pk = Qk = P̃k if k ̸= i, j and Pj = πQj = πP̃j , Qi = πPi = πP̃i.

We write in this case P ⪯e Q
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The definition is justified by

Lemma 14.4.2.2. With the notation above, P ⪯e Q ⇒ P ⪯ Q.

Proof. Apply lemma 14.4.1.1 to (Pi, πQj) ≤ (πPi,Qj).

The main theorem 14.2.0.3 is now a consequence of the following proposition.

Proposition 14.4.2.3. Let P ⪯ Q be two distinct χ-types.

1. There exists a finite series of elementary deformations P = R0 ⪯
e
R1 ⪯

e
. . . ⪯

e
RN−1 ⪯

e
RN = Q.

2. P ⪯ Q.

Proof. (1) ⇒ (2) thanks to the preceding lemma. It suffices to prove the existence of a partition R such

that P ⪯
e
R ⪯ Q when P ̸= Q and to iterate the process (which eventually stops when RN = Q because

the number of χ-types is finite.)

Because P ̸= Q, one can choose π ∈ P, ℓ ∈ [1, . . . , n] such that

(∗) vπ(Pℓ) ̸= vπ(Qℓ)

Because P ≤ Q, we have

(1) ∀k, vπ(P1 . . .Pk) ≤ vπ(Q1 . . .Qk).

(*) implies that the inequality (1) is strict for some k. Let i be the smallest integer such that (1) is strict.

We have therefore

(1′) Pk = Qk if k < i and πPi|Qi.

Dividing (1) by χ we get

(2) ∀k, vπ(Qn . . .Qk) ≤ vπ(Pn . . .Pk).

Again (*) implies that the inequality (2) is strict for some k. Let j be the largest integer such that (2) is

strict. We have therefore

(2′) Qk = Pk if k > j and πQj |Pj .

If i ≥ j, we have P = Q by (1’) and (2’), a contradiction. Therefore j > i.

Let R = (Rk)1|≤k≤n be the family

Rk = Pk if k ̸= i, j and Ri = πPi, Rj = Pj/π
(2′)
∈ k[T].
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We have
∏

Ri = χ. Let us verify that R is divisibility decreasing which will prove that R is a χ-type

with the wanted property.

For k ∈ X = [1, n] − {i, j}, we have Pk = Rk implying that the restriction of R to X is decreasing. We

have to show Rk|Rk−1 for k ∈ {i, i+ 1, j, j + 1}.

• If k = i we have Ri = πPi
(1′)

| Qi|Qi−1 = Pi−1 = Ri−1.

• If k = i+ 1

– If j ̸= i+ 1, we have Ri+1 = Pi+1|Pi|Ri.

– If j = i+ 1, we have Ri+1 = Rj = Pj/π|Pj
j>i

| Pi|Ri.

• If k = j

– If j ̸= i+ 1, we have Rj = Pj/π|Pj |Pj−1 = Rj−1.

– If j = i+ 1, already done.

• If k = j + 1 we have Rj+1 = Pj+1 = Qj+1|Qj
(2′)

| Pj/π = Rj .

Certainly P ≤ R. Let us finally verify R ≤ Q.

• It is true for k < i because R and P coincides in this range.

• For i ≤ k < j, by (2’), one has
∏
l≤k Rk = π

∏
l≤k Pk

(1′)

| |
∏
l≤k Qk.

• For k ≥ j, one has
∏
l≤k Rl =

∏
l≤k Ql.

This concludes the proof of theorem 14.2.0.3.

14.5 Topological applications

We want to study Mn(k)/GLn(k) using our continuous µ to kn defined by the characteristic polynomial

(14.1). We start with its fibers µ−1(χ) or, what remains to the same by definition of the topology of the

set γ−1(χ) of matrices with given characteristic polynomial χ.
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14.5.1 Topology of the fibers µ−1(χ)

We keep the notations above and we denote by T be the set of χ-types ordered by ≤=⪯. Let

Mχ = {A ∈ Mn(k)|χA = χ} 14.1
= γ−1(χ).

If P is a monic degree n ≥ 1 polynomial, we define Pred as the product of its (monic) irreducible divisors.

As we have already observed, in our zero charactersitic zero case, characteristic, Pred = P/GCD(P,P′)

and can be alorithmically computed (cf. 12.4.4.1 for the general case).

Lemma 14.5.1.1.

1. There exists6a unique decreasing sequence of monic polynomials Pr,i ∈ k[T]

• If P,Q are coprime polynomials, one has (PQ)r,i = Pr,iQr,i for all i ≥ 1.

• If P = πd for some irreducible polynomial π, we have Pr,i = π if i ≤ d and Pr,i = 1 if i > d.

2. All Pr,i are square free, Pr,i = 1 for i > n and
∏

Pi = P.

3. χ
ss

is the smallest element of T.

4. χ
cycl

is the largest element of T.

Proof. (1) and (2) are just reflecting that k[T] is UFD.

(3) Let Q ∈ T. Because P|Q if and only if vπ(Q) for any irreducible π, one can assume χ = πd and

Q = (πδd , . . . , πδ1) for some partition δ of d. But the corresponding partition of πd is (1, . . . , 1) which is

certainly ≤ δ and therefore χss ≤ Q.

(4) We have
∏
i≤k Qi|

∏
i≤nQi = χ =

∏
i≤k Qi for any i ≤ 1.

Definition 14.5.1.2. χ
cycl

= (1, . . . , 1, χ) is called the cyclic χ-type and χss = (χr,n, . . . , χr,1) the semi-

simple type. The corresponding similarity classes are called the cyclic (resp. semi-simple) orbits.

Remark(s) 14.5.1.3. The cyclic type χ
cycl

is the χ-type of the companion matrix C(χ) and the semi-

simple type χ
ss

is the χ-type of the multiplication hT by T on V = ⊕k[T]/(χr,i) which is therefore

semi-simple because each χr,i is square free.

6See 14.6.0.3 for an alternative algorithmic definition
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By definition, the cyclic orbit is the subset of Mχ of cyclic elements the semi-simple orbit is the subset

of Mχ of semi-simple elements.

Corollary 14.5.1.4.

