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Use these notes at your own risk, I don't claim the proofs are anywhere near
optimal nor original, it is just how I understand things.

Please reach out by email or in person if you have any questions or remarks,
I'll be happy to discuss. If you happen to have the answer to any of the question
I left pending, please reach out !

Conventions and recollections

If X is a topological space, we use capital letters U, V,W to denote open sets.
We try to keep Ω and related notations for di�erential forms. Sheaves and
notations related to sheaves are denoted by capital italic letters, F ,G,H,O...
We denote by

Hom(F ,G)

the sheaf Hom of F and G, and we denote by

Hom(F ,G)

the set of homomorphism of sheaves between F and G. Since the sheaf Hom
Hom(F ,G) can be confusing, we recall it is de�ned on every open U as

Hom(F ,G)(U) = Hom(F|U ,G|U )

so a section D ∈ Hom(F ,G)(U) is the data for every W ⊂ V ⊂ U of maps
D(V ) and D(W ) compatible with restriction i.e. making the following diagram
commute

F(V ) G(V )

F(W ) G(W )

D(V )

res
V
W res

V
W

D(W )

.

If we have V ⊂ U then from D ∈ Hom(F,G)(U) we get a section D|V ∈
Hom(F,G)(V ) de�ned for all W ⊂ V ⊂ U by

D|V (W ) = D(W ) : F(W ) −→ G(W ).

*Email : damien.simon@universite-paris-saclay.fr / simondamien69@orange.fr

1



If our topological space comes with a sheaf of associative algebras say R then
we may consider sheaves of left modules over R. Sheaves of right modules
over R are by de�nition sheaves of left modules over the opposite ring Rop.
The corresponding linearities will be indicated in notations as subscripts. For
instance if X is a complex manifold we will consider the sheaves of rings C (or
simply C) of locally constant holomorphic functions which is a subsheaf of the
sheaf of holomorphic functions OX . Both are sheaves of commutative rings, and
for instance

HomC(F ,G) (resp. HomOX
(F ,G))

denotes the C-linear (resp. OX -linear) sheaf Hom between two sheaves of C-
vector spaces (resp. OX -modules) F and G on X. Later, after having properly
de�ned the sheaf of di�erential operators DX , we will deal with sheaves of left
and right DX -modules.

To compute in algebras of di�erential operators, we use the multi-index
notation. If n ∈ N, we typically use α ∈ Zn to denote a multi-index. That is
α = (α1, ..., αn) ∈ Zn. If z = (z1, ..., zn) (thought as coordinates on an open U
of Cn) then

∂α
z = ∂α1

z1 ...∂
αn
zn =

∂α1+...αn

∂α1
z1 ...∂

αn
zn

.

It is very useful in explicit computation to use the following convention

∂m
z = 0 if m < 0.

We recall a few useful formula concerning Lie brackets, Let A be an associative
C-algebra, it is naturally a Lie algebra by means of the bracket given by the
commutator

[x, y] = x · y − y · x

for all x, y ∈ A. As such it satis�es the Jacobi identity, for all x, y, z ∈ A, we
have

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0.

It is easily checked that

[x, yz] = [x, y]z + y[x, z],

[xy, z] = [x, z]y + x[y, z],

in particular if y commutes with [x, y], i.e. if [y, [x, y]] = 0, we have

[x, y2] = [x, y]y + y[x, y] = 2y[x, y]

and more generally if [y, [x, y]] = 0 then for all n ∈ N

[x, yn] = nyn−1[x, y].
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1 The sheaf of di�erential operators

Let X be an n-dimensional complex manifold and OX be the sheaf of holomor-
phic functions on X. For each x ∈ X, we have an isomorphism of C-algebras

OX ≃ C{z1, ..., zn}

whenever we choose local coordinates (z1, ..., zn) around x where C{z1, ..., zn}
is the ring of power series in n variables with a nonzero convergence radius.

We want to de�ne what the sheaf of di�erential operators DX on X. Because
it is a sheaf of operators, it should be a subsheaf of

HomC(OX ,OX).

First, it is clear that OX is a subsheaf ofHomC(OX ,OX), we see this by de�ning
the map

m : OX −→ HomC(OX ,OX),

by de�ning for each open set U the map

m(U) : OX(U) −→ HomC(OU ,OU )

that assigns to a f ∈ OX(U) the morphism of sheaves de�ned for all V ⊂ U
and all g ∈ OX(V ) by

m(U)(f)(g) = f
∣∣
V
· g ∈ OX(V ).

It is clear that m is injective.
Let's turn to operators that are slightly more complicated. Denote by ΘX

the sheaf of vector �elds. We can think of vector �elds as derivations, it is either
a de�nition or a property, depending on one's background. For any OX -module
F we can de�ne

DerC(OX ,F) ⊂ HomC(OX ,F)

to be the subsheaf given on every open U by

DerC(OX ,F)(U) = {D ∈ HomC(OU ,F|U ) |D(V )(f ·g) = fD(V )(g)+gD(V )(f)

for all V ⊂ U and all f, g ∈ OX(V )}.

In particular, again it is either a de�nition or a property, we have

ΘX = DerC(OX ,OX) ⊂ HomC(OX ,OX).

Note that this can be rewritten

DerC(OX ,OX)(U) = {D ∈ HomC(OU ,OU ) | [D(V ),m(V )(f)] = m(V )(D(V )(f))

in HomC(OX(V ),OX(V )) for all V ⊂ U and all f ∈ OX(V )}.

It can be convenient to think that the Lie derivative construction realizes
this isomorphism, i.e. whenever we pick a vector �eld X on an open U , and a
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function f ∈ OX(U), we can di�erentiate f along X at each p ∈ U by following
the �ow. That yields a map of sheaves of OX -modules

ΘX −→ DerC(OX ,OX)

that turns out to be an isomorphism. From now one, we think of vector

�elds as derivations, that is we have an equality

ΘX = DerC(OX ,OX).

Remark 1. We are not saying that for a given open set U there exists an
isomorphism between C-linear derivations of the C-algebra OX(U) and vector
�elds on U . We can think of P1

C
where there is a fair amount of global vector

�elds but no non-trivial derivations of global holomorphic functions (as they are
constant functions).

Question 1. Can one formulate a su�cient condition so that it holds ?

This motivates our �rst de�nition of DX , we look at the assignement

U −→ ⟨OX(U),ΘX(U)⟩ ⊂ HomC(OU ,OU )

where ⟨OX(U),Θ(U)⟩ denotes the C-algebra generated by OX(U) and Θ(U) in
HomC(OU ,OU ). This clearly yields a presheaf, but it needs not be a sheaf. We
denote by

⟨OX ,ΘX⟩

its shea��cation. The following Lemma shows that shea��cation is not too
"harmful" in our context.

