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Chapter 1

Introduction

In 1872, Felix Klein posed the following question. "Given a multiplicity

and a group, to study the beings from the point of view of properties

that are not altered by the transformations of the group... this can also

be expressed as follows: given a multiplicity and a transformation group;

develop the theory of invariants relative to this group" ([11]).

Felix Klein

In these notes on vector, quadratic, and Hermitian geometry, we illustrate this visionary viewpoint by

classifying geometric objects via invariants under various group actions (invariant factors, similarity

invariants, discriminant, index, signature...).

We strive to do so in a concrete manner, i.e., with methods that lead to algorithms. It is indeed better to

know how to construct an object than to simply know of its existence. The aim of the course, however,

is not to provide optimized programs in terms of efficiency (that’s another subject, and interesting at

that!), but to explore the how-to. One quickly encounters the numerical flaws of typical Gauss elimination

algorithms.

It is not, however, about giving formally constructivist methods ([2]) but about providing as much as

possible existence theorems that can explicitly lead to the construction of the object in question, for

example, through a computer.

Let us explain our mathematical motivations. We are mainly concerned in properties of matrices, more

precisely square matrices in field coefficients. This has two reasons. The first one is that they are of

fundamental importance in all mathematics and more generally in all quantitative sciences. The second

one is that their study reveals deep insights of a lot of more general subjects (arithmetic, K-theory,

algebraic geometry, . . . ). It is definitely not our pretention to make a study of these advanced topics, but

9



10 CHAPTER 1. INTRODUCTION

we have tried to use methods which will be useful later. In particular, we have used the (quite abstract)

diagrammatic view of modules together with the (quite concrete) use of matrix computations to obtain

deep results on linear algebra.

In the first part, we give an introduction to language theory in order to solve the following problem : how

to decide when two square matrices are similar ? We do that without any reduction theory, eigenvalue

or irreducible elements. The gain is that we can solve this problem in a perfectly algorithmic way. The

cost to pay is that the algorithm is non continuous (even it is semi-continuous in some sense).

In the second (more classical) part, we will discuss reduction theory where the key point is the factorization

of the characteristic polynomials in linear terms (eigenvalues) or more generally in irreducible polynomials.

The good news is that this process has continuity properties. The cost to pay is that we do not know

how to factorize a polynomial in general.

We will illustrate the interest on both perspective by studying the topology of similarity classes which

are of fundamental importance in advanced mathematics.

The material of this book is more or less classical, only the perspective being somehow more original.

The titles of the (few) chapters whose content is less classical are followed by an asterisk ∗..

We strongly advise the reader to implement the various algorithms on a machine: this will allow them

to verify that they have thoroughly understood the proofs. On our part, we have used the SAGEMATH

program, based on Python.

I extend my warm thanks to Peter Haïssinki who kindly provided his beautiful notes on the quadratic

part, notes on which I relied heavily for a first version of the text, and to Olivier Debarre for his examples

of endomorphism reduction.

Photo credits: ChronoMaths, Flickr user Duncan, Patrick Fradin, Marcel Gotlib, UQAM, Wikipedia.

1.1 Conventions

Unless expressly stated otherwise, the rings are assumed to be commutative

and with an identity, generally denoted R. They are assumed, unless explicitly

stated otherwise, to be non-zero, i.e., 1 ̸= 0. Their multiplicative group of units

is denoted R×.

This grants them the following property: Every ring admits a proper maximal ideal for inclusion, a result

we shall consider as an axiom (in this generality, this is equivalent to the axiom of choice).

Otherwise, the reader will easily demonstrate this by applying Zorn’s Lemma to the set of proper ideals

of R (1.3). In practice, it can often be dispensed with if one really insists. Naturally, it will only be

used for existence theorems: it has no algorithmic value. Zorn’s Lemma also allows us to demonstrate,

essentially formally, that, just as Q is contained in C, any field k is contained in an algebraically closed

field Ω.
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It will be used without further specification. The key to this result is the elementary fact that every

polynomial with coefficients in k has a root in some possibly larger field K. The existence of Ω then

formally follows from the existence of maximal ideals in any non-zero rings. However, readers who dislike

the axiom of choice will check that the existence of the aforementioned fields K suffices for us and that

the existence of Ω is just a convenience of language, in fact.

1.2 Prerequisites

No other knowledge of linear algebra is assumed beyond the basics of dimension theory1, the relationship

between matrices and endomorphisms, and the elementary properties of the determinant. The reader is

assumed to be familiar with the Gauss elimination method. Readers who have studied the theory in the

context of real or complex vector spaces will make an effort to accept (or verify) that nothing changes on

an arbitrary field.

Strictly speaking we do not assume any peculiar knowledge about eigenvalue or reduction theory although

it is recommended to have taken an introductory course on the subject before studying our book.

As usual, we’ll denote where Ei,j ∈ Mp,q(R) the matrix with all coefficients zero except the one at row

i and column j, which is 1. We refer it as the "standard basis" of Mp,q(R), recalling that tautologically

any matrix A = [ai,j ] has a unique decomposition A =
∑
i,j ai,jEi,j ass a linear combination of these

matrices.

We say that A is diagonal if ai,j = 0 for all i ̸= j. The coefficients ai,i, i = 1, . . . ,min(p, q) are often

denoted ai and called the diagonal coefficients.

We will identify Rn as the set of columns Mn,1(R) if n ≥ 1.

Transvection T1,2(2)

We will often use the following square matrices.

1Strictly speaking, it is easy following our way to recover all the results just using Gauss elimination and formal properties

of determinant
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Definition 1.2.0.1. A square matrix is a

• transvection if is of the form Ti,j(r) = Id+rEi,j , i ̸= j;

• a permutation matrix if it is of the form Mσ = [δi,σ(j)] for a permutation2σ ∈ Sn;

• dilatation if its of the form D(r) = Id+(r − 1)E1,1 with r ∈ R×;

• a Bézout matrix if it of the form diag(A, Id) with A ∈ M2(R) of determinant 1.

By construction, transvections and Bézout matrices have determinant 1 and det(D(r)) = r, det(Mσ) =

ε(σ). In general, it is recalled that line and column operations on rectangular matrices with coefficients

in a ring R are obtained by multiplication on the right or left by transvections or permutation matrices,

these matrices being invertible (of determinant ±1).

The multiplication of a principal pivot by a scalar r is achieved by product with a elementary dilatation

D(r) = Id+(r − 1)E1,1.

Geometrically in classical linear algebra, both transvections and dilatations add to a given vector
∑
xjej

the vector of constant direction ei with "algebraic length" a constant multiple of xj .

From a general point of view, the reader is assumed to be familiar with the general definitions of rings,

ideals. . . . For convenience of the reader, we recall the notion of quotient (5.2).

Some familiarity with basic algebraic properties of fields, Z and k[T], is assumed to be known (they are

Principal Ideal Rings -PID-).

To make reading easier, a proof of the main results will be given in 6.4.1 and in (7). We just e will use

two things for principal rings: Bézout’s identity (in the first chapter) and the fact that a principal ring

is a Unique Factorization Domain (UFD) (7.3.2.2), which allows us to relate the notion of GCD both to

the decomposition into irreducible factors and to Bézout’s identity.

1.3 Complement: Zorn’s Lemma and application

Let E be a (partially) ordered set. We can think, for example, of the set of subsets of a given set ordered

by inclusion. But there are many other examples.

Definition 1.3.0.1. We say that E is inductive if every non-empty totally ordered part has an upper

bound in E.