1. Mχ = ⊔P∈TO(P). In particular µ−1(χ) is finite.

2. O(P) = ⊔Q≤PO(Q).

3. The cyclic orbit is the only orbit which is open (resp. dense) in Mχ.

4. The semi-simple orbit is the only closed orbit in Mχ (and therefore in the whole Mn(k)).

5. µ−1(χ) is closed if and only C(χ) is both semi-simple and cyclic7or equivalently if Card(µ−1(χ)) = 1.

6. More generally, O(P) is open and dense in its closure O(P).

7. O(P) = O(Q) if and only if P = Q.

Proof. 1. It is a rephrasing the main theorem of similiraty invariants (see 9.7).

2. ≤=⪯.

3. Use (2) and (3) of Lemma 14.6.0.3.

4. Use (2) and (4) of Lemma 14.6.0.3.

5. Use (3) and (4).

6. Use (2).

7. ≤=⪯.

14.5.2 Global properties of Mn(k)/GLn(k)

Let us start with a general lemma.

Lemma 14.5.2.1. Let ∅ ̸= Ω ⊂ kn which is defined by the non vanishing of a finite number of polyno-

mials. Then, Ω is dense in kn.

7If moreover χ(0) ̸= 0, a matrix similar to C(χ) is called regular element of GLn(k). Observe A is regular if and only if

its complex eigenvalues are distinct (exercise).
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Proof. Let Pi ̸= 0 be the polynomial inequations defining Ω and ω ∈ Ω. Let x ∈ kn − Ω and consider

D0
t = {ω+ tx ∈ Ω, t ∈ k}. The one variable polynomial Pi(ω+Tx) does not vanish at T = 0. Therefore,

its set of roots Zi is finite an so is the union ∪Zi. Therefore, D0
t is the complement of finite set in the

line ⟨ω, x⟩ ⊂ kn and there are certainly points of D0
t arbitrary close of x by the density of k in C.

Proposition 14.5.2.2.

1. Mn(k)/GLn(k) is connected.

2. The set of cyclic classes is open and dense.

3. Both the set of regular classes (both semi-simple and cyclic) is open and dense.

4. The set of rank ≥ r matrices is open and dense (semi-continuity of the rank).

Proof.

1. Mn(Q) is dense in Mn(C) and therefore Mn(k) is dense in Mn(C). Because the latter is connected,

Mn(k) is connected and so is its continuous image Mn(k)/GLn(k).

2. By definition of the quotient topology, we have to show that the inverse image of the set of cyclic

classes is open and dense in Mn(k) and therefore that the set of cyclic matrices A is so. But writing

that A is cyclic is writing deg(µA) = n or Id, . . . ,An−1 is a free family. This condition can be written

by the non vanishing of a bunch of determinants of matrices whose coefficients are polynomial in the

coefficients of the Ai’s, and we get the openness (or use item (4) above). We conclude by 14.5.2.1.

3. Because a matrix in Mn(k) is cyclic if and only if is characteristic polynomial of degree n, the regu-

larity condition is equivalent to GCD(χ, χ′) = 1 (recall that k is perfect being of zero characteristic).

The latter condition can be written Res(χ, χ′) ̸= 0 where Res ∈ k[Ti,j ] (6.6.0.3). We conclude by

14.5.2.1 again.

4. Apply the determinant characterization δr(A) ̸= {0} of 5.7.1.4.

Remark(s) 14.5.2.3. It’s easy and useful to prove openness and density of regular matrices without

using the resultant (see 15.3.1.1) but the corresponding result is weaker because we do not get the algebraic

nature of the locus and therefore that it is huge (for instance we don not get that Lebesgue almost surely

any polynomial has distinct roots).
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14.6 Exercises

Exercise 14.6.0.1. Let H6 be the graph whose vertex are the nilpotent T6-types and with a vertex between

two types P,Q if and only if P ≤ Q. Draw H6 and compare with the Hasse diagram at the beginning of

the chapter.

Exercise 14.6.0.2. Let ∅ ̸= Ω ⊂ Cn which is defined by the non vanishing of a finite number of

polynomials. Show that almost surely relative to the Lebesgue measure, x ∈ Cn belongs to Ω.

Exercise 14.6.0.3. With the notations of , prove that Pr,1 = Pred and Pr,i+1 = (P/Pr,i)red for i ≥ 1.

Deduce an effective algorithm to compute these polynomials (see 12.4.4.1). Can you generalize to the

perfect case?

Exercise 14.6.0.4. The semi-simple part of the Jordan-Chevalley decomposition of a ∈ Mχ is χ
ss

(cf.

12.4.2.1).

Exercise 14.6.0.5. Show that the semi-simple orbit of µ−1(χ) is the only closed point and that the cyclic

orbit is an open and dense point. Show that µ−1(χ) is separated if and only if Card(µ−1(χ) = 1. Prove

if P ̸= Q are points of µ−1(χ), there exists an open subset of µ−1(χ) such that either P ∈ U and Q ̸∈ U

or Q ∈ U and P ̸∈ U (this property is sometimes called the Kolmogorov separation property).

Exercise 14.6.0.6. Prove that O(P) is the zero set of a finite family of polynomials8in k[Ti,j ].

Exercise 14.6.0.7. Prove that the set of regular matrices of size n ≥ 2 is not open. What is its topological

interior ?

Exercise 14.6.0.8. Show that any continuous GLn-invariant (by conjugation) function on Mn(C) factors

through γ (14.1). Deduce that µ : Mn(k)/GLn(k) → kn induces an isomorphism of there algebra of

numerical functions although µ is not an homemoprhism.

8The advance reader will rephrase this statement by sayning that these closures are Zariski closed. He will verify that

it implies that our closure coincides with the corresponding Zariski closure.



Chapter 15

Eigenvalues and primary components

15.1 Introduction

Perspective

We focus our attention to eigenvalues of complex and real matrices with a special

attention of matrices with non negative coefficients. Our goal is to understand their

continuity properties with respect to the matrix coefficients which is a necessary

condition to be able to approximate them suitably.