Lemma 1. Let X be a topological space, let G be a sheaf on X. Let F be a
pre-subsheaf of G. Then Fsh can be described on every open U as

Fsh(U) = {g ∈ G(U) |gx ∈ Fx for all x ∈ U}
= {g ∈ G(U) |For all x ∈ U there exists x ∈ V ⊂ U such that g|V ∈ F(V )}

= {g ∈ G(U) |There exists a covering U =
⋃
i

Ui such that for all i ∈ I, g|Ui
∈ F(Ui)}.

In particular, it is clear in that case that F is a sub-presheaf of Fsh which is
itself a subsheaf of G.

Proof. When you glue the sections in some bigger sheaf, which you can always
do, it doesn't have to remain in the presheaf, precisely because it is not a sheaf.
But clearly it is in the presheaf locally, so you add all the people obtained by
this procedure and can show this is enough.

We get the following explicit description, for every U an element D ∈
HomC(OU ,OU ) belongs to ⟨OX ,ΘX⟩(U) if and only if around every point x ∈ U
a neighboorhood V such that D|V ∈ ⟨OX(V ),ΘX(V )⟩.
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Remark 2. For some open sets U , typically with in�nitely many connected
components, it may happen that

⟨OX(U),ΘX(U)⟩ ≠ ⟨OX ,ΘX⟩(U).

It may also happen for "non-trivial" reasons.

Question 2. Find a "non-trivial" counterexample.

Proposition 1. Let U be an open of X and D ∈ ⟨OX ,ΘX⟩(U). Then for
all x ∈ U there exists a neighborhood V ⊂ U of x that can be chosen to be a
coordinate chart

z = (z1, ..., zn) : V −→ C
n

such that
D|V =

∑
α

m(V )(aα(z))∂
α
z =

∑
α

aα(z)∂
α
z

for some uniquely determined functions aα(z) ∈ OCn(V ).

Proof. The existence of such a V is clear and we leave the reader to check the
unicity of the writing. Because V is a coordinate chart, it is clear that elements
of ΘX(V ) are given by elements of the form

n∑
i=1

m(V )(fi(z))∂zi ,

where the (fi(z))1≤i≤n are holomorphic functions on V . So it is clearly enough
by linearity to show for instance that an element of the form

m(V )(f(z))∂2
z1m(V )(g(z))∂z2 f, g ∈ OX(V )

can be written in the correct way. It is a straightforward computation, we just
move the partial derivatives to the right :

f(z)∂2
z1g(z)∂z2 = f(z)g(z)∂2

z1∂z2 + f(z)[∂2
z1 , g(z)]∂z2

= f(z)g(z)∂2
z1∂z2 + f(z)

∂g

∂z1
(z)∂z1∂z2 + f(z)∂z1

∂g

∂z1
(z)∂z2

= f(z)g(z)∂2
z1∂z2 + f(z)

∂g

∂z1
(z)∂z1∂z2 + f(z)

∂g

∂z1
(z)∂z1∂z2 + f(z)

∂2g

∂z21
(z)∂z2 .

Using this de�nition, we could de�ne the order of D ∈ ⟨OX ,ΘX⟩(U) at
x ∈ U to be the maximal order of derivative that appears when restricted to a
local chart around x and check this doesn't depend on the chart.

We'll give another description of the sheaf of di�erential operators that will
make the order clearly coordinate-independant.
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To do so, we de�ne recursively for sub-presheaves D≤m
X of HomC(OX ,OX)

on each U via the conditions

D≤−1
X (U) = 0,

D≤0
X (U) = {D ∈ HomC(OU ,OU ) | [D(V ),m(V )(f)] = 0

for all V ⊂ U and all f ∈ OX(V )},

D≤m
X (U) = {D ∈ HomC(OU ,OU ) | [D(V ),m(V )(f)] ∈ D≤m−1

X (V )

for all V ⊂ U and all f ∈ OX(V )}, if m ≥ 0.

They turn out to be subsheaves. It is clear by de�nition that

0 = D≤−1
X ⊂ D≤0

X ⊂ D≤1
X ⊂ . . . .

The �rst two steps can be very explicitely described as follows.

Proposition 2. The image of the map of OX-modules

m : OX −→ HomC(OX ,OX)

lies in D≤0
X . Conversely evaluating at the constant function equal to 1 yields a

map of OX-modules
ev1 : D≤0

X −→ OX .

These two maps are inverses of each other, in particular the map m identi�es
OX with D≤0

X .

Proof. Let's be explicit about how ev1 is de�ned. Let U be an open and D ∈
D≤0

X (U), we can evaluate D(U) on the constant function 1U ∈ OX(U) which
yields D(U)(1U ) ∈ OX(U), it is easy to see it de�nes a map of sheaves of
OX -modules

ev1 : D≤0
X −→ OX .

I claim that it is straightforward to check m ◦ ev1 = idD≤0
X

and ev1 ◦ m =

idOX
.1

Let's now turn to the next part of our �ltration. Now that we know D≤0
X ≃

OX , it is straightforward from the de�nition of ΘX to check that

ΘX ⊂ D≤1
X .

Let U ⊂ X and D ∈ D≤1
X (U), by our de�nition, for all V ⊂ U and f ∈ OX(V )

we have
[D(V ),m(V )(f)] ∈ D≤0(V ).

1This is not any deeper than checking the following fact : let R be a commutative C-algebra
and M ∈ EndC(R), if M commutes with all operators of multiplication mf : r ∈ R 7→ f ·r ∈ R
for f ∈ R then M = mM(1) and conversely mf = mmf (1) for all f ∈ R.
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But we have just shown that D≤0
X ≃ OX . Explicitely,

[D(V ),m(V )(f)] = m(V )([D(V ),m(V )(f)](1V )) = m(V )(D(V )(f)−fD(V )(1V )),

hence we have built a morphism of OX -modules

p : D≤1
X −→ HomC(OX ,D≤0

X ) = HomC(OX ,OX)

that (all identi�cations done and being loose on the open sets) associates to a

D ∈ D≤1
X the map f ∈ OX 7→ [D, f ](1) ∈ OX . We can say a bit more, let

f, g ∈ OX(V ) then

[D(V ),m(V )(fg)] = [D(V ),m(V )(f)m(V )(g)]

= [D(V ),m(V )(f)]m(V )(g) +m(V )(g)[D(V ),m(v)(f)]

that is exactly the same as saying, loosely :

p(D)(fg) = p(D)(f)g + fp(D)(g)

i.e. the image of p lies in ΘX ⊂ HomC(OX ,OX).