2where δi,j is the Kronecker symbol equal to 1 if i = j and 0 if not.
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Example(s) 1.3.0.2. R equipped with the usual order relation is not inductive. Similarly, the set of

intervals [0, x[, x ∈ R ordered by inclusion is not inductive. On the other hand, the set of subsets of a set

ordered by inclusion is inductive.

Max Zorn

Lemma 1.3.0.3 (Zorn’s lemma). Every non-empty inductive set has a maxi-

mal element.

This lemma can be seen as an axiom of set theory, in fact equivalent to the axiom of choice: if (Ei) is a

non-empty family of sets, then
∏

Ei is non-empty. We will consider it as such.

Corollary 1.3.0.4. [Krull’s lemma] Every non-zero ring has a maximal ideal. More generally, every

proper ideal of a ring is contained in a maximal ideal.

Proof. Let E be the family of proper ideals of A containing a given proper ideal J (for instance J = {0}

because our rings are nonzero). Because J is proper, E is non-empty. Obviously, E is inductive: the

union of a totally ordered family of proper ideals is still a proper ideal, which is an upper bound. Zorn’s

lemma finishes the job.
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Part I

Linear Algebra over Rings
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Content and Perspective
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Chapter 2

Warm-up: review on basic linear

algebra

2.1 Perspective

The purpose of this introductive chapter is to prove the main theorems of

Euclidean and general linear geometry in the real plane E. Our motivation

is twice. First to refresh general linear algebra knowledge in this elementary

context. Second, more fundamentally, to emphasize that almost all problems

of linear algebras appear in dimension ≤ 2. We’ll see in many occasions that

the general case follows from this small dimension study. In fact this simple

observation is quite deep as the reader will see in the next coming years, for

instance if he has to look at the theory of Lie or algebraic groups where the

role of the 2 by 2 matrices of SL2 is crucial.

19
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2.2 Euclidean plane

We start with a "physical" perspective, namely we assume that our real plane E (n = dim(E) = 2) has

a metric, meaning a scalar product  E× E → R

(v, w) 7→ ⟨v, w⟩

Recall that this means that this map is linear in each variable and posoitve definite (or > 0 for short):

q(v) = ⟨v, v⟩ > 0 unless v = 0.

Definition 2.2.0.1. A Euclidean space is a real finite-dimensional vector space equipped with a scalar

product. An isometry of Euclidean spaces is a linear isomorphism preserving the scalar products. An

isometric endomorphism of positive determinant is called a rotation.

Of course the typical examples are E = C with

⟨z, z′⟩ = Re(zz′)

or R2 endowed with the standard scalar product

⟨(v1, v2), (w1, w2)⟩ = v1w1 + v2w2,

both being canonically isomorphic.

The set of isometries (resp. rotations) is a subgroup O2(E) of GL2(E) (resp. SO2(E) of SL2(E))1.

2.2.1 Euclidean Norm

Proposition 2.2.1.1 (Cauchy-Schwartz). Let v, w ∈ E and let us write ∥v∥ =
√
∥v∥.

1. One has ⟨v, w⟩ ≤ ∥v∥∥w∥ with equality if and only if v, w are positively colinear.

2. One has |⟨v, w⟩| ≤ ∥v∥∥w∥ with equality if and only if v, w are colinear.

Proof. We may assume v and w are non-zero. The Cauchy-Schwartz inequality (1) is nothing but the

inequality

2− 2⟨v/∥v∥, w/∥w∥⟩ = q(v/∥v∥ − w/∥w∥) ≥ 0

with equality if and only if v/∥v∥ − w/∥w∥ = 0, namely if v, w are positively colinear. We get (2) from

(1) changing w in −w.

1As usual, we’ll simply write O2(R) (resp. SO2(R)) for O2(E) (resp. for SO2(E)) when E is the standard Euclidean

plane R2
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Theorem 2.2.1.2. The mapping v 7→ ∥v∥ is a norm called the Euclidean norm.

Proof. We define, for v ∈ E, ∥v∥ = ⟨v, v⟩. As q is positive definite, to show that ∥ · ∥ is a norm, it suffices

to verify the triangle inequality

(∥v∥+ ∥w∥)2 − ∥v + w∥2 = ∥v∥2 + 2∥v∥∥w∥+ ∥w∥2 − ∥v∥2 − 2⟨v, w⟩ − ∥w∥2

= 2∥v∥∥w∥ − 2⟨v, w⟩

(by Cauchy-Schwartz) ≥ 0

One immediately checks the important property of the Euclidean norm: the median equality

For any x, y ∈ E, ∥x+ y∥2 + ∥x− y∥2 = 2(∥x∥2 + ∥y∥2).

2.2.2 Non oriented angle of pair of vectors or lines

By Cauchy-Schwartz inequality, the absolute value of the scalar product of two unit vectors is ≤ 1

therefore can define the angle (̂v, w) between two nonzero vectors v, w by the formula

(̂v, w) = arccos⟨ v

∥v∥
,
w

∥w∥
⟩

thought as an element of R/2πZ defined up to sign.

Thanks to trigonometry formulae, we obtain the usual formula from elementary geometry (the Chasles

formula)
̂(v1, v2) + ̂(v2, v3) = ̂(v1, v3).

Of course, the parity of the arccos function and the homogeneity of the scalar product ensures that the

non oriented angle of two non zero vector neither depends on their order or on any nonzero multiple of

them. This allows to define the (non oriented) angle of two lines ℓ1, ℓ2 by the non oriented angle of any

vector basis of them, no matter the order of the lines.

Remark(s) 2.2.2.1. Rather that "angle" we should have said "measure of the angle" in an Euclidean

plane (see 2.2.5.6).
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2.2.3 Orthogonality in oriented Euclidean planes

If ℓ is a line (dimension d = 1), its orthogonal ℓ⊥ has equation ⟨., v⟩ = 0 for any chosen basis v of ℓ and

therefore has dimension dim(ℓ⊥) = n− d = 1 (see ?? for the general case).

Remark(s) 2.2.3.1. Let us recall that two bases of some finite dimensional vector space define the same

orientation if the determinant of the base change matrix is > 0. An orientation is then defined by a basis

defined up to the action of the group of matrix of positive determinant GL+(R). These bases are said

positively oriented or direct.

For instance, if we change the order of a basis of the plane, we change the orientation of the plane. There-

fore, given a normed vector v of an oriented Euclidean plane, there exists a unique positive orthonormal

basis of the plane (v, w).

Notice that GL+(R) is connected (??). It follows that orientation is the only way to assign a continuous

sign to any basis of E.

Because a line has obviously only two opposite normed vectors, we get just like in high school

Proposition 2.2.3.2. Let E be an oriented Euclidean plane. For any normed vector v ∈ E, there exists

a unique normed vector v⊥ such that (v, v⊥) is a positively oriented orthonormal basis.

In the standard Euclidean plane R2 with the usual orientation defined by the canonical basis, we have

explicitly for v = (a, b), a2 + b2 = 1 the usual formula v⊥ = (−b, a).

We indeed have defined an algorithm, which will be heavily generalized: if we

start with an arbitrary basis (v1, v2) of E, there exists a unique orthonormal

basis (e1 = v1/∥v1∥, e2 = e⊥1 ) such that e1 ∈ Rv1 and (e2, v2) > 0: this is the

Gram-Schmidt process in the plane (see ?? in general).

The following statement is well-known and useful.

Proposition 2.2.3.3. 1. A morphism of Euclidean spaces (of any dimension) is an isometry (resp. a

rotation) if and only if it maps an orthonormal (resp. direct orthonormal) basis to an orthonormal

(resp. direct orthonormal) basis.