In this chapter, we consider k ⊂ C and a ∈ Endk(V),A ∈ Mn(k) as always with characteristic polynomial

χ. The set Spec(A) of the eigenvalues of A is called its spectrum.

15.2 Continuity of primary components

We know from the chapter 14 that the similarity invariants do not vary continuously with the coefficients

of the matrix even when the characteristic polynomial is a given monic polynomial χ. The counterpart

169
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of this bad news is that they can effectively computed in an exact way, but with an algorithm which is

numerically very unstable by nature. But, for instance if the matrix has Q-coefficients or more generally

when the field is "fully computable", we can perform exact calculations with a computer.

In summary, Frobenius decomposition is exactly computable but in general is difficult if not impossible

to approximate because it is not continuous even χa has been fixed.

On the other hand, we have in hand another decomposition (11.2.1.2) of Va which in our case reads as

follows. We write the irredundant prime decomposition

χ =
∏

Pvii

of χ in monic irreducible polynomials and, remembering χ(a) = 0 hence χ/Va = {0} by Cayley-Hamilton,

we get

(∗) Va = ⊕Va[Pi]

where

Va[Pi] = Ker(Pvii (a))

is the Pi-primary part of the χ-torsion module. We denote by πi(a) the projection onto Va[Pi] parallel

to ⊕j ̸=i]Va[Pj ].

Lemma 15.2.0.1. One has dimVa[Pi] = vi deg(Pi).

Proof. The minimal polynomial of the restriction of a to dimVa[Pi] is a power of Pi and therefore so is its

characteristic polynomial χ = Pwi
i . But dimdimVa[Pi] = deg(χi) = wi deg(Pi). By multiplicativity of

the determinant, we get
∏

Pvii = χ =
∏
χi =

∏
Pwi
i and by uniqueness of the irredundant decomposition

the lemma follows.

Corollary 15.2.0.2. Let λ ∈ Spec(a). One has vλ(χa) ≥ dimKer(a−λ Id). Moreover, a is diagonalizable

if and only χa is split and we have vλ(χa) = dimKer(a− λ Id) for all λ.

Proof. The lemma with Pλ = T−λ and the inclusion Ker(a−λ Id) ⊂ Va[T−λ] gives the inequality and

(*) the equality criterium.

Proposition 15.2.0.3. Let α : S → Mn(k) be a a continuous. Assume that χα(s) = χ for all s ∈ S.

1. There exists polynomials ei ∈ k[Ti,j ] depending on χ (and not on α) such that πi(α(s)) = ei(α(s)).

2. πi(α(s)) is continuous of constant rank dimVa(s)[Pi] = vi deg(Pi).



15.3. REGULARITY OF POLYNOMIAL ROOTS 171

Proof. 1. This is the Chinese Remainder Lemma.

2. A polynomial is continuous, so is its composition its α. Apply then the preceding lemma.

In summary, the prime decomposition of χ are not exactly computable in general. But we will see that

a prime decomposition of χ being given, the primary parts vary continuously with a provided χa = χ

has been fixed. In particular, contrary to the Frobenius decomposition, these primary parts well behave

by approximation.

If χ is split (for instance if k = C), we have Pi(T) = T− λi where λi is an eigenvalue of a and

Vi[Pi] = Ker(a− λi)
vi .

If we want to vary χ and understand Pi, we therefore have to look at the continuity of the eigenvalues.

15.3 Regularity of polynomial roots

15.3.1 Continuity

Let Z be set of complex roots of a monic degree d-polynomial P. Let Pn be a sequence of monic degree

d polynomials converging1 to P and Zn Z be set of complex roots of Pn.

P(T) = T3(T− 2− i)(T− 4 + i)

Proposition 15.3.1.1. Let λ be a root of P with multiplicity mλ.

1. For any ε > 0, there exists N such that for all n > N the number of roots of Pn in B(λ, ε) counted

with multiplicity is mλ.

1With respect to an arbitary norm on Cd[T].
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2. There exists d converging sequences λi,n, 1 ≤ i ≤ d such that Pn =
∏
i(T− λi,n) = Pn(T).

3. If all the roots of the Pn are real, so are the roots of P.

Proof. We prove (1)+(2) by induction on d, the case d = 1 being tautological. Assume d > 1. For any n,

let λ1,n be a root of Pn which is the closest of λ. We have Pn(T) =
∏

(T−µi) where µi ∈ Zn and therefore

|Pn(λ)| =
∏

|λ − µi| ≥ |λ − λ1,n|d. But limPn(λ) = P(λ) = 0 and therefore we have limλ1,n = λ. In

particular, for n >> 0, we have λ1,n ∈ B(λ, ε).

Let R be ring of convergent complex sequence. The sequence (Pn(T)) belongs to R[T] and the rest of its

Euclidean division (1.3.1.1) by T−(λ1,n) vanishes (it is a constant and vanishes on T = λ1,n)). Therefore,

one can write Pn(T) = (T − λ1,n)Qn(T) where Qn(T) is a converging sequence of monic degree d − 1

polynomials. We have also P(T) = (T − λ)Q(T) where Q(T) is a monic degree d − 1 polynomial. By

continuity of the product, we have (T−λ) limQn(T) = (T−λ)Q(T) implying limQn(T) = Q(T) and we

apply the induction hypothesis to (Qn).

(3) follows from directly (2).

Remark(s) 15.3.1.2. The following statement, although equivalent, is sometimes useful. Let X ⊂ C

and define the number of roots in X of a polynomial P counted with multiplicity as

degX(P) =
∑
λ∈X

mP(λ).

Then, if Ω is open in C, then degX restricted to the space Md of monic degree d complex polynomial is

lower semi-continuous in the following sense: for any n,

{P ∈ Md|degΩ(P) ≥ n} is open in Md.

Corollary 15.3.1.3. Let π : Cd → M be the continuous map (λi) →
∏

(T − λi) and f : Cd → C be

a continuous function invariant through the natural action of Sd on Cd. Then, there exists a unique

f : M → C such that f = f ◦ π.