Remark 3. This whole discussion can feel very formal, but we are just saying
that from the order one di�erential operator z4 ∂

∂z + 12z to recover the operator

z4 ∂
∂z it is enough to do the bracket with the operator of multiplication by f ,

which yields the operator of multiplication by z4 ∂f
∂z and evaluate on the unit.

Proposition 3. The following diagram of sheaves of OX-modules is commuta-
tive with exact rows and columns

ΘX

D≤0
X D≤1

X ΘX

OX

id

f p

ev1m

.

In particular the short exact sequence of OX-modules

0 −→ D≤0
X −→ D≤1

X

p−→ ΘX −→ 0,

and
0 −→ ΘX −→ D≤1

X
ev1−→ OX −→ 0

are split and after identifying OX with D≤0
X via m we have, as sheaves of OX-

modules, the equality

D≤1
X = D≤0

X ⊕ΘX = OX ⊕ΘX .
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Proof. Exercice.

Now that we have a bit more intuition as to why this inductive de�nition
makes sense, we de�ne the following presheaf

Dpre
X : U 7−→

⋃
n≥0

D≤n
X (U).

Proposition 4. For all m,m′ ≥ 0 and all open U ⊂ X we have

D≤m
X (U) ◦ D≤m′

X (U) ⊂ D≤m+m′

X (U),

[D≤m
X (U),D≤m′

X (U)] ⊂ D≤m+m′−1
X (U).

In particular, D≤1
X is a sheaf of Lie algebras and Dpre

X (U) =
⋃

m>0 D
≤m
X (U) is

an OX(U)-�ltered algebra that is quasi-commutative, that is to say such that the
graded OX(U)-algebra ⊕

m≥0

D≤m
X (U)/D≤m−1

X (U)

is commutative.

Proof. Exercice, this follows either from the explicit formulas for the principal
symbol or the Jacobi identity.

We de�ne DX as the shea��cation of Dpre
X . To put it "explicitely" :

DX(U) = {D ∈ HomC(OU ,OU )|For all x ∈ U , there exists mx ∈ N such that Dx ∈ (D≤mx

X )x}

= {D ∈ HomC(OU ,OU )|For all x ∈ U , there exists mx ∈ N and x ∈ V ⊂ U s.t. D|V ∈ D≤mx

X (V )}.

We will write loosely

DX =
⋃
m≥0

D≤m
X .

It follows from the previous proposition that for all m,m′ ∈ N we have well
de�ned multiplication maps of sheaves of OX -modules

D≤m
X ×D≤m′

X −→ D≤m+m′

X

that make
DX =

⋃
m≥0

D≤m
X

into a sheaf of Z-�ltrered associative OX -algebras.

Remark 4. The order of a di�erential operator on an open U i.e. of an element
of DX(U) is only de�ned locally on U . In fact let D ∈ DX(U), then for all x ∈ U

by assumption there exists a unique mx ∈ N such that Dx ∈ (D≤mx

X )nx and

Dx /∈ (D≤mx−1
X )x. We say that mx is the order of P at x. We'll see later that

the order de�nes a locally constant function in particular, shea��cation doesn't
change anything on a connected open set U i.e. we have

DX(U) =
⋃
m≥0

DX(U) = Dpre
X (U).
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We now explain how to derive a commutative object from DX . De�ne for
each m ∈ N the sheaf of OX -modules Grm(DX) to be the quotient sheaf of D≤m

X

by its subsheaf D≤m−1
X . By de�nition it �ts in an exact sequence of OX -modules

0 −→ D≤m−1
X −→ D≤m

X −→ Grm(DX) −→ 0.

We recall that by de�nition Grm(DX) = D≤m
X /D≤m−1

X is the shea��cation of
the presheaf

U 7−→ D≤m
X (U)/D≤m−1

X (U).

Remark 5. For an open set U , it might happen that

Grm(DX)(U) ̸= D≤m(U)/D≤m(U).

This fact has to do with sheaf cohomology as we'll see later.

We can de�ne Gr(DX) to be the sheaf associated with the presheaf of OX -
modules

U 7→
⊕
m≥0

D≤m(U)/D≤m−1(U).

So that we have, and there is a little something to check I think, as sheaves of
OX -modules, the equality

Gr(DX) =
⊕
m≥0

Grm(DX).

Proposition 5. For all pair of integers m,m′ ∈ Z, the multiplication map

D≤m
X ×D≤m′

X −→ D≤m+m′

X

de�nes a map of sheaves of OX-modules

Grm(DX)×Grm
′
(DX) −→ Grm+m′

(DX).

These maps in turn de�ne a structure of a sheaf of a Z-graded commutative

OX-algebra on

Gr(DX) =
⊕
m≥0

Grm(DX).

Remark 6. Again, for an open set U , it might happen that

Gr(DX)(U) ̸=
⊕
m≥0

D≤m
X (U)/D≤m−1

X (U).

It can happen for stupid reasons, for instance if U has an in�nite number of
connected components then it can clearly almost never work because of the in�-
nite direct sum. And it can happen for deeper reasons, that have to do with the
previous remark and are related to sheaf cohomology.
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Question 3. When U is connected, do we need to shea�fy the in�nite direct
sum ? That is do we have the equality

Gr(DX)(U) =
⊕
m≥0

Grm(DX)(U) ?

Answer : No need to shea�fy

The following theorem shows that our two de�nitions of di�erential operators
coincide. In particular the order of a di�erential operator near a point is a well-
de�ned notion that is independant of coordinates. It will also allows us to
describe explicitely the associated graded sheaf.

Theorem 1. The equality of sheaves of OX-modules

DX = ⟨OX ,ΘX⟩

holds inside of HomC(OX ,OX).

Proof. We start by the easy inclusion, let D ∈ ⟨OX ,ΘX⟩(U), then for each
x ∈ U there exists x ∈ V ⊂ U such that

D|V ∈ ⟨OX(V ),ΘX(V )⟩

so in particular, since OX = D≤0
X (V ) and ΘX(V ) ⊂ D≤1

X (V ) then it is clear
from Proposition 4 that there exists nx ∈ N such that

D|V ∈ D≤nx

X (V )

and so D ∈ DX(U). The reverse inclusion is more subtle, let D ∈ DX(U) then
for each x ∈ U there exists x ∈ V ⊂ U and nx ∈ N such that

D|V ∈ D≤nx

X (V ),

if we show that there exists an open neighbourhood W ⊂ V of x such that
D≤nx

X (W ) ⊂ ⟨OX(W ),ΘX(W )⟩ we are done. To do so, we may shrink V as we
please and assume for instance that we are on a coordinate chart mapping x to
0

(z1, ..., zn) : V −→ C
n,

so the proof reduces to that of the following Lemma.