2. An endomorphism f of an Euclidean space (of any dimension) is an isometry if and only if its matrix

M with respect to (any) orthonormal basis satisfies tMM = Id
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3. The determinant of an isometry is ±1. The determinant of a rotation is +1.

Proof. We assume the existence of orthonormal basis for granted in general (see ??). (1) is a direct

consequence of the bilinearity of the sclar product.

(2) If (ei) is our orthonormal basis, one has f isometry if and only if

(Id)i,j = δi,j = ⟨f(ei), f(ej)⟩ = ⟨
∑

ma,iea,
∑

mb,jeb =
∑
a

ma,ima,j =⟩ = (tMM)i,j

proving (2).

(3) Follows from (2) and the multiplicativity of the determinant.

We get the well-known formula

SOn(R) = {M|tMM = Id and det(M) = 1}

Because the base change morphism between two orthonormal bases is an isometry, we get

Corollary 2.2.3.4. Two Euclidean planes are (non canonically) isomorphic.

2.2.4 Oriented angles of vectors

Let E be an oriented Euclidean plane. Using the above results, we can define the oriented angle of two non

zero vectors v, w as follows. If v, w are normed, one has a unique writing w = av+ bv⊥ with a2 + b2 = 1.

Therefore, there exists a unique
̂̂
(v, w) ∈ R/2πZ such that

(a, b) = (cos(
̂̂
(v, w)), sin(

̂̂
(v, w))

Because ⟨w, v⟩ = a, one has
̂̂
(v, w) = |(̂v, w)|.

In the general case, one defines
̂̂

( v
∥v∥ ,

w
∥w∥ ) ∈ R/2πZ.

Remark(s) 2.2.4.1. By construction, if θ is the oriented angle between two normed vectors v, w, the

base change matrix from (v, v⊥) to (w,w⊥) is Rθ =

cos(θ) − sin(θ)

sin(θ) cos(θ)

. The addition formulas for the

trigonometric functions sin, cos give the important formula

Rθ ◦ Rθ′ = Rθ+θ′
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Of course, we again obtain the usual formula of elementary geometry like the Chasles formula

̂̂
(v1, v2) +

̂̂
(v2, v3) =

̂̂
(v1, v3).

2.2.5 Isometries

Let E be an oriented Euclidean plane.

Proposition 2.2.5.1. Let v, w be two normed vectors and θ =
̂̂
(v, w).

1. There exists a unique rotation ρθ mapping v to w whose matrix in any direct orthonormal basis is

Rθ.

2. One has

cos((̂v, w)) = ⟨w, ρ(w)⟩ = cos(θ) =
tr(ρv,w)

2
.

Proof. (1) The base change morphism from (v, v⊥) to (w,w⊥) is definitely a positive isometry, that is a

rotation ρ giving the existence. Conversely any isometry mapping v to w maps v⊥ to ±v⊥ and therefore to

w⊥ if it is positive giving the uniqueness. The matrix of ρθ in (v, v⊥) is Rθ (cf. (2.2.4.1)). If B = (v1, v2)

is another direct orthonormal basis, the base change matrix from (v, v⊥) to B is Rα (2.2.4.1). Therefore

Mat(B, ρ) = R−1
α ◦ Rθ ◦ Rα = R(−α+ θ + α) = Rθ

proving (1).

Let us chose any orientation on E. By (2.2.3.2), one can assume v = e1 is the first vector of an orthonormal

basis (e1, e2). Because w is a unit vector, it can be written as w = cos(θ)e1 + sin(θ)e2 for a uniquely

defined θ ∈ R/2πZ. But w,w′ = − sin(θ)e1 + cos(θ)e2 is the unique direct orthonormal basis with first

vector w. Therefore the endomorphism ρ mapping (e1, e2). to (w,w′) is the unique relevant positive

isometry.

(2) follows directly from the proof of (1).

To specify the structure of isometries, let us choose a direct orthonormal basis B of E. We will identify

any endomorphism f with its matrix in B.

Corollary 2.2.5.2. 1. The map θ 7→ ρθ defines an isomorphism

R/2πZ ≃ SO(E)

2. ρθ is complex diagonalizable with complex eigenvalues are exp(±iθ).
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3. ρθ is real diagonalizable if and only if θ ≡ 0 mod (2π) or θ ≡ 0 mod (2π) that is to say it is equal

ρθ = ± Id.

4. The matrices negatives isometries are orthogonal symetries.

Proof. Only the last point has not be proven yet. Let B = (e1, e2) be a direct orthonormal basis and

S0 =

0 1

1 0

 be the matrix of the orthogonal symmetry along the (second) diagonal R(e1 + e2). Then,

for any negative isometry, the product of S0 by its matrix S is some rotation S0S = Rθ. We get

R = S0Rθ =

sin(θ) cos(θ)

cos(θ) − sin(θ)


whose square is Id by direct calculation.

From this, one recover any elementary facts about plane isometries known for the highschool time (see

?? in the general case).

Remark(s) 2.2.5.3. If one prefers the identification E ∼ C with its orthogonal basis (1, i), the corre-

sponding statement is that rotations are as usual of the form θ 7→ exp(iθ)z and symetries of the form

θ 7→ exp(iθ)z.

Exercise(s) 2.2.5.4. Show that the application which associates to an an orthogonal symmetry its in-

variant vector line is a bijection from the set of symmetries onto the set of vector lines. Show that the

compound of two symmetries associated with two lines making a (non-oriented) angle θ is a rotation

whose (non-oriented) angle is 2θ.

Exercise(s) 2.2.5.5. Determine the real and complexe eigenvalues and th corresponding eigenspaces of

any planar isometry. When are they diagonalizable over R ? Over C ?

Remark(s) 2.2.5.6. We could have defined an oriented angle in a non oriented plane as the former

rotation itself. The value of the angle would then have been in SO2(R). The link between the our definition

is that the choice of an orientation define a canonical isomorphism SO2(E) ≃ R/2πZ, recovering our

notion of angle which could be in this context be defined as the measure of the angle. But the usual modern

point of view is to see an angle as we did, and therefore we have to choose an orientation of the plane.
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2.2.6 Symmetric real matrices

We know (2.2.5.1) that the matrices of a negative isometries in an orthonormal basis are of the formcos(θ) sin(θ)

sin(θ) − cos(θ)

, in particular are symmetric. Like all symetries, they are diagonalizable with spec-

trum {±1}. But, we have more. The eigenspaces are orthogonal. Indeed, if we identify E with C thanks

to B, our symmetry is nothing but z 7→ exp(iθ)z whose (real) +1-eigenspace is the line R exp(iθ/2) and

(real) −1-eigenspace is the orthogonal line iR exp(iθ/2). We recover the well known fact that orthogonal

symmetries are orthogonally diagonalizable. This fact is general.

Proposition 2.2.6.1. Symmetric matrices of M2(R) are exactly orthogonally diagonalizable matrices

(with restect to the standard Euclidean structure of R2).

Proof. We identify E with the standard Euclidean plan R2 with its standard orthogonal basis B. If

X,Y ∈ R2 and M ∈ M2(R), we have ⟨X,Y⟩ = tXY and therefore

⟨MX,Y⟩ = t(MX)Y = tXtMY = ⟨X, tMY⟩.

The characteristic polynomial of M =

a b

b d

 is χM(T) = T2 − (a+ d)T + (ad− b2) with discriminant

∆ = (a + d)2 − 4(ad − b2) = (a − d)2 + 4b2 ≥ 0. Therefore, it is split over R with distinct roots unless

b = 0 and a = d, i.e.M = a Id.