Proof. Observe that π is surjective (C is algebraically closed) and therefore π is onto. This give the

uniqueness. Moreover, π(λ) = P exactly means that λi are the roots of P and therefore P determines

(λ) up to reordering. This gives the existence of f as a map of sets. Let (Pn
15.3.1.1
=

∏
i(T− λi,n)) be a

sequence M converging to P ∈ M. We have

lim f(Pn) = lim f((λi,n)) = f(lim(λi,n))
invariance

= f((λi)) = f(P).



15.4. LOCALIZING EIGENVALUES 173

15.3.2 Smoothness of simple roots

Let φ : Cd ×C → C be the "universal" polynomial function (ai, z) 7→ zn +
∑
i<d aiz

i. By smoothness

we mean C∞ (or even holomorphic for the advanced reader).

Proposition 15.3.2.1. Let α = (αi) ∈ Cd and λ0 is a simple root of the polynomial P(.) = φ(α, .).

There exists a smooth function λ defined in a neighborhood U ⊂ Cd of a and a neighborhood D ⊂ C of λ

such that λ(a) is the only root of φ(a, .) belonging to V for any a ∈ U. Moreover, this root is simple.

Proof. Because φ is smooth, we just have to verify that the hypothesis of the implicit function theorem

are fulfilled, namely that the differential of (x, y) 7→ φ(α, x+ iy) is not zero at λ0. But the (polynomial)

Taylor expansion P(λ0 + h) = P(λ0 + h) + hP′(λ0) + o(h) shows that the differential of P is the complex

similarity h 7→ P′(λ0) which is invertible because P′(λ0) ̸= 0.

Remark(s) 15.3.2.2. We could also use this proposition to show that the locus of polynomials with

distinct roots is open.

15.4 Localizing eigenvalues

15.4.1 Gershgorin disks

Gershgorin disks

We denote by D(z0,R) the closed disk D(z0,R) = {z ∈ C||z − z0| ≤ R}.
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Proposition 15.4.1.1. Let A ∈ Mn(C) and Ri =
∑
j ̸=i |aij |, i = 1, . . . , n.

• (Hadamard)If A is strictly dominant diagonal, i.e.

∀i ∈ {1, . . . , n}, |aii| > Ri

then A is an invertible matrix.

• (Gershgorin I) In general,

Spec(A) ⊆
n⋃
i=1

D(aii,Ri).

• (Gershgorin II)2If F is a connected component3of Γ =
⋃n
i=1 D(aii,Ri), then the number of eigenvalues

counted with multiplicities which are in F is the number of indices such that F is the union of the

Geshgorin’s disks Di. In other words, degF(χA) = Card{i|ai,i ∈ F}.

Proof. Hadamard. Let x = (xi) be a nonzero vector of some A ∈ Mn(C) and let i such that |xi| is maximal

among the modulus of the coordinates of x. The ith coordinate of Ax is
∑
ai,jxj = 0. Therefore,

|ai,i||xi| ≤
∑
j ̸i

|ai,j ||xj | ≤ |xi|
∑
j ̸i

|ai,j |

and A is not dominant diagonal because one can divide this inequality by |xi| > 0.

Gershgorin I. Apply Hadamard to A− λ Id with λ ∈ Spec(A).

Gershgorin II. Let F′ be the (finite) union of the connected components of Γ and d ∈ [0, . . . n]. They are

closed in Γ as any connected component and therefore are closed in C because Γ is closed (even compact).

The Gershgorin’s disks D of At are Di(At) = D(ai,, tRi) and therefore are contained in Di(A1) = Di(A).

In particular, Spec(At) ⊂ F ⊔ F′ for all t ∈ [0, 1]. Let Ω′ = C− F′. Let

At = diag(ai,i) + t(A− diag(ai,i)), t ∈ [0, 1]

. Because F ⊂ Ω′, one has degΩ(χA0
) = d and by continuity of the roots of a polynomial (15.3.1.2)

{t|degF(χAt) ≥ d} = {t|degΩ′(χAt) ≥ d}

is open in [0, 1]. But Spec(At) ⊂ F ⊔ F′ and therefore,

{t|degF(χAt
) ≤ d} = {t|degF′(χAt

) ≥ n− d}

is also open and so is Ud = {t|degF(χAt) = d} and [0, 1] = ⊔d≤nUt. By connectedness [0, 1] only one is

nonempty and equal to [0, 1]. But for d = Card{i|ai,i ∈ F}, we have 0 ∈ Ud because A0 = diag(ai,i).

Observe that one can shrink Γ using Spec(A) = Spec(tA).
2This refinement of Gershgorin can certainly be skipped in firts reading. We give a proof because all the proofs that we

have been able to find are at best incomplete. We assume that the reader is familiar with basics on connectedness.
3The reader will observe that a disk being connencted, F is an union of some of the Di’s.



15.4. LOCALIZING EIGENVALUES 175

15.4.2 Spectral radius

We define the spectral radius ρ(A) of A ∈ Mn(C) as

ρ(A) = max
λ∈Spec(A)

|λ|.

We want to estimate ρ(A) in terms of the size of A, precisely its norm, or better its operator norm. Any

norm ∥∥ on Cn induces a norm on Mn(C) by the rule

∥A∥ = sup
x ̸=0

∥Ax∥/∥x∥ = sup
x|∥x∥=1

∥Ax∥.

Such a norm is called an operator norm on Mn(C). Although all norms are equivalent in finite dimension,

the main asset of the operator norm is their multiplicativity property (check!)

(∗). ∥AB∥ ≤ ∥A∥∥B∥

Exercise 15.4.2.1. Show that the operator norms of A ∈ Mn(C) associated to the 1-norm ∥x∥1 =
∑

|xi|

is the sup of the 1-norm of the column of A.

Let N be the set of operator norms on Mn(C)

Proposition 15.4.2.2. Let A ∈ Mn(C).

• ρ is a continuous in A.

• (Householder) ρ(A) = inf∥∥∈N ∥A∥.

• (Gelfand) For any norm on Mn(C), one has ρ(A) = limk→+∞ ∥Ak∥| 1k .

Let us start with a lemma. Although it a straigthforward of Jordan reduction theorem, let us give a more

elementary proof.