Lemma 2. Let V an open neighbourhood of 0 in Cn. Then for all m ∈ N and
all D ∈ D≤m

Cn (V ) there exists an neighbourhood W ⊂ V of 0 such that

D|W ∈ ⟨OCn(W ),ΘCn(W )⟩.

Proof. Let D ∈ D≤m
Cn (V ) ⊂ HomC(OV ,OV ), looking at the stalk at 0, it de�nes

a C-linear morphism
D0 : OCn,0 −→ OCn,0.
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The following equality holds in EndC(OCn,0)

[...[[D0, f1], f2, ..., fm+1]] . . . ] = 0,

for all f1, ..., fm+1 ∈ OCn,0. But since

OCn,0 ≃ C{z1, ..., zn},

it is enough to show the following Lemma

Lemma 3. Letm ∈ N and D ∈ EndC(C{z1, ..., zn}) such that for all P1, ..., Pm+1 ∈
C{z1, ..., zn} we have the following equality in EndC(C{z1, ..., zn})

[...[[D,P1], P2], ..., Pm+1] = 0.

Denote by D≤m(C{z1, ..., zn}) the set of all such D. Then there exists a family
(aα)α∈Nn ∈ C{z1, ..., zn} such that

D =
∑
α∈Nn

aα∂
α
z

and Pα = 0 for all α ∈ Nn such that |α| > m.

Proof. We proceed by induction on m. If m = 0 this is easy (we've seen it in

a more general context, recall the proof of the equality of sheaves D≤0
X = OX).

Let m ∈ N such that the statement holds and let D ∈ EndC(C{z1, ..., zn}) such
that for all P1, ..., Pm+2 ∈ C{z1, ..., zn} we have

[...[[D,P1], P2], ..., Pm+2] = 0.

Then clearly if we set for all i ∈ {1, ..., n},

Di = [D, zi] ∈ EndC(C{z1, ..., zn})

then Di ∈ D≤m(C{z1, ..., zn}) and moreover

[Di, zj ] = [[D, zi], zj ] = [[D, zj ], zi] = [Dj , zi]

for all i, j ∈ {1, ..., n}. Assume momentaneously that there exists

D̃ ∈ D≤m+1(C{z1, ..., zn})

such that for all i ∈ {1, ..., n} we have

[D̃, zi] = Di.

Then
[D − D̃, zi] = [D, zi]− [D̃, zi] = Di −Di = 0

for all i ∈ {1, ..., n}. It follows from Lemma 4 below thatD−D′ ∈ D≤0(C{z1, ..., zn}) =
C{z1, ..., zn} then we are done.
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We come back to the proof of the existence of D̃. By induction hypothesis
we know that for all i ∈ {1, ..., n} there exists aiα ∈ C{z1, ..., zn} such that

Di = [D, zi] =
∑

|α|≤m

aiα∂
α
z .

Now forget about D, it is a general fact of di�erential operators that if a family
(Di)1≤i≤n of di�erential operators of order ≤ m satisfy2

[Di, zj ] = [Dj , zi]

then they come from an operator of degree at most one more, i.e. there exists
D̃ of order ≤ m+ 1 such that

[D̃, zi] = Di.

We look for D̃ in the form

D̃ =
∑

|α|≤m+1

Aα(z)∂
α
z .

The following equality of operators hold

[∂α
z , zi] = αi∂

α−ei
z ,

where ei = (0, ...,
i
1, ..., 0), and hence

[D̃, zi] =
∑

|α|≤m+1

αiAα(z)∂
α−ei
z

now this is equal to Di =
∑

|α|≤m aiα(z)∂
α
z =

∑
α aiα−ei∂

α−ei
z if and only if for

all α we have
αiAα(z) = aiα−ei(z).

So for each α such that |α| > 0 i.e. such that there exists i ∈ {1, ..., n} such
that αi ̸= 0 we set

Aα(z) =
1

αi
aiα−ei(z).

To show this doesn't depend on i we need to show that for each |α| ≤ m such
that αi ̸= 0 and αj ̸= 0 we have

αja
i
α−ei = αia

j
α−ej

but this follows from the equality

[Di, zj ] = [Dj , zi].

2This condition looks "Fourier dual" to a Schwarzian integrability condition if m = 1, is
there a bigger picture ?
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In fact, if i ̸= j we have

[Di, zj ] =
∑
α

αja
i
α(z)∂

α−ej
z

α′=α+ei=
∑
α′

α′
ja

i
α′−ei∂

α′−ej−ei
z ,

[Dj , zi] =
∑
α

αia
j
α(z)∂

α−ei
z

α′=α+ej
=

∑
α′

α′
ia

j
α′−ej

∂α′−ei−ej
z ,

and that yields the desired equality looking at the term corresponding to a given
α′ such that α′

i ̸= 0 and α′
j ̸= 0 because for such an α′, we have

α′ − ei − ej ≥ 0.

Lemma 4. Let D ∈ EndC(C{z1, ..., zn}) such that for all i ∈ {1, ..., n} we have

[D, zi] = 0,

then for all f ∈ C{z1, ..., zn},
[D, f ] = 0.

Hence D ∈ D≤0(C{z1, ..., zn}) = C{z1, ..., zn}.

Proof. Here's an indication on how to prove it :
Any element of f ∈ C{z1, ..., zn} can be written (in a highly non unique way

when n ≥ 2)
f = f(0) + z1f1 + ...+ znfn

so
[D, f ] = [D, f1]z1 + ...+ [D, fn]zn

and iterating there is a problem... because it should map into⋂
m>0

(z1, ..., zn)
m = 0

so this is the zero map.

Proposition 6. Let U be an open set of X and D ∈ DX(U) then for all x ∈ X
there exists a unique mx ∈ N called the order of D at x such that

Dx ∈ (D≤mx

X )x \ (D≤mx−1
X )x.

The function
x ∈ U 7−→ mx ∈ N

13



is locally constant and hence constant if U is connected. Consequently for any
connected open U , we have the equality of OX(U)-algebras

DX(U) =
⋃
m≥0

D≤m
X (U) = Dpre

X (U).

Moreover for all choice of coordinates on a connected open neighborhood V of x
say

z : V −→ C
n

there exists uniquely determined functions aα ∈ OCn(z(V )) such that in HomC(OV ,OV )
we have

D|V =
∑

|α|≤mx

aα(z)∂
α
z .

Proof. The existence of such an mx is clear by de�nition. Fix coordinates on
some connected open neighborhood V of x. By assumption there exists an open
W x, which we may choose connected and inside of V , such that

D|W ∈ D≤mx

X (W x)−D≤mx−1
X (W x).

With our choice of coordinates and thanks to the previous theorem, up to maybe
shrinking W x, there exists aW

x

α ∈ OCn(z(W x)) such that

D|Wx =
∑

α≤mx

aW
x

α (z)∂α
z .