If ∆ = 0, then M is scalar and the canonical orthonormal basis of R2and therefore orthogonally diagonal.

Assume ∆ > 0 and let x, y ∈ R the distinct roots of χM. If X,Y are normed eigenvector of our real

symmetric matrix M relatively x, y, one gets

x⟨X,Y⟩ = ⟨MX,Y⟩ = ⟨X,MY⟩ = y⟨X,Y⟩

hence ⟨X,Y⟩ = 0. Therefore, after the orthonormal base change B → (X,Y), the matrix becomes

diag(x, y).

2.3 General linear maps of the plane

In this section E denotes a rank real plane without any Euclidean structure.

We will will explain the reduction theory in this simple but non trivial case due

to the fact that the scalar field R is not algebraically closed (compare with the

general results of 6.6.2.3 and 6.7).

Let M =

a c

b d

 ∈ M2(R).
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2.3.1 Minimal polynomial

A direct computation shows that χM(T) = T2 − (a+ d)T + (ad− bc) annihilates M: this is the Cayley-

Hamilton theorem in dimension 2. Because R[T] is a principal ideal domain, the ideal of real polynomials

annihilating M is generated by a unique monic polynomial µM. Because χM(M) = 0, one has µM|χM and

therefore

• either µM = χM

• either χM is of degree 1 and M is the scalar matrix tr(M)
2 Id.

Definition 2.3.1.1. If M is non scalar, we define the similiraty invariants P2,P1 of M by P1 = χM = µM

and P1 = 1. If M is scalar, we define P1 = P2 = µM.

2.3.2 Cyclic vectors

Assume that M is not a scalar matrix. Then M has at most two eigenlines (because deg(χM) = 2). Let

X ∈ R2 not belonging to these lines (a real plane is never the union of two lines!). Then X and MX are

certainly indendant vector, and is therefore a basis of the plane. Writing M in this basis, remembering

the equation χM(M).X = 0, we get that M is similar to C(χ) =

0 −det(M)

1 tr(M)

. Because a matric is

scalar if and only if deg(µM) = 1, we therefore get the plane version of the Frobenius theorem 6.7.

Theorem 2.3.2.1 (Jordan-Frobenius in the plane). Let M be real matrix.

1. One has P2|P1 and P2P1 = χM.

2. Two matrices are similar if and only if they have the same similarity invariants.

3. If M is not scalar, it is smilar to the "companion" matrix C(χ) of P1 = χM = µM.

4. M is nilpotent if and only if it is similar to the standard matrix J =

0 0

1 0

.

In a certain extent, the rest of the book is dedicated to generalize these results in any dimension.

2.4 Supplementary exercices

Exercise(s) 2.4.0.1. Let G act primitively and faithfully on a set X. Assume that for some x ∈ X, the

Gx contains an abelian normal subgroup whose conjugate subgroups generate G. Then D(G) ⊂ G [Adapt

the proof of Iwasawa criterium].
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Chapter 3

Matrices without eigenvectors, I

3.1 Perspective

We explain how determinant identities and Gauss elimination method give non

trivial general results without any reference to advanced linear algebra and

reduction theory. This elementary but non trivial part can be skipped in a first

reading.

3.1.1 Algebraic Identities Extension Principle

Proposition 3.1.1.1. Let P ∈ Z[T1, · · · ,Tn] and Ii, 1 = 1, · · · , n be infinite sets of some field of char-

acteristic zero k. Then, if P vanishes on
∏

Ii then P = 0. In particular, for any ring R and any

(ri) ∈ Rn, we have P(r1, · · · , rn) = 0. For instance, if a polynomial P of integral coefficients in the

variables Ti,j , 1 ≤ i ≤ n, j ≤ m vanishes on all complex matrices [ti,j ] (or even on some open set) of

Mn,m(C), then for all ring R and M ∈ Mn,m(R), one has P(M) = 0.

29
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Proof. We observe Z[T1, · · · ,Tn] ⊂ k[T1, · · · ,Tn] (because the characteristic of k is zero) and we reduce

by induction to the fact that a polynomial in one variable not identically zero has only a finite number

of roots.

Corollary 3.1.1.2. All integral formulas for the determinant valid for complex square matrices remain

valid for square matrices in any commutative ring R. This is in particular the case for the Cramer’s rule
tCom(A)A = AtCom(A) = det(A) Id for any A ∈ Mn(R).

Remark(s) 3.1.1.3. As the interested reader can check, all formal properties of the determinant can

easily be proved directly for matrices with coefficients in a ring without using any linear algebra in a field.

3.1.2 Cayley-Hamilton in Mn(R)

Let us start with an easy lemma, which is usually more or less considered as "obvious" in a commutative

situation.

Let τ ∈ R be an element of a non necessary commutative ring with unit R and let R[T] → R the evaluation

additive group morphism

P(T) =
∑
i≥0

πiT
i 7→ P(τ) =

∑
i≥0

πiτ
i

In this non-commutative situation, we have to be cautious with its mulplicativity.

Lemma 3.1.2.1. Let P =
∑
i πiT

i,P =
∑

PiT
i ∈ R[T] and assume that t commute with all the coeffi-

cients πi of P. Then,

(PP)(τ) = P(τ)P(τ).

Proof. We have

[PP](τ). =
∑
k

 ∑
i+j=k

πiπj

 τk ==
∑
i,j

πiπjτ
i+j

and

P(τ)P(τ) =
∑
i

πiτ
i
∑
j

πjτ
j =

∑
i,j

πiτ
iπjτ

j τ
ipj=pjτ

i

=
∑
i,j

πiπjτ
i+j

Corollary 3.1.2.2 (Cayley-Hamilton). Let A ∈ Mn(R) and χA(T) = det(T Id−A). Then, χA(A) = 0.
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Proof. For the first item, Cramer’s rule applied to T Id−A ∈ Mn(R[T]) = Mn(R)[T] give the identity

(∗) tCom(T Id−A)(T Id−A) = χA(T) Id.

Because A commutes with the two coefficients Id,A of T Id−A, lemma 3.1.2.1 shows that the evaluation

of (*) at τ = A is the product the evaluation of tCom(T Id−A) at τ = A and the evaluation at τ = A

af T = A of T−A , which is zero. So is the evaluation χA(A) of the right hand side.

3.2 Maximal rank matrices

As usual, any A ∈ Mm,n(R) is identified with the (R-linear) map X 7→ AX from Rn to Rm. We assume

R is not the zero ring.

Proposition 3.2.0.1. Let n,m ne positive integers and A ∈ Mm,n(R),B ∈ Mn,m(R)

1. If n < m, then det(AB) = 0.

2. If A is surjective, then n ≥ m.

3. If A is injective then n ≤ m.

4. If A is bijective then n = m

Proof. (1). As before, we consider the generic matrices A = (Xi,j),B = (Yj,i) with Xi,j ,Yi,j , 1 ≤ i ≤

, 1 ≤ j ≤ n are indeterminates and we look in the the general matrix identity det(AB) = 0 which is a

polynomial identity of n2m2 indeterminates in Z[Xi,j ,Yj,i]. But this identity is true for complex matrices

Ac,Bc because the square matrix AcBc cannot be injective because Bc : C
m → Cn is not (for dimension

reasons).

(2). Let Bj ∈ Rn, j = 1, · · · ,m such that ABj = E1,j (E1,j is the usual "canonical basis" of Rm) and

B ∈ Mn,m(R) be the corresponding matrix. One has AB = Idn. Taking the determinant, we get n ≥ m

thanks to (1).

(3). Assume by contradiction n > m and let B =

 Idm

0n−m

 defining the canonical injection Rm ↪→ Rn.