Lemma 15.4.2.3. For any real ε > 0, A is similar to some upper triangular matrix Tε = ((tεi,j)1≤i,j≤n)

such that:

max
1≤i≤n

n∑
j=i+1

|tεi,j | < ε

Proof. Since the matrix A ∈ Mn(C) is triangularizable, one can assume A = ((ti,j)1≤i,j≤n) is upper

triangular. For δ > 0, we have:

Aδ = D−1
δ ADδ =



a1,1 δa1,2 . . . δn−1a1,n

0 a2,2 . . .
...

0 0
. . .

...

0 0 0 an,n


where Dδ = diag(1, δ, . . . , δn−1)
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Then Aδ makes the job for δ small enough.

Proof. (Continuity) Use 15.3.1.3.

(Householder) Let x ∈ Cn be a unit eigenvector of A whose eigenvalue has maximum modulus. We have

ρ(A)∥x∥ = ∥Ax∥ ≤ ∥A∥ which gives: ρ(A) ≤ inf∥∥∈N ∥A∥.

Let us prove the reverse inequality. Let ε > 0, and, thanks to the preceding lemma, let us choose

Pε ∈ GLn(C) such that A = P−1
ε TεPε with Tε as in the lemma. We choose the operator norm induced

by ∥x∥ = ∥Pεx∥∞. where ∥x∥∞ = sup(|xi|) as usual. We obtain

∥A∥ = sup
x ̸=0

∥Ax∥/∥x∥ = sup
P−1

ε x ̸=0

∥AP−1
ε x∥/∥P−1

ε x∥ = sup
x ̸=0

∥PεAP−1
ε x∥∞/∥x∥∞ = ∥P−1

ε APε∥∞.

Therefore,

∥A∥ = ∥P−1
ε APε∥∞ = ∥Tε∥∞ = max

1≤i≤n

|tn,n|, |ti,i|+
n∑

j=i+1

|tεi,j |

 ≤ ρ(A) + ε

which gives reverse inequality ρ(A) = inf∥∥∈N ∥A∥.

(Gelfand) Assume first ∥.∥ ∈ N. With the above notation, or k ∈ N∗:

∥Ak∥ = ∥PεTkεP−1
ε ∥∞ ≤ γε∥Ak∥∞ ≤ γε(ρ(A) + ε)k

where γε = ∥Pε∥∞∥P−1
ε ∥∞. Thus ∥Ak∥ 1

k ≤ γ
1
k
ε (ρ(A) + ε). On the other hand ρ(A)k = ρ(Ak) ≤ ∥Ak∥.

Since γ
1
k
ε → 1 as k → +∞, we deduce ρ(A) = lim ∥Ak∥ 1

k . Now, if N is any norm on Mn(C), there

exists a, b > 0 such that a∥Ak∥ ≤ N(Ak) ≤ b∥Ak∥ (equivalence of norms in finite dimension). Because

lim a1/k = lim b1/k = 1, we get the result.

15.4.3 Smoothness of simple eigenspaces

Let A0 ∈ Md(C) and assume λ0 ∈ Spec(A) a simple root of χA0
. Using the smoothness of simple roots

(15.3.2.1) and the smoothness of A 7→ χA, we know that that there exists a neighborhood Ω of A0 and

V ⊂ C of λ0 and a smooth function λ : Ω → C such that λ(A0) = λ0 and λ(A) is the unique eigenvector

of A belonging to V which can be assumed to be simple shrinking U if necessary. Let πλ : U → Md(C)

be the rank 1 projector onto Ker(A− λ Id) (parallel to the other primary components).

Proposition 15.4.3.1. The projector πλ is smooth.

Proof. Let R be the ring of complex smooth functions on Ω. By 1.3.1.1, one can write χA = (T−λ)Q(T)

for Q(T) ∈ R[T] and we have Q(λ) = χ′
A(λ) ̸= 0 for all A ∈ Ω. Dividing Q by T − λ in R[T] yields

Q(T) = (T− λ)Q̃(T) + r, r ∈ R and evaluating at λ, we get r = Q(λ) and therefore a Bézout relation

Q(T)/Q(λ)− (T− λ)Q̃(T)/Q(λ) = 1.

And using the Chinese Remainder Lemma as always, we have πλ = Q(A)/Q(λ) which is smooth.
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Notice that, shrinking if necessary, we can choose continuously a basis of Im(πλ) : pick a minimal number

of independent columns of πλ0
(A0) and look at the locus of Ω where these columns πλ(A) are independent

(semi-continuity of the rank).

Exercise 15.4.3.2. Let A(a, b, c) =

a b

c 1− a

 and Ω the set of (a, b, c) ∈ C3 such that det(A) = 0.

Compute the spectral projector e0 and observe that is smooth on the whole Ω. Show that there does not

exist any continuous function v0 : Ω → C3 − {0} such that v0(a, b, c) is a basis of A(a, b, c).

15.4.4 Positive matrices

We will present the nice presentation [7] of the classical Perron-Frobenius theory for real positive matrices

due to Hannah Cairns with her king permission. In the sequel, we say that a possibly rectangular real

matrix A is non negative (A ≥ 0) if all its coefficients are ≥ 0 and positive A > 0 if they are > 0.

Theorem 15.4.4.1 (Perron-Frobenius I). Let A ∈ Mn(R
+) an irreduccible matrix. Then:

1. ρ = ρ(A) is a simple root of χA and is nonzero.

2. The eigenspace of ρ is one dimensional generated by a positive vector.

3. All eigenvalues λ ̸= ρ have modulus |λ| < ρ.

Proof. Let x ∈ Cn. We will denote by |x| the vector whose components are |xi|. If moreover x ∈ Rn, we

will use repeatedly the obvious but key fact

(∗) x ≥ 0 and x ̸= 0 ⇒ Ax > 0

(choose xj > and write (Ax)i =
∑
k Ai,kxk ≥ Ai,jxj > 0).

In particular, we get Ak > 0/RightarowAℓ > 0 for ℓ ≥ k and therefore A cannot be nilpotent showing

ρ > 0.

Assume first A > 0.

The key observation is the following.

Let λ ∈ Spec(A) with λ| = ρ and x ̸= 0 an eigenvector for λ. Then, A|x| = ρ|x| and |x| > 0.