The same holds for any point y ∈ V , namely there exists a connected open
W y ⊂ V containing y such that there exists aW

x

α ∈ OCn(z(W y)) such that

D|Wy =
∑

α≤my

aW
y

α (z)∂α
z .

Now for all x, y ∈ V such that

W x ∩W y ̸= ∅,

which happens for instance when y ∈ W x, we have the equality in DX(W x∩W y)

D|Wx∩Wy = D|Wy∩Wx

that is in particular∑
α≤mx

aW
x

α (z)
∣∣
Wx∩Wy∂

α
z =

∑
α≤my

aW
y

α (z)
∣∣
Wy∩Wx∂

α
z .

so using unicity of the writing we get that for all α :

aW
x

α (z)
∣∣
Wx∩Wy = aW

y

α (z)
∣∣
Wy∩Wx

14



In particular for all α such that |α| > mx the previous equality becomes

0 = aW
y

α (z)
∣∣
Wy∩Wx .

Now by analytic continuation because W y is connected and W y ∩W x ̸= ∅ we
get that aW

y

α (z) = 0 and hence my ≤ mx so by symmetry mx = my and hence
the fact that the order is constant on W x and hence locally constant. We have
an open covering

V =
⋃
x∈V

W x

and because V is connected we have mx = my = m for all x, y ∈ V . For all α
such that |α| ≤ m we have by unicity again

aW
x

α (z)
∣∣
Wx∩Wy = aW

y

α (z)
∣∣
Wy∩Wx .

So for each α they glue to a certain holomorphic function aα ∈ OX(V ) such
that for all x ∈ V the following equality holds in OX(W x)

aα(z)
∣∣
Wx = aW

x

α (z).

Now it is clear from the fact that DX is a sheaf that

D|V =
∑

|α|≤m

aα(z)∂
α
z .

Remark 7. We note that this proves the expected fact that for all n ≥ 0 the
associative OCn(Cn)-algebra of global di�erential operators on Cn

DCn(Cn)

consists of all the elements of the form∑
α

aα(z)∂
α
z .

In particular for each m ∈ N, the sheaf of OX-modules D≤m
X is a locally free

of �nite rank i.e. corresponds to a �nite dimensional vector bundle. Explicitely
for each connected coordinate chart U in coordinates z1, ..., zn we have an iso-
morphism of OU -modules

D≤m
U ≃

⊕
|α|≤m

OU∂
α
z .

In fact for every (possibly non connected) coordinate chart U in coordinates
z1, ..., zn, we have

DU ≃
⊕
α

OU∂
α
z

15



where the right hand side is the appropriately de�ned (=shea��ed) in�nite direct
sum of sheaves. On every connected open set V ⊂ U , analytic continuation
ensures that

DX(V ) =
⊕
α

OX(V )∂α
z .

So maybe one motivation for saying everything in terms of sheaves is to have
a �exible setting that allows one to speak of DX , an in�nite dimensional vector
bundle, without every thinking of its transition maps as "in�nite dimensional"
matrices.

We can now describe the sheaf Gr(DX).

Proposition 7. We have the equality of sheaves of OX-modules

Gr0(DX) = OX ,Gr1(DX) = ΘX .

That de�nes a map of sheaves of graded commutative OX-algebras

SymOX
(ΘX) −→ Gr(DX).

which is an isomorphism. In particular, for all m ≥ 0 we have an isomorphism
of sheaves of OX-modules

Symm
OX

(ΘX) −→ Grm(DX).

Sketch of proof. The construction of the map is clear by playing around with
universal properties, to see this is an isomorphism one can work locally and then
it is clear in local coordinates.

Remark 8. Give the interpretation in terms of the cotangent bundle. Sym
in the notation stands for symmetric, funnily enough, it stands for (principal)
symbol at the same time, so it's a really good notation.

2 Di�erential operators on the projective line

Let P1
C
= P1 be the projective line over the complex number. It is covered by

two charts

P
1 \ {∞} = Cz,

P
1 \ {0} = Cw,

and on the intersection, i.e. on P1 \ {0,∞} the change of coordinate is given by

z ∈ C∗
z −→ 1

w
∈ C∗

w.

In the previous section we de�ned the sheaf DP1 of di�erential operators on
P1. Here we want to describe the global di�erential operators on the projective
line

DP1(P1),
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as a OP1(P1)-algebra.
First recall that OP1(P1) = C because any holomorphic function P1 −→ C

needs to be bounded and hence constant. So really what we are describing is a
(a priori non-commutative) C-algebra.

Because P1 is connected, the order of a global di�erential operator is well
de�ned, that is, as C-algebras we have

DP1(P1) =
⋃
m≥0

D≤m
P1 (P1).

We have the following equality of C-vector spaces

D≤1
P1 (P

1) = OP1(P1)⊕ΘP1(P1) = C⊕ΘP1(P1).

where ΘP1(P1) is the Lie algebra of global vector �elds on P1. Let us �rst
compute ΘP1(P1).

Lemma 5. The Lie algebra ΘP1(P1) is 3-dimensional with basis f, h, e satisfying

[h, f ] = −2f,

[e, f ] = h,

[h, e] = 2e.

That is, there is an isomorphism of Lie algebra

ΘP1(P1) ≃ sl2.

Proof. Let θ ∈ ΘP1(P1) then by de�nition,

θ|Cz
= a(z)∂z,

θ|Cw
= b(w)∂w,

for some a ∈ OCz
(Cz) and b ∈ OCw

(Cw). Now because θ is globally de�ned it
means that the vector �elds coincide on the intersection i.e. on they agree on

C
∗
z ≃ P

1 \ {0,∞} ≃ C
∗
w.

In the coordinate w that means we have, as vector �elds on C∗
w the equality

a(
1

w
)(−w2)∂w = b(w)∂w.

That is, for all w ∈ C∗
w we have

b(w) = −w2a(
1

w
)

which implies that f , and g are both polynomials of order at most 2. That is
we can write

a(z) = a0 + a1z + a2z
2, a0, a1, a2 ∈ C,

b(w) = b0 + b1w + b2w
2, b0, b1, b2 ∈ C,
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and the equality b(w) = −w2a( 1
w ) implies

b0 + b1w + b2w
2 = −w2a0 +−af1 − a2

i.e.

b0 = −a2

b1 = −a1

b2 = −a0.

So a C-basis of the Lie algebra of global vector �elds is for instance, symbolically
given by the vector �elds

e = −∂z = w2∂w,

h = −2z∂z = 2w∂w,

f = z2∂z = −∂w.

Then one easily sees that (by computing on each chart) that they satisfy the
commutation relation of sl2.