Let C = BA ∈ Mn(R) and L = (0, . . . , 0, 1) = E1,n ∈ M1,n(R). Because n > m, one has LB = 0. By

Cayley-Hamilton, there exists a monic polynomial Td +
∑
i<d aiT

i annihilating C. One can assume that

d is minimal among these polynomials. Because C is injective as B and A, one has a0 ̸= 0 by minimality.

Left composing the equation Cd+
∑
i<d aiC

i = 0 by L, we get a0L = 0 and therefor a0=0, a contradiction.

(4). Each (2) or (3) implies (4) (apply to both A and A−1, the latter being defined as usual because A

is bijective).
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Remark(s) 3.2.0.2. • One will give below more natural proofs in some way, but less elementary.

Precisely, see 5.7.0.3 for (2) and (4) with an argument using the choice axiom see and 6.11.0.6 for

(2), (3) and (4) with an argument not using the choce axiom-. The idea in this last case is to reduce

to this statement by reducing to the case of matrix with coefficients in a field using Krull’s lemma

(1.3.0.4).

• I have learned the nice argument in (3) from the post https: // mathoverflow. net/ q/ 47846 of

Balasz Strenner.

3.3 Reminder on Gauss elimination method, field case

Let us give a version of Gauss elimination not using dilatations nor permutation matrices as far as

possible.

The nine chapters Karl Friedriech Gauss

The elimination method was rediscovered by Gauss and Jordan in the 19th century. But it was known

to the Chinese at least in the 1st century BCE ([6]).

With definition 1.2.0.1 in mind, we set

Definition 3.3.0.1. Let R be a ring and p, q ≥ 1 two integers. We say that two matrices A,B of Mp,q(R)

with p, q ≥ 1 are

• Gauss-equivalent (A ≡ B) if they differ by a series of left and right multiplications by transvections

(that we call Gauss-operations);

• equivalent (A ∼ B) is the exists invertible matrices P ∈ GLp(R),Q ∈ GLq(R) with B = P−1AQ.

Gauss-equivalent ⇒ equivalent. Notice also that Gauss equivalence does note use permutation matrices.

https://mathoverflow.net/q/47846
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Proposition 3.3.0.2. Let A ∈ Mp,q(k)− {0}.

1. There exists δ ∈ k∗ such that A is Gauss-equivalent to diag(δ, Idρ, 0p−ρ,q−ρ) with ρ = rank(A)− 1.

2. GLn(k) is generated by transvections and dilatations.

3. SLn(k) is generated by transvections.

Proof.

(1). Induction on p+q ≥ 2, the case p+q = 2 being trivial we assume now p > 1 or q > 1. If both the last

column and line are zero, one applies the induction to the (necessarily non zero) remaining Mp−1,q−1(k)

matrix.

The key point is showing that a non zero line (x, y) is Gauss equivalent to (0, 1). We perform column

operations with the pivot written in bold and the other (changing coefficient) by a ⋆. Because (x, 0) ≡

(⋆, x) we can assume y ̸= 0. Then, we have, (⋆,y) ≡ (1, ⋆) ≡ (1, 0) ≡ (⋆,1) ≡ (0, 1) as wanted.

Transposing if necessary, we can assume that either the last line is nonzero, i.e.there exists j < q such

that ap,j ̸= 0. Using the previous case (for the line of indices j, q), one can assume ap,q = 1.

Then, again using Gauss-operations Cj 7→ Cj − ap,jCq and Li 7→ Li − ai,qCq, one can now assume that

the only non zero coefficient of the last line and column is ap,q = 1 and we finish by induction on the

remaining Mp−1,q−1(k) matrix.

(2) and (3) are direct consequences of (1).

Exercise(s) 3.3.0.3. Give a computer program of 3.3.0.2 for instance using the open source SAGE

mathematical software (with Python kernel). Evaluate its complexity and numerical complexity. How can

you guarantee that your program is exact for matrix with rational coefficients ?

3.4 Application to supbroups of GLn(k)

Let V be an n-dimensional vector space with n ≥ 2, PV its set of lines (dimension 1 linear subspaces),

PV∗ its set of hyperplanes (dimension (n− 1) linear subspaces)1.

3.4.1 Transvections

If f ∈ Homk(V/D,D) we denote by f̃ ∈ Endk(V) the linear map x̃ 7→ x + f(x mod D. The set vector

space of V of dimension 1 is

1At this stage, this is just a notation; cf. chapter ?? for further insights
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Proposition 3.4.1.1. Let τ ∈ Endk(V). The following properties are equivalent.

1. H(τ) = Ker(τ − Id) is a hyperplane of V containing D(τ) = Im(τ − Id), which is a line in V.

2. There exist φ ∈ V∗ and v ∈ V, both nonzero, such that τ(x) = x+ φ(x)v with φ(v) = 0.

3. There exists a (unique) f ∈ Homk(V/D(τ),D(τ)) such that τ = f̃ .

4. The restriction to the affine hyperplane defined by the equation φ(x) = 1 is a translation by the vector

v.

5. The natural morphism Hom(V/D,D) → GL(V)

6. The matrices of τ are similar to Idn+E1,2 =


1 1

0 1

 0

0 Idn−2,

 .

We say that τ is a transvection of V of type (D(τ),H(τ)) ∈ PV×PV⋆. If φ, v are as above, let us define

τλ(x) = x+ λφ(x)v, λ ∈ k. Under these conditions, we have:

• H(τ) = Ker(φ),D(τ) = ⟨v⟩,

• Transvections of type (⟨v⟩, ⟨φ⟩) are given by τλ, λ ∈ k∗, and λ 7→ τλ is an injective group morphism

(k,+) → (SL(V),×),

• tτ is a transvection of V⋆ of type (H(τ),D(τ)) ∈ PV⋆ ×PV.

Proof. TBD

Recall that the derived subgroup D(G) of a group G is the subgroup generated by the commutators

[g, h] = ghg−1h−1, g, h ∈ G. It is normal and G/D(G) is the largest abelian quotient of G.

Corollary 3.4.1.2. One has

1. D(GL(V)) = SL(V) except if n = 2 and Card(k) = 2.

2. D(SL(V)) = SL(V) except if n = 2 and Card(k) = 2, 8.

A group G with D(G) = G is called perfect.

Proof. Proof of (1). Because the derived group is normal and all transvections are conjugate in GL(V), it

is enough to show that in our case one transvection is a commutator. If n ≥ 3 and any characteristic, one
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computes [Id+E2,1, Id+E1,3] = Id+E2,3. If n = 2, let us choose λ ̸= 0, 1. Then, [diag(λ, 1),T1,2(λ) =

T1,2(λ− 1) which is a transvection.

Proof of (2). If n ≥ 3, two transvections τ ′ = gτγ−1 are certainly conjugate not only under GL(V)

[Because one can change g by a dilation of ration det(g)−1 commuting with τ ]. We leave the n = 2 case

in exercice (adapt the GL argument with a general diagonal matrix in SL2).

3.4.2 Normal subgroups of GL(V)

We will explain the so-called Iwasawa to study normal subgroups of perfect groups G, or equivalently we

will give a criterium of simplicity of G/Z(G) where Z(G) is the centrum of G.

Definition 3.4.2.1. Let G be a group acting on a set X,and B ⊆ X.

1. We say that B is a G-block and if for all g ∈ G, the sets gB and B are either equal or disjoint. Blocks

reduced to a point or to the whole X are called trivial.

2. We say G acts primitively on X if:

(a) The action of G on X is transitive;

(b) the only G-blocks are trivial.2.