By the triangle inequality, A|x| ≥ |Ax|, so A|x| ≥ |Ax| = |λx| = ρ|x|. If the two sides are equal, then we

are done. Suppose that A|x| ̸= ρ|x|. Then (*) gives the strict inequality A2|x| > ρA|x|. By continuity,

there is some r > ρ with A2|x| ≥ rA|x| and by induction using (*) again we get for any m ≥ 1

Am+1|x| ≥ rAm|x| ≥ · · · ≥ rmA|x|



178 CHAPTER 15. EIGENVALUES AND PRIMARY COMPONENTS

The miracle is that the 1-norm of a non negative vector is just the sum of its coefficients! Therefore,

taking the 1-norm of both sides we get

∥Am+1∥1∥|x|∥1 ≥
∥∥Am+1|x|

∥∥
1
≥ rm∥A|x|∥1.

or because both x and Ax are non zero, rm ≤ C∥Am+1∥1 for some C > 0. By Gelfand’s theorem

(15.4.2.2), this gives ρ < r ≤ ρ, a contradiction and therefore A|x| = ρ|x|. Because A|x| > 0 thanks to

(*) and ρ > 0, we get also |x| > 0 hence (1).

Thus, we have proved that ρ ∈ Spec(A) and that |x| is a positive eigenvector for ρ. Hence we have

|Ax| = ρ|x| = A|x| giving for instance

∑
A1,j |xj | =

∣∣∣∑A1,jxj

∣∣∣
which is an equality in the triangle equality in Cn. There exists therefore (2.4.0.1) α ∈ C such that

A1,jxj = αA1,j |xj | and therefore x = α |x|| proving λ = ρ because |x| is a nonzero eigenvector for both

ρ and λ which proves (3).

For (2), let us choose x0 a non zero real vector of A for ρ and let y another such non-zero real eigenvectors

for ρ. By (*), |x0| is an eigenvector for ρ and by the preceding point, there exists α ∈ C such that

y = α|x0|. Because y, x0 are real, α ∈ R and |x0| is a basis of the eigenspace of ρ, proving (2).

(3) is a duality argument. Because tA and A have the same eigenvalues and tA > 0 > 0, one can choose

y > 0 such that tAy = ρy or equivalently tyA = ρty. Let x be a positive basis of the line Ker (A− ρ Id).

The hyperplane Hy defined by y is stable by A and has equation {x|tyx = 0} (see cf. chapter 3 or check

directly). Because x, y > 0, one has tyx > 0 and Rx ∩ Hy = {0} and a decomposition in stable spaces

Rn = Rx⊕ Hy and A is similar to diag(ρ,B) for B ∈ Mn−1(R) and we have χA(T) = (T− ρ)χB(T). If

ρ is not simple, χB(ρ) = 0 and ρ ∈ Spec(B) which contradicts dimKer(A− ρ Id) = 1 proving (3).

Assume Ak > 0 for some k > 0.

We reduce to the previous case more or less straightforwardly. Let the eigenvalues of A be λ1, . . . , λn in

decreasing order of absolute value, repeated with respect with their multiplicity. Then the eigenvalues of

the positive matrix Ak are λk1 , . . . , λkn, again in decreasing order of absolute value.

By the above result, λk1 = ρ(A)k is positive and has a positive eigenvector |x|, and the other eigenvalues

λki are strictly smaller in absolute value, so λk1 > |λ2|k ≥ · · · ≥ |λn|k. Taking the kth root, we get

|λ1| > |λ2| ≥ · · · ≥ |λn|, so λ1 is a simple root of χA and |λ1| = ρ. In particular, the corresponding

eigenspace Vλ1
(A) is one dimensional. But Vλ1

(A) ⊂ Vλk
1
(Ak) = R|x|, so the two spaces are equal and

A|x| = λ1|x|. Therefore, λ1|x| = A|x| > 0 and λ1 > 0 which shows λ1 = ρ.

Corollary 15.4.4.2. Assume A ≥ 0. Then, ρ = ρ(A) ∈ Spec(A) and there is a non negative eigenvector

x ̸= 0 for ρ(A).
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Proof. Let Ak, k ≥ 1 be the sequence of positive matrices Ak = (ai,j + 1/k) and take xk a positive

eigenvector of Ak for ρ(Ak) with ∥xk∥1 = 1. By compactness of the (positive quadrant) of the unit

sphere, one can assume limxk = x with x ≥ 0 of norm 1 and (continuity of ρ) Ax = ρx.

15.4.5 Basics on graphs

For us, an oriented (finite) graph is a pair G = (V,E ⊂ V× V) where V is the (finite) set of vertices and

E the set of edges. As usual, we represent V as a collection of points and each v, v′ as an arrow v → v′.

There is obvious notions of paths from v to v′, length of path and so on.

To each graph is associated its adjacency matrix G defined by Gv,v′ = 1 if (v, v′) ∈ E and Gv,v′ = 0 else.

An immediate induction shows that the number of length k-paths from v to v′ of G is Gkv,v′ . Certainly,

G is a non-negative matrix.

Lemma 15.4.5.1. The shortest length of a path from v to v′ is ≤ n where n is the number of vertices of

G. In particular, matrix terms, if Gkv,v′ ̸= 0 for some k > 0, then Gkv,v′ ̸= 0 for some k with 0 < k < n.

Proof. A path of shortest length (when it exists!) has certainly distinct vertices and by the pigeon holes

principle this number is ≤ Card(V) = n and its length is ≤ n− 1.

In general, mimicking the connected equivalence relation, for v, v′ ∈ V, we say

v ≡ v′ ⇔ there is a path from v to v′ and from v′ to v.

This is an equivalence relation and the equivalence classes are called the strongly connected components.

An oriented graph is then said to be strongly connected if there is a unique connected component, i.e. if

it is nonempty and if for any ordered pair (v, v′) ∈ V× V, there is a path from v to v′.

a b

h

1 ⁄ 1

Plus de détailsDécomposition d'un graphe en composantes fortement connexes.

Graph where strongly connected components are marked.