Remark 9. Another way to see it is to say that SL2 acts on P1 and so by
di�erentiating the action sl2 lies in ΘP1(P1).

So far we have described the global di�erential operators of order ≤ 1, we
have that

D≤1
P1 (P

1) = C⊕ sl2.

It is harder to deal with higher order di�erential operators by looking ex-
plicitely at the change of coordinates. In fact, �x an operator of order 2 on each
chart

Dz = a0(z) + a1(z)∂z + a2(z)∂
2
z ,

Dw = b0(w) + b1(w)∂w + b2(w)∂
2
w,

with holomorphic coe�cients. They glue if and only if they coincide on the
intersection after change of coordinates, that is, if and only if

a0(
1

w
) + a1(

1

w
)(−w2)∂w + a2(

1

w
)(−w2)∂w(−w2)∂w

= a0(
1

w
)− w2a1(

1

w
)∂w − w2a2(

1

w
)(−w2)∂w∂w − w2a2(

1

w
)(−2w)∂w

= a0(
1

w
)− w2a1(

1

w
)∂w − w2a2(

1

w
)(−w2)∂w∂w − w2a2(

1

w
)(−2w)∂w

= b0(w) + b1(w)∂w + b2(w)∂
2
w.
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That is to say if and only if for all w ∈ C∗
w we have

b0(w) = a0(
1

w
), (1)

b1(w) = −w2a1(
1

w
) + 2w3a2(

1

w
), (2)

b2(w) = w4a2(
1

w
). (3)

This is still manageable, and maybe this is explicit enough for many purposes.
Notice that the top coe�cients a2 and b2 behave "nicely" i.e. the glueing con-
ditions look familiar. It is a general feature of the principal symbol of a dif-
ferential operator, the condition (3) is nothing by the glueing condition of the
tensor product of the tangent sheaf with itself, namely this is nothing but us
explicitely looking at the sheaf equality

Gr2(DP1) = Sym2(ΘX) = ΘX ⊗ΘX ,

that we already proved !
Hopefully this serves as a motivation to show that the tools we introduced

before are there to help us make explicit computations. The additional
algebraic input will be the representation theory of the Lie algebra sl2.

Let's begin, because DP1(P1) is an associative algebra, there exists a mor-
phism of associative algebras

φ : U(sl2) −→ DP1(P1),

where U(sl2) is the universal enveloping algebra of the Lie algebra sl2. This is
de�ned via generators and relations as the quotient of the tensor algebra

T (sl2) =
⊕
n≥0

(sl2)
⊗n = C⊕ sl2 ⊕ (sl2 ⊗C sl2)⊕ ...

obtained by imposing the de�ning relations of sl2 i.e. asking that

h⊗ f − f ⊗ h = −2f,

e⊗ f − f ⊗ e = h,

h⊗ e− e⊗ h = 2e.

The image of φ inside of DP1(P1) is the C-subalgebra generated by sl2 i.e. the
subalgebra of global di�erential operators generated by global vector �elds.

By de�nition, T (sl2) is a �ltered algebra, so we can de�ne a �ltration on its
quotient U(sl2) by mean of that �ltration. Precisely we de�ne for all m ∈ Z

U(sl2)≤m = π(T ≤m(sl2))

where π : T (sl2) −→ U(sl2) is the quotient map. Recall the following Theorem
in the case of the Lie algebra sl2, it explicitely describes the graded algebra
associated with the previously described �ltration
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Theorem 2 (Poincaré-Birkho�-Witt). The following family of elements of
U(sl2)

(fαhβeγ)α,β,γ∈N

form a C-basis of U(sl2). More precisely, for each m ∈ N, the family of elements
of U(sl2)

(fαhβeγ)α+β+γ≤m

forms a basis of U≤m(sl2). The associated graded algebra of U(sl2) is isomorphic
to the symmetric algebra on the generators (of degree one) f, h and e. That is
to say there exists an isomorphism of graded C-algebras

Sym(sl2) = C[f, h, e] ≃ Gr(U(sl2)).

The map of associative algebras φ : U(sl2) −→ DP1(P1) previously de�ned
is compatible with the �ltrations on both side.

We are now in following general setting, we have a �ltered map φ between
two �ltered associative algebras. And to check if it is an isomorphism (between
non-commutative objects), it is enough to check if it is an isomorphism at the
level of the associated graded algebras (that so happen to be commutative here).

Hence, before applying this general idea, we �rst need to describe the asso-
ciated graded of the associative algebra

DP1(P1) =
⋃
m≥0

D≤m
P1 (P1).

For eachm ∈ N, by the very de�nition of the sheaf ofOP1-modules Grm+1DP1 ,
we have a short exact sequence of OP1-modules

0 −→ D≤m
P1 −→ D≤m+1

P1 −→ Grm+1DP1 −→ 0,

for m = 0 this is an exact sequence that we have already encountered

0 −→ OX −→ D≤1
P1 −→ ΘP1 −→ 0.

In general, we have explained that for all m ≥ 0 we have the equality of sheaves
of OX -modules

Grm(DP1) = Symm(ΘP1).

Lemma 6. Let m ≥ 0, then we have the equalities of sheaves of OX-modules

Symn(ΘP1) = Θ⊗m
P1 .

In particular we have,

dimC(Θ
⊗m
P1 (P1)) = 2m+ 1.
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Proof. Because ΘX is a locally free sheaf of rank 1 i.e. a line bundle, its sym-
metric and tensor powers are equal and are again locally free sheaves of rank r.
This is not any deeper than the fact that

Sm
R (R) = R⊗m = R⊗R ...⊗R R = R

for any ring R. So we are left to describe what line bundle is Θ⊗m
X . Let's be

very explicit, clearly when restricting to say the open Uz, the multiplication of
OUz

yields an isomorphism between the presheaf on Uz

U 7−→ Θ⊗m
Uz

≃ O⊗m
Uz

and the sheaf OUz
. This says that we don't need to shea�fy our de�nition of

(iterated) tensor product when looking at open sets contained in Uz or Uw. Now
because Θ⊗m

P1 is a sheaf, to give a section of P1 is the same as giving sections on
Uz and Uw that transform accordingly under change of coordinates. A section
on Uz is, because by the previous remark we don't need to shea�fy,

f1(z)∂z ⊗ f2(z)∂z ⊗ ...⊗ fm(z)∂z = f1(z)...fm(z)(∂z ⊗ ...⊗ ∂z) ≃ f1(z)...fm(z)

where f1, ..., fm ∈ OUz (Uz). For each i ∈ {1, ...,m}, the vector �eld fi(z)∂z
written in coordinate w becomes −w2fi(

1
w )∂w.