3. We say G acts 2-transitively on X if for all x1, x2, y1, y2 ∈ X, x1 ̸= x2, y1 ̸= y2, there exists g ∈ G

such that g · x1 = y1 and g · x2 = y2.

Lemma 3.4.2.2. Let G be a group acting 2-transitively on a set E. Then the action is primitive.

For instance, SL(V) and GL(V) act 2-transitively on PV if dim(V) ≥ 2.

Proof. Let B be a subset of X having at least two elements and such that B ̸= X. Let us show that there

exists g ∈ G such that gB ̸= B and gB ∩ B ̸= ∅ and therefore that B is not a G-block.

Let a ̸= b ∈ B and c ∈ X \B. By 2-transitivity, there exists g ∈ G such that ga = a and gb = c. We have

a ∈ gB ∩ B, hence gB ∩ B ̸= ∅, and c ∈ gB, c /∈ B, hence gB ̸= B.

Proposition 3.4.2.3 (Iwasawa criterium). Let G be a group acting faithfully and primitively on a set

X. We assume that there exists a family Kx ⊂ Gx, x ∈ X such that

1. Each Kx is abelian.

2Or equivalently (Exercice if the stabilizer Gx of a point x ∈ X is a maximal subgroup of G.
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2. For any g ∈ G⟩,G = ⟨gKg−1.

3. ∪x∈XKx generates G.

Then any normal subgroup acting non trivially on X contains D(G).

Proof. We start with the direct part of the previous footnote.

Lemma 3.4.2.4. The stabilizer Gx of any primitive action is a maximal subgroup of G.

Proof. Let Gx ⊂ H ⊂ G and B = {hx, h ∈ H}. I claim that B is a block. If not, assume B ∩ g(B) ̸ ∅.

There exists h, h′ ∈ H such that hx = gh′x hence h−1gh′ ∈ Gx ⊂ H. Therefore, g ∈ H and g(B) ⊂ B

proving B = {x} and B = X by primitivity assumption. In the first case, H = Gx and we are done. In

the second case, H acts transitively on X. Therefore, for any g ∈ G there exists h ∈ H such that gx = hx

hence gh−1 ∈ Gx ⊂ H showing g ∈ H.

Let N be a normal subgroup and let x ∈ X. Since N is normal, NGx is a subgroup of G containing Gx

and is therefore equal to Gx or G by maximality.

If NGx = Gx, we have N ⊆ Gx, and therefore for all

g ∈ G, gNg−1 ⊂ gGxg
−1 = Ggx.

By normality of N, we get N = N∩gNg−1 ⊂ Gx∩Ggx, hence N acts trivially on X and therefore N = {1}

because G hence N acts fathfully on X: we are done in this case.

Assume now NGx = G. One has Nx = NGxx = Gx = X because G acts transitively and therefore N

acts transitively on X. Let y = nx, n ∈ N be any point of X and κ ∈ Ky = nKxn
−1 which can therefore

be written κ = nkn−1 with (n, k) ∈ N×Kx. We have

κ = nkn−1 = nkn−1k−1k
N◁G
∈ NKx

proving Ky ⊂ NKx for any y ∈ X hence G = NKx. We deduce that the morphism k 7→ k mod N is a

surjection from the abelian group Kx to G/N commutative hence N ⊂ D(G).

Corollary 3.4.2.5. If dim(V) ≥ 2, any normal nontrivial normal subgroup of GL(V) (or SL(V)) contains

SL(V) unless k is a field with 2 (or 8) elements.

Proof. Take X = P(V) and TD
∼→ Hom(V/D,D) be the group of transvections of line D (cf. 3.4.1.1) and

apply Iwasawa criterium and 3.4.1.2.
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3.5 Supplementary exercices

Exercise(s) 3.5.0.1. Prove that the evaluation map of lemma 3.1.2.1 is a (skew)-ring morphism if and

only t commutes with any element of R.

Exercise(s) 3.5.0.2. Give an example of square matrices τ,A ∈ M2(C) such that the evaluation at τ of
tCom(T Id−A)(T Id−A) = χA(T) Id is not equal to the products of the evaluation at τ of tCom(T Id−A)

and of (τ −A). What is the value of χA(τ) in this case ?

Exercise(s) 3.5.0.3. With the notation above prove the identity

TnχAB(T) = TmχBA(T)

Hint : Consider the matrices C =

T Idm B

A In

 , D =

Idm −B

0 T Idn

. Give another proof of 3.1.2.2.(2)

Exercise(s) 3.5.0.4. Let G act primitively and faithfully on a set X. Assume that for some x ∈ X, the

Gx contains an abelian normal subgroup whose conjugate subgroups generate G. Then D(G) ⊂ G [Adapt

the proof of Iwasawa criterium].
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Chapter 4

Modules

4.1 Perspective

This chapter introduces the language of modules and diagrams in as light a

manner as possible. It is suggested that the reader first browse through it

focusing on solving the exercises, then later familiarize himself with its use in

the following chapters in a concrete manner.

Thus, it will only be consulted afterward if absolutely necessary: the idea is that all the formal construc-

tions of vector spaces or abelian groups apply mutatis mutandis to this general framework by accepting

scalars valued in a ring rather than in a field (or integers for abelian groups).

As will be seen here and throughout the text, the diagrammatic perspective (see 4.3) once familiar is

extremely valuable, unifying, and simplifying. Paradoxically, this effort in abstraction, besides opening

the doors to modern and deep mathematics, often makes them very concrete, even computable and

algorithmic.

This will be particularly illustrated in the section 6.6 and the chapters 8 and 10 dedicated to the study of

the linear group and the similarity classes of square matrices. Unlike the usual methods of linear algebra

that largely depend on the study of eigenvalues of endomorphisms, we will focus on polynomials and their

39
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action on endomorphisms. While annihilating polynomials play a special role, their roots are not actually

important for deciding whether two endomorphisms are similar, for example. The advantage is generally...

we do not know how to compute the roots of polynomials. Worse, the constructions of linear algebra are

often discontinuous in the coefficients of matrices and thus poorly support the numerical approximation

of these roots. Of course, the notion of eigenvalue remains essential as will be seen repeatedly. But its

often useless when one cannot compute the roots of the polynomial characteristic or, worse, when the

characteristic polynomial is not split.

4.2 Vocabulary and first examples

4.2.1 Modules

We know that a vector space over a field k is an abelian group M equipped with an external law k×M → M

verifying for all a, a′ ∈ k and m,m′ ∈ M (on the left say) the four usual compatibilities.

1. a(m+m′) = am+ am′

2. (a+ a′)m = am+ a′m

3. 1m = m

4. a(a′m) = (aa′)m

The notion of a module is obtained exactly in the same way, by allowing the field k to be a ring R (recall

that for us R is commutative with unit):

Definition 4.2.1.1. A module M over a unitary ring R is an abelian group equipped with a "scalar

multiplication" map R×M → M verifying the previous compatibility properties. A submodule N of M is

a supgroup stable by scalar multiplication.

Example(s) 4.2.1.2. By definition, modules over fields are vector spaces. Let’s provide more interesting

examples.

1. The multiplication of R makes R an R-module whose submodules are by the very definition its ideals.

2. Z-modules are identified with abelian groups through scalar multiplication

n.m = sign(n)
|n|∑
i=0

m, n ∈ Z,m ∈ M.

3. If V is a k-vector space, the set of formal polynomials1with coefficients in V is naturally a k[T]-

module.
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4. In general, if M is an arbitrary R-module, we denote AnnM(r) = Ker(r : M → M) and M[r] =

∪n>0Ker(rn : M → M), which is indeed a submodule as a union of increasing submodules (exercice).