CC0

Fichier: Scc-1.svg
Date de création : 7 juin 2021

Téléversé : 7 juin 2021

Д.Ильин: vectorization — File:Scc.png by ℚuackor

3 strong connected components

Conversely, to any A ∈ Mn(k), one can associate a graph G = G(A) with V = {1, . . . , n} and (i, j) is and

edge if and only if ai,j ̸= 0. If A is moreover a non negative real matrix and G is the adjacency matrix

of its graph, we have as before Aki,j ̸= 0 if and only if Gki,j ̸= 0 and therefore Aki,j ̸= 0 for some k > 0 if

and only if Aki,j ̸= 0 for some k with 0 < k ≤ n.
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15.4.6 Irreducible matrices

Definition 15.4.6.1. A non negative matrix A ∈ Mn(R) is said to be irreducible if its graph G(A) is

strongly connected. In particular, A ̸= 0.

Therefore, because

A is irreducible if for any i, j, there exists 1 ≤ k ≤ n− 1 such that Aki,j > 0.

Of course, if A ≥ 0 satisfies Ak > 0 for some k > 0, then A is irreducible. The converse is not true but

one can compare precisely the two notions in terms of spectral radius.

Lemma 15.4.6.2. Let A ≥ 0. Then, A is irreducible if and only if (Id+A)n−1 > 0.

Proof. Let (i, j) ∈ {1, . . . , n}.

⇒ Let 1 ≤ k ≤ n− 1 such that Aki,j > 0. By the Newton formula, we have

(Id+A)n−1
i,j =

∑
ℓ≤n−1

n− 1

ℓ

Aℓi,j ≥
∑

1≤ℓ≥n−1

n− 1

ℓ

Aℓi,j ≥ Aki,j > 0.

⇐ If i ̸= j, we have in the same way

0 < (Id+A)n−1
i,j =

∑
ℓ≤n−1

n− 1

ℓ

Aℓi,j =
∑

1≤ℓ≤n−1

n− 1

ℓ

Aℓi,j

and there certainly exists 1 ≤ ℓ ≤ n− 1 such that Aki,j > 0. If i = j, one has (Id+A)n−1
i,i ≥ 1 > 0.

Theorem 15.4.6.3 (Perron-Frobenius II). Let A ∈ Mn(R
+) be an irreducible matrix. Then:

1. ρ = ρ(A) is a simple root of χA.

2. The eigenspace of ρ is one dimensional generated by a positive vector.

3. All eigenvalues λ ̸= ρ have modulus |λ| < ρ.

4. ρ(A) > 0.

Proof. I claim ρ(Id+A) = 1 + ρ(A). Indeed, let 1 + λ ∈( Id+A). We have λ ∈( A) and by triangle

inequality ≤ 1 + λ| ≤ 1 + |λ| ≤ 1 + ρ(A) showing ρ(Id+A) ≤ 1 + ρ(A). Conversely, by 15.4.4.2, ρ(A) is

an eigenvalue of A and therefore 1 + ρ(A) is an eigenvalue of Id+A implying 1 + ρ(A) ≤ ρ(Id+A).
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1. By 15.4.4.1 for Id+A we know therefore that 1+ ρ(A) is a simple root of χ( Id+A)(T) = χA(T− 1).

2. By 15.4.4.2, let x ̸= 0 be a non negative eigenvector of A for ρ(A) and therefore a a non negative

eigenvector of the positive matrix (Id+A)n−1. By 15.4.4.1 (2) applied to Id+A , we get x > 0.

3. Follows directly from 15.4.4.1 (3) applied to Id+A and Spec(Id+A) = {1 + λ, λ ∈ Spec(A).

4. We have Ax = ρ(A)x and x > 0. Therefore Ax > 0 and ρ(A) > 0.

Terminology: An eigenvalue λ of A ∈ Mn(C) is called a dominant eigenvalue if λ has multiplicity 1 in

χA and |λ| > |µ| for all eigenvalues µ ̸= λ.

15.4.7 A classical illustration

Rather than classically choosing the historical (and nowadays quite old-fashioned) PageRank algorithm

of Google4, let us explain how primitive matrices are used in population dynamics through the so called

Leslie model5.

Lets divide the population in n age classes Gk. We assume that the birth bk rate and survival sk rate

in each age class Gk is independent of the (discrete) time t ∈ N. If Nk(t) = CardGk, this means

N1(t+ 1) = b1N1(t) + b2N2(t) + · · ·+ bnNn(t) for the offsprings (the birth rate includes the early deaths

in the first age class) Nk(t+1) = sk−1Nk−1(t) k = 2, . . . , n that is N(t+1) = AN(t) where A is the Leslie

matrix

A =



b1 b2 · · · bn

s1 0 · · · 0

0 s2 0 · · · 0

...
...

. . . . . .
...

0 0 sn−1 0


.

If we restrict to age class of the population of childbearing age, one can assume that bi, sj > 0 and the

graph of A has shape

1 2 3 4 5

4Cf. the historical paper "The PageRank Citation Ranking: Bringing Order to the Web" by L. Page, S. Brin, R. Motwani

and T. Winograd. http://ilpubs.stanford.edu:8090/422/ and for the mathematics behind for instance A. N. Langville

and C. D. Meyer Jr. A survey of eigenvector methods for Web information retrieval, SIAM Rev. 47 (2005), no. 1, 135–161
5P. H. Leslie. On the Use of Matrices in Certain Population Mathematics. Biometrika 33, no. 3 (1945): 183–212.

https://doi.org/10.2307/2332297.

http://ilpubs.stanford.edu:8090/422/
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and is certainly strongly connected. Using the Perron-Frobenius II theorem 15.4.6.3, we show immediately

that the normalized histogram of the population defined the normalized vector N(t)/∥N(t)∥ where N(t) =t

(N1(t), . . . ,Nn(t)) will converge when t goes to ∞ to the unique positive eigenvector of A for ρ(A) of

1-norm 1.

15.4.8 Markov chains

In this item, we assume that the reader is familiar with basics on probabilities. We consider a sequence

of random variables X0,X1, . . . with values in {1, . . . , n} on some probability space Ω. We assume (which

is a very strong assumption) that the transition probability matrix P ≥ 0 defined by

Pi,j = Prob(Xt+1 = i | Xt = j)

does not depend on on the (discrete) time t.