Summing up we are looking for holomorphic functions f1, ..., fm ∈ OUz
(Uz)

(resp. g1, ..., gm ∈ OUw
(Uw)) that satisfy for each w ∈ C∗ the equality

(−1)mw2mf1(
1

w
)...fm(

1

w
) = g1(w)...gm(w).

Now it is trivial to note that when f1, ..., fm describes OUz (Uz) then so does
their product F , and the same goes with g1, ..., gm by calling the product G.
So global sections of Θ⊗m

P1 are in bijection with holomorphic functions F and G
satisfying for all w ∈ C∗ the equality

(−1)mw2mF (
1

w
) = G(w),

i.e. polynomials of degree at most 2m. Clearly this is a vector space of degree
2m+ 1.

Remark 10. For those who know about the family of sheaves OP1(m) on P1

for m ∈ Z, it is clear that ΘP1 = O(2) and we are of course just iterating the
fact that

OP1(m)⊗O
P1

OP1(m′) = OP1(m+m′).

Seeing tensor products of sheaves for the �rst time can be confusing. In partic-
ular these sheaves give an example as to why we need to shea�fy the de�nition
of tensor products. For instance the global sections of ΘP1 ⊗P1 ΘP1 is a vector
space of dimension 5 as we explained. But it is not equal to the "naive guess"
(i.e the value of the presheaf) which is equal to ΘP1(P1) ⊗C ΘP1(P1), a vector
space of dimension 3 ∗ 3 = 9 ! Looking at the proof, it really boils down to
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the following fact, when multiplying two polynomials f1, f2 of degree ≤ 2 in the
variable z, one always gets a polynomial F of degree ≤ 4. But a polynomial of
degree ≤ 4 may not be written uniquely in that form

z2 = z · z = z2 · 1 = 1 · z2.

It is good for these kind of issues to keep in mind the example of the tensor
product of Ω1 (the sheaf of di�erential 1-forms = the cotangent bundle = O(−2))
and ΘX (the sheaf of vector �elds = the tangent bundle = O(2)) which gives
OX although there is no globally de�ned holomorphic 1-form on P1.

Hence we have an exact sequence of OP1-modules

0 −→ D≤m
P1 −→ D≤m+1

P1 −→ Θ⊗m
P1 −→ 0

looking at global sections yields the exact sequence of C-vector spaces (= OP1(P1)−
modules)

0 −→ D≤m
P1 (P1) −→ D≤m+1

P1 (P1) −→ Θ⊗m
P1 (P1).

There is no zero on the right, and this is not a mistake ! Taking global sections is
a left exact operation, in a sense this is the reason why one needs to shea�fy the
de�nition of quotients (see Remark 5). The very de�nition of sheaf cohomology
shows that there is a long exact sequence

0 −→ D≤m
P1 (P1) −→ D≤m+1

P1 (P1) −→ Θ⊗m
P1 (P1)

−→H1(P1,D≤m
P1 ) −→ H1(P1,D≤m+1

P1 ) −→ H1(P1,Θ⊗m
P1 )

−→H2(P1,D≤m
P1 ) −→ H2(P1,D≤m+1

P1 ) −→ H2(P1,Θ⊗m
P1 )

−→ . . .

For dimension reasons, the cohomology of the sheaves we consider vanishes
starting from degree 2. That is we have an exact sequence of C-vector spaces

0 −→ D≤m
P1 (P1) −→ D≤m+1

P1 (P1) −→ Θ⊗m
P1 (P1)

−→ H1(P1,D≤m
P1 ) −→ H1(P1,D≤m+1

P1 ) −→ H1(P1,Θ⊗m
P1 ) −→ 0. (*)

We can compute the �rst cohomology groups of the line bundles that appear.

Lemma 7. We have
H1(P1,OP1) = 0,

and more generally for all m ≥ 0, we have

H1(P1,Θ⊗m
P1 ) = 0.

Proof. Omitted.

From there we can show
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Proposition 8. For all m ≥ 0,

H1(P1,D≤m
P1 ) = 0

and
Grm(DP1)(P1) = Θ⊗m

P1 (P1).

In particular
dimC(Gr

m(DP1)(P1)) = 2m+ 1.

Proof. It is clear by induction on m, the previous lemma and the long exact
sequence (*). The computation of the dimension what done in Lemma 6.

Let's come back to our problem, we want to check if

φ : U(sl2) −→ DP1(P1)

is an isomorphism of �ltered associative algebras. Passing to the graded objects
we get a graded morphism

Gr(φ) : Gr(U(sl2)) ≃ C[f, h, e] −→ Gr(DP1(P1)) =
⊕
m≥0

Θ⊗m
P1 (P1).

To check if it is an isomorphism we can check degree by degree

Gr0(φ) : C −→ C,

Gr1(φ) : fC⊕ hC⊕ eC −→ ΘP1(P1),

Gr2(φ) : f2
C⊕ h2

C⊕ e2C⊕ feC⊕ fhC⊕ heC −→ Θ⊗2
P1 (P

1).

But there clearly is a problem in degree 2 because the dimensions don't match,
the dimension of the left hand side is 6 while on the right we computed it to
be 5. This can mean two things, either we have been too optimistic and missed
a relation in degree 2 in DP1(P1) and moding out by this relation will give the
correct answer. Or that there are too much relation of order higher than one
between the vector �elds inside of DP1(P1) and it is not even true that DP1(P1)
is generated by OP1(P1) and ΘP1(P1).

Question 4. Can one formulate a su�cient condition on X so that DX(X) is
generated as an associative algebra by OX(X) and ΘX(X) ?

Let's try and �nd a relation, it is natural from the perspective of Lie theory
to look at the following element, known as the Casimir element

C =
1

2
h2 + ef + fe ∈ U(sl2),
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its importance lies in the fact that it generates the center of U(sl2). It corre-
sponds to the vector �eld , in the z-coordinate it corresponds to

C =
1

2
(−2z∂z)(−2z∂z)− ∂zz

2∂z + z2∂z(−∂z)

= 2z∂zz∂z − ∂zz
2∂z − z2∂z∂z

= 2z2∂z∂z + 2z∂z − z2∂z∂z − 2z∂z − z2∂z∂z

= 0.

and a similar computation shows it too in the w-coordinate.

Remark 11. This could have been expected because algebras of di�erential op-
erators typically don't have central elements ? Can I prove it thought ?

We have shown that the map of �ltered associative algebras

φ : U(sl2) −→ DP1(P1)

factors through the quotient U(sl2)0 of U(sl2) by the two-sided ideal generated
by the Casimir element. Hence we have de�ned a morphism of �ltered associa-
tive algebras

φ̃ : U(sl2)0 −→ DP1(P1).

The result is the following, the rest of this section is devoted to proving it.