5. The set Cc(T,R) of continuous functions with compact support from a topological space T to R is

a module over the ring of continuous functions from T to R. If T is a non-compact metric space,

Cc(T,R) is an ideal but not a ring (exercice). This ideal is not finitely generated for example if

T = Rn (exercice).

6. Let Mi, i ∈ I be a family of modules. As in linear algebra, the abelian group product
∏

Mi has a

natural module structure: it is the unique structure such that all projections πj :
∏

Mi → Mj are

linear. In other terms, a.(mi) = (ami) (cf. 4.5.1).

7. With the previous notation, the subset ⊕Mi of
∏

Mi consisting of almost null families is a submodule

called the direct sum of Mi. The (finitely supported) family (mi) is often denoted
∑
mi. If I is

furthermore finite, then ⊕Mi =
∏

Mi (cf. 4.5.1).

We summarize in the following table how the formal constructions of linear algebras adapt to modules.

To lighten the notation, the Greek letters λ, µ . . . denote elements of a ring R while the elements of

the modules are Latin letters x,m, n . . . for elements of the modules. The statements are implicitly

universally quantified. Thus we write λ(µx) = (λµ)x for ∀λ, µ ∈ R and ∀x ∈ M, we have λ(µx) = (λµ)x.

1That is, sums
∑

i≥0 viT
i with vi = 0 if i is large enough.
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Generalities for modules

Property/Definition Vector space Module

Scalars R R = field R = ring

Addition (M,+) abelian group

External multiplication λ(µx) = (λµ)x and 1x = x

Distributivity λ(x+ y) = λx+ λy, (λ+ µ)x = λx+ µx

Linear combination
∑

finite

λixi

Subspace N N stable by linear combinations

Generated subspace ⟨xi⟩ ⟨xi⟩ ={linear combinations of xi}

Sum of subspaces Ni +Ni ={linear combinations of xi ∈ Ni}

Product2of Ni
∏

Ni = {(xi), xi ∈ Ni}

Direct sum2 of Ni ⊕Ni = {(xi) ∈
∏

Ni|Card{i|xi ̸= 0} <∞}

R(I),Rn R(I) = ⊕IR, R
n = ⊕ni=1R =

∏n
i=1 R

4.2.2 Morphisms

The notion of a linear application is translated into that of module morphisms as in the following table,

the notion of kernel, image and quotient3 being the same as in linear algebra.

Definition 4.2.2.1. A morphism of modules f : M → N is a linear map: for any x, y ∈ M, λ ∈

R, f(x+ y) = f(x) + f(y) and f(λx) = λf(x).

The set HomR(M,N) of morphisms is a group for the addition. As in linear algebra, f has an inverse

g ∈ HomR(N,M) if and only if f is both injective and surjective.

Specifically, we have, ej being the "canonical basis" of Rn

2See 4.5.1.
3See 4.2.3.
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Lemma 4.2.2.2. If M,N are two R-modules, the set of morphisms HomR(M,N) is naturally a module.

If M = Rn, the natural application  HomR(R
n,N) → Nn

f 7→ (f(ej)

is an isomorphism. In particular, HomR(R
n,Rm) = Mm,n(R).

Proof. As in classical linear algebra.

Generalities on morphismes

Property/Definition Vector space Module

Morphism f ∈ HomR(M,M
′) morphisms of groups| f(λx) = λf(x)

f injective Ker(f) = {0}

Isomorphism Bijective morphism

HomR(R
n,M) HomR(R

n,M) = Mn

Matrices HomR(R
n,Rm) = Mm,n(R)

4.2.3 Quotient, cokernel

The problem we are tackling is as follows. Let f : M → N be a morphism of R-modules. The injectivity

of f is characterized by the nullity of the kernel Ker(f) of f . Can we find a module whose nullity measures

the surjectivity?

We define a relation on N by the condition

n ∼ n′ if and only if ∃m such that n− n′ = f(m).

This is an equivalence relation thanks to the linearity of f for the law +. The equivalence class of n ∈ N

is

n = {n+ f(m), m ∈ M} = n+ f(M)

We denote Coker(f) the set of equivalence classes of ∼. Thus, as a set,

Coker(f) = {n+ f(M), n ∈ N}

and the application π : N → Coker(f) defined by n 7→ π(n) = n is surjective. The following statement

is also as immediate as it is important.
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Proposition 4.2.3.1. There exists a unique R-module structure on Coker(f) such that π is a morphism.

It is characterized by n + n′ = n+ n′ and λn = λn; its neutral is 0 simply noted 0. Moreover, f is

surjective if and only if Coker(f) = {0}.

Thus, we have solved our problem. A particular, fundamental case is when f is injective. In this case, f

induces an isomorphism of M onto its image f(M) which is thus a submodule N′ of N.

Definition 4.2.3.2. Let N′ be a submodule of N and denote j the inclusion of N′ in N. We say that

Coker(j) is the quotient of N by N′ and we denote it N/N′.

It is important to characterize the cokernel, up to canonical isomorphism, by its properties rather than

by its construction. This is what is explained in 4.5.2.1.

Remark(s) 4.2.3.3. In general, we are interested in modules up to isomorphism. Thus, we will identify

two modules between which exists a canonical isomorphism, that is, one that depends on no choice. The

reader is, for example, used in linear algebra to identify a finite-dimensional vector space with its bidual

(cf. 9.4.0.1), a Euclidean space with its dual (cf. more generally ??), a square matrix of dimension 1 with

its unique coefficient (its trace actually). . . Similarly, as in linear algebra, we will most often identify an

injective morphism j : M → N with the submodule image j(M) because j defines a canonical isomorphism

M ≃ j(M) and we simply say (but somewhat abusively) that M is a submodule of M. We will see other

examples.

The following result is formal but important (compare with 4.5)

Proposition 4.2.3.4. If f ∈ HomR(M,N), then f induces a canonical isomorphism f : M/Ker(f) ≃

Im(f).

Proof. We define

f(m) = f(m+Ker(f)) = f(m+Ker(f)) = f(m) + f(Ker(f)) = f(m) ∈ Im(f).

Thus, f is well defined and linear. It is surjective. If m is in the kernel, f(m) = f(m) = 0 and therefore

m ∈ Ker (f) so m = 0.

Exercise(s) 4.2.3.5. Quotient et supplémentaire d’un ev. TBD.
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4.2.4 A key example: the k[T]-module Va

If R = k[T] and M is an R-module, multiplication by the elements of k seen as

constant polynomials makes M a k-vector space. Furthermore, multiplication

by T defines a ∈ Endk(M): the homotethy of ratio T. Conversely, if V is a

k-vector space and a ∈ Endk(V), we define a R-module structure Va on V by

the formula T.v = a(v) and by linearity

P(T).v = P(a)(v)∀P ∈ R = k[T], v ∈ Va = V

These two constructions are inverses of each other:

The k[T]-modules are identified with the pairs (V, a), a ∈ Endk(V).

Submodules of Va are then identified with subspaces of V stable by a (exercice).

From the perspective of morphisms, the identification works as follows. If N = Wb is a second module

associated with an endomorphism b ∈ Endk(W), a morphism f ∈ HomR(M,N) = Homk[T](Va,Vb) is

defined by f ∈ Homk(V,W) such that

f ◦ a(m) = f(Tm) = Tf(m) = b ◦ f(m)∀m ∈ M

i.e.

(i) Homk[T](Va,Wb) = {f ∈ Homk(V,W) such that b ◦ f = f ◦ a}

Corollary 4.2.4.1. If f ∈ Isomk[t](Va,Wb) if and only if a = f−1 ◦ b ◦ f so that Va and Wb are

isomorphic if and only if a and b are similar.

Recall that a, b ∈ Endk(V) are similar if and only if there exists an isomorphism f of V such that

b = f−1 ◦ a ◦ f and we write in this case a ≈ b. This defines an equivalence relation ≈ on Endk(V). In

particular, when a = b, the k-algebra Endk[T](Va) is the set of endomorphisms of V commuting with a.

4.3 Exact sequences and diagrams
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4.3.1 Exact sequences

If f ∈ Hom(M,N) a morphism of modules; we have a canonical sequence of morphisms

Ker(f)
ι−→ M

f−→ N
π−→ Coker(f).

We notice that the composed of two successive morphisms d ◦ δ (namely f ◦ ι and π ◦ f) are null, which

is equivalent to the inclusions Im(δ) ⊂ Ker(d). But we have better: these inclusions are equalities! This

leads to the following definition

Definition 4.3.1.1. Let di ∈ Hom(Mi,Mi+1) morphisms, noted as a «sequence»:

· · ·Mi−1
di−1−−−→ Mi

di−→ Mi+1 · · ·

.

• We say that the sequence is a complex (at i) if di ◦ di−1 = 0 ie Im(di−1) ⊂ Ker (di).

• We say that the sequence is exact (at i) if in addition Im(di−1) ⊃ Ker (di) ie Ker (di) = Im(di−1).

An exact sequence is therefore a particular complex.

Exercise(s) 4.3.1.2. Let f ∈ Hom(M,N).

• Show that 0 → M
f−→ N is exact if and only if f is injective. What is the analogue for surjectivity?

• Show that the sequence 0 → K → M
f−→ N is exact if and only if K can be identified (canonically)

with the kernel of f . Compare with 4.4.0.2 infra.

• Show that the product or direct sum of exact sequences is still exact.

4.3.2 A key exact sequence

Let a ∈ Endk(V) and Va be the associated k[T]-module (4.2.4). We define the k[T]-module as follows.

As a k-vector space, V[T] is the set of formal polynomials with V coefficients

V[T] = {v(T) =
∑
finite

viTi}
∼→ V(N).

The scalar multiplication is then characterized by T
∑
viT

i =
∑
viT

i+1. There is a unique lifting

ã ∈ Endk[T](V[T]) of a to V[T] characterized by ã(vTi) = a(v)Ti. Let πa :∈ Hom(V[T] → Va) the

unique lifinting of IdV (we have πa(
∑
viT

i) =
∑
ai(vi)).



4.3. EXACT SEQUENCES AND DIAGRAMS 47

Lemma 4.3.2.1. The sequence

(ii) 0 → V[T]
TId−ã−−−−→ V[T]

πa−→ Va → 0

is exact.

Proof. Let v ∈ V. The image of the constant polynomial v ∈ V[T] by πa is v. Therefore πa is onto.

We then have

πa ◦ (TId− ã)(v) = Tπa(v)− a(v) = a(v)− a(v) = 0

hence πa ◦ (TId− ã) = 0 since V generates V[T] and therefore Im(TId− ã) ⊂ Ker (πa).

Conversely, let v(T) =
∑
i≥0 T

ivi ∈ Ker (πa), i.e.

v0 +
∑
i≥1

ai(vi) = 0.

Thus, we have

v(T) =
∑
i≥1

(TiId− ãi)(vi).

But since TId and ã commute, we have (geometric series sum)

TiId− ãi = (TId− ã) ◦ (
i−1∑
j=0

Tj ãi−1−j)

and thus v(T) ∈ Im(TId − ã). Hence the exactness in the middle. The exactness on the left, being

unnecessary for us, is left as an (interesting) exercise.

4.3.3 Commutative diagrams

We want to see properties of morphisms in terms of diagrams. For example, to say that f, g ∈ Homk(V,W)

are equivalent endomorphisms in the sense of linear algebra is to say there exist endomorphisms p, q of

W,V such that p◦f = g◦q with p, q isomorphisms. The first condition p◦f = g◦q (resp. both conditions)

is then translated by saying that the diagram

V
p //

g

��

V

f

��
W

q //W

resp. 0 // V
p //

g

��

V

f

��

// 0

0 //W
q //W // 0

is commutative with exact lines4 (this last condition being empty for the first diagram). A general formal

definition (which we encourage the reader not to read!) might be

4By convention, the lines of a diagram are horizontal, the columns vertical.
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Definition 4.3.3.1. Let G = (S,A) be a directed graph with vertices S and edges A.

• A diagram5is the data for each vertex Σ ∈ S of a module MΣ and for each edge a : Σ> → Σ< of A

of a morphism fa : MΣ> → MΣ< .

• The diagram is said to be commutative if for every couple of vertices Σ,Σ′, the composed of the fa

associated with an oriented path from Σ to Σ′ depends only on the vertices and not on the chosen

path.

In practice, we will only deal with diagrams composed of squares or triangles for which the definition of

commutativity will be obvious.

4.4 Functoriality and diagram chasing

Although very simple, the following functoriality statements are crucial. This is a very convenient form

to formulate the universal properties of kernels and cokernels (cf. §4.5).

Proposition 4.4.0.1 (Functoriality I). Assume we have a commutative diagram of R-modules where the

top horizontal line is exact and the bottom line is a complex.

M1
µ1 //

��

M2
//

��

M3
// 0

N1
ν1 // N2

// N3
// 0

Then there exists a unique morphism

f3 : M3 → N3

making the completed diagram commutative

M1
µ1 //

��

M2
//

��

M3
//

f3

��

0

N1
ν1 // N2

// N3
// 0

If in addition, the lower complex line is an exact sequence and the two arrows Mi → Ni, i = 1, 2 are

isomorphisms, then f3 is an isomorphism. In particular, there is canonical isomorphism Coker (µ1) = M3.

5There are more general definitions, allowing diagrams with several arrows between two edges. We don’t use these

diagrams.
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Proof. We focus on the existence and uniqueness of the commutative diagram

M1
µ1 //

f1

��

M2

f2

��

µ2 // M3

f3

��

// 0

N1
ν1 // N2

//ν2 // N3

If there are two arrows f3 and f ′3 that work, we have f3 ◦ µ2 = ν2 ◦ f2 = f ′3 ◦ µ2 so f3 and f ′3 coincide on

µ2(M2) = M3 and therefore are equal, hence the uniqueness.

For existence, let m3 ∈ M3 and consider m2 one antecedent by µ2. If m2 is not unique, it is defined

modulo Ker(µ2) = Im(µ1). By linearity, the image ν2 ◦ f2(m2) is well defined modulo ν2 ◦ f2 ◦ µ1(M1).

But by commutativity of the left square, we have ν2 ◦ f2 ◦ µ1 = ν2 ◦ ν1 ◦ f1 = 0 because ν2 ◦ ν1 = 0 by

hypothesis. Thus, ν2 ◦ f2(m2) is well defined, i.e. depends only on m3. Then set f3(m3) = ν2 ◦ f2(m2)

which is checked to work.

For the second part, we can easily verify by hand that the bijectivity of f1, f2 implies that of f3 (exercice).

Let’s give a «categorical»proof, which has the advantage of generalizing to other contexts. Under the

bijectivity assumptions of f1, f2, we want to prove that f3 admits a left inverse g3 and a right inverse d3.

From g3 ◦ f3 = IdM3 we then obtain by composing on the right by d3 the equality g3 = d3 and thus that

f3 is invertible.

Let’s show the existence of g3. Call g1, g2