Writing Ω = ⊔iXt+1 = i, we get
∑
i Pi,j = 1 for all j : the 1-norm of each column is 1 (a positive matrix

with this property is called stochastic).

Writing Ω = ⊔jXt = j, we get
∑
i Pi,jpt,i = 1 where pt = (Prob(Xt = i))i is the probability distribution

of Xt. In other words, we have

pt+1 = Ppt.

If we assume that P is moreover irreducible, the Perron-Frobenius II theorem 15.4.6.3 shows that pt

converges when the discrete time t goes to ∞ to the unique positive eigenvector of P for ρ(P) of 1-norm

1 as before. Of course, more can be said by analyzing carefully the speed of convergence for instance and

so on.

15.5 Exercices

Exercise 15.5.0.1. Continuité avec P′/P.

Exercise 15.5.0.2. Généralités sur la topo quotient

Exercise 15.5.0.3. Cn/Sn = Cn comme métrique

Exercise 15.5.0.4. distance Hausdorff

Exercise 15.5.0.5. Let R ⊂ Mn(C) the set of matrices with real spectrum. We define the eigenvalue

functions on R by ordering the eigenvalues of A ∈ R, λ1(A) ≥ λ2 ≥ · · · ≥ λn(A). Let Ω ⊂ R be the open

subset of Mn(R) of matrices with distinct real eigenvalues.

1. Prove that λi is a continuous function on R.

2. Prove that the restriction of λi to Ω is a smooth function.

3. If n ≥ 2, prove that there exists no continuous function λ on M2(C) such that λ(A) ∈ Spec(A) for

all A ∈ Spec(A).
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Exercise 15.5.0.6. 1. Prove that the closure in Mn(R) of diagonalizable matrices in the set of trigo-

nalizable matrices.

2. What is its interior ?

3. Same questions replacing R by any subfield of C.

Exercise 15.5.0.7. Let Ω ⊂ M2(C) be the set or rank 1 matrices. Show

1. Ω is open.

2. There does not exist any continuous map x : Ω ⊂ C2 − {0} such that Ax = 0 for all A ∈ Ω.

Exercise 15.5.0.8. We keep the hypothesis of the theorem and let x ∈ Rn − {0} such that x ≥ 0.

1. Show that lim (A/ρ)
k
= πρ.

2. Prove πρ(x) ̸= x.

3. Prove that Akx/∥Akx∥ is well defined if k >> 0 and converges to a positive basis of Ker (A− ρ Id).

4. How can you generalize if we only assume that A has a unique eigenvalue of maximal modulus?

Exercise 15.5.0.9 (Power method). Let M ∈ Md(C). Show that A has a dominant eigenvalue if and

only if there is a sequence of complex numbers zn such that lim znAn is a rank 1 projector. Can you give

a way to approximate the corresponding eigenvalue?

Exercise 15.5.0.10. Let A = (ai,j)1≤i,j≤2 be a random matrix with coefficients 4 independent centered

Gaussian variables. Prove that the probability that χA is split over R is 1/2. How can you generalize?

Exercise 15.5.0.11. Let A : R → Mn(C) be a smooth application and assume that A(0) has a dominant

eigenvalue. Show that t 7→ ρ(A(t)) is smooth in a neighborhood of 0.
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bicommutant, 116

Bézout equivalence, 93
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Cayley-Hamilton Theorem, 38, 39

Chinese reminder lemma, 80

cokernel, 51

commutant, 113

commutative diagram, 56
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companion matrices, 111

complex of modules, 54
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derived subgroup, 43

determinant trick, 78

diagram, 56

dilatation, 13

dominant eigenvalue, 181

duality bracket, 29

duality,

contravariance, 35

convention of biduality, 33

differential, 31

Jacobian, 31

orthogonal, 30

polar, 30

transpose, 34

endomorphism,

cyclic, 112

absolutely semi-simple, 139

equivalent matrices, 40

Euclidean division in R[T], 14

exact sequence, 54

factorial, 119

finite presentation modules, 67

Fitting ideals, 66

flatness, 161

functor, 59

functoriality,

of the cokernel, 56

of the kernel, 58

Gauss equivalent, 40

Gauss,

elimination, 40

GCD, 121

Gershgorin disks, 173

graph,

strongly connected, 179

Greatest Commun Divisor GCD, 92

group

solvable, 151

idempotent, 81

inductive set, 15

inequality, Cauchy-Schwarz,
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integers,
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integral domain, 70

integral element, 79

irreducibility of Φn over Q, 125

irreducible matrix, 180

irreducibles,

existence, 120

of R[T], 123

uniqueness of the decomposition into, 119

Jordan-Chevalley decomposition, 140

LCM, 121

lemma

of Zorn, 15

lemma,

five, 59

Gauss lemma for PID, 93

Hensel, 140

Krull, 15

Nakayama, 79

of Euclid, 118

Leslie matrix, 181

minor of a matrix, 63

module, 48

module,

Va, 53

torsion, 70

associated with an endomorphism, 53

cyclic, 77

free, 68

Noetherian, 85

quotient, 51

semi-simple, 135

morphism,

Frobenius, 139

Noetherian,

Hilbert’s basis theorem, 88

module, 85

ring, 86

operator norm, 175

order,

≤ on types, 159

≤ on partitions, 162

⪯ on types, 159

orientation, 22

orientation,

direct basis, 22

positively oriented basis, 22

partition,

of an integer, 130

perfect group, 43

permutation matrix, 13

Perron-Frobenius Matrices, 177

polynomial

cyclotomic, 124

primary decomposition, 127

primitive, 122

quotient, 51

reduced ring, 138

reduction,

Jordan, 130

Frobenius, 111

ring,

Euclidean, 92

Noetherian, 86

Noetherian UFD, 120

UFD, 122

UFD or factorial, 119
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similar matrices, 53

similarity invariants, 106, 108
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Snake lemma, 71

space,

stable, 53

spectral radius, 175

theorem,

structure of finite type modules over PID, 95

torsion, 69

transvection, 13, 44

type, 158

UFD, 119, 122
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