Theorem 3. The morphism of associative algebras

φ̃ : U(sl2)0 = U(sl2)/((
1

2
h2 + ef + fe)U(sl2)) −→ DP1(P1)

is an isomorphism.

Both side carry an action of sl2, on the left it comes from the adjoint action
and on the right it comes from the inclusion

sl2 = ΘP1(P1) ⊂ DP1(P1)

by having x ∈ sl2 acting as [x, ·] on DP1(P1). It is clear from the fact that φ
is a morphism of associative algebra that it is a morphism of sl2-modules with
respect to these structures. Moreover it is clear that CU(sl2) is a sl2-submodule
of U(sl2). For all x ∈ sl2 and all y ∈ U(sl2) we have

[x,Cy] = C[x, y]

because C is central. Hence CU(sl2) is isomorphic to U(sl2) as an sl2-module.
First let's show that φ is surjective. For all m ∈ N, the vector em ∈ U(sl2)

is clearly an highest weight vector of weight 2m. It is mapped by φ to the
di�erential operator em ∈ Symm(ΘP1)(P1) which in the z-chart reads

(−1)m∂m
z ,
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in particular it is nonzero. As such it is an highest weight vector of weight 2m so
the sl2-submodule generated by it is of dimension 2m+1. For dimension reasons
we see that it is the whole of Symn(ΘP1)(P1), that proving the surjectivity of φ
and hence of φ̃.

Injectivity is more subtle. We have a surjective map between two semisimple
sl2-modules, so to conclude we have an isomorphism it is enough to explain why
both side have the same decomposition in simple sl2-modules. To show this,
we'll make use of a certain notion of character, it measures the "size" of a graded
vector space with �nite dimensional graded pieces. To be more precise, there
are two gradations in our setting, one is given by the weight with respect to the
action of ad(h) and the other is given by the degree. On then enveloping algebra
U(sl2), the degree gradation is the usual grading of the polynomial algebra

Gr(U(sl2)) = C[f, h, e]

by requiring that deg(f) = deg(h) = deg(e) = 1 (Recall that as C-vector
spaces, U(sl2) ≃ Gr(U(sl2))). On the right hand side, it is the gradation given
by the order of the di�erential operator. For a Z-bigraded C-vector spaces
V =

⊕
m,m′∈Z Vm,m′ such that each Vm,m′ is of �nite dimension, we de�ne its

character by

ch(V ) =
∑
m,m′

dimC(Vm,m′)xmtm
′
∈ Z[[x±1, t±1]].

So the variable x indicates the weight gradation and the variable t the degree
gradation.

Remark 12. Be careful that in what follows, whenever we take the character of
a graded vector space, it is is assumed to have �nite dimensional graded pieces
with respect to our gradation.

Proposition 9. For any short exact sequence of Z2-graded modules

0 −→ A −→ B −→ C −→ 0

we have
ch(B) = ch(A) + ch(C).

And for all pair A,B of Z2-graded vector spaces, we have

ch(A⊗C B) = ch(A)ch(B).

For any family of graded vector spaces (Am)m∈N, we have

ch(
⊕
m∈N

Am) =
∑
m∈N

ch(Am).

Proof. Omitted.
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For each k ∈ N, we denote by L(k) the simple representation of sl2 of highest
weight k. Its character with respect to the Z-gradation given by the h-weights
is given by

ch(L(k)) = x−k + x−k+2 + ...+ xk−2 + xk =
xk+1 − x−k−1

x− x−1
.

We have explained before that as sl2-modules we have

Symm(ΘP1)(P1) = L(2m),

so

ch(Gr(DP1(P1))) = ch(
⊕
m∈N

L(2m)) =
∑
m≥0

ch(L(2m)) =
∑
m≥0

x2m+1 − x−2m−1

x− x−1
tm.

To compute the character of the enveloping algebra side, notice we have an
exact sequence of sl2-modules

0 −→ CU(sl2) −→ U(sl2) −→ U(sl2)0 −→ 0.

It is an exact sequence of Z2-graded modules, so we have the equality

ch(U(sl2)0) = ch(U(sl2))− ch(CU(sl2)).

As we noticed U(sl2) and CU(sl2) are isomorphic as sl2-modules, and only the
degree is shifted by this isomorphism, so we have

ch(CU(sl2)) = t2ch(U(sl2)).

That readily implies the equality

ch(U(sl2)0) = (1− t2)ch(U(sl2)).

Now it is clear from the equality of graded vector spaces

U(sl2) = C[f, h, e] = C[f ]⊗ C[h]⊗ C[e]

that

ch(U(sl2)) = ch(C[f ])ch(C[h])ch(C[e]) =
1

1− x−2t
· 1

1− t
· 1

1− x2t
.

Putting everything together we have

ch(U(sl2)0) =
1− t2

(1− x−2t)(1− t)(1− x2t)
.

Now it is enough to check that

1− t2

(1− x−2t)(1− t)(1− x2t)
= ch(U(sl2)0) = ch(Gr(DP1(P1))) =

∑
m≥0

x2m+1 − x−2m−1

x− x−1
tm

to decide if
φ̃ : U(sl2)0 −→ DP1(P1)

is an isomorphism of associative algebras.
It is indeed the case
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Lemma 8. The following equality

1− t2

(1− x−2t)(1− t)(1− x2t)
=

∑
m≥0

x2m+1 − x−2m−1

x− x−1
tm

holds in Z[[x±1, t]].

Proof. We have

∑
m≥0

x2m+1 − x−2m−1

x− x−1
tm =

1

x− x−1

x ·
∑
m≥0

(x2t)m − x−1 ·
∑
m≥0

(x−2t)m


=

1

x− x−1

(
x · 1

1− x2t
− x−1 · 1

1− x−2t

)
=

1

x− x−1

(
x

1− x2t
− x−1

1− x−2t

)
=

1

x− x−1

(
x(1− x−2t)− x−1(1− x2t)

(1− x2t)(1− x−2t)

)
=

1

x− x−1

(
x− x−1 − x−1t+ x1t

(1− x2t)(1− x−2t)

)
=

x− x−1

x− x−1

1 + t

(1− x2t)(1− x−2t)

=
(1 + t)(1− t)

(1− x2t)(1− x−2t)(1− t)
=

1− t2

(1− x2t)(1− x−2t)(1− t)
.

Remark 13. Note that we have essentially proven the following equalities of
sl2-modules, that describe the decomposition of U(sl2) and U(sl2)0 in simple
sl2-modules under the adjoint action

U(sl2) =
⊕
k≥0

C[
1

2
h2 + ef + fe]⊗ L(2k),

U(sl2)0 =
⊕
k≥0

L(2k).

Question 5. How does that generalizes to a simple Lie algebra g ?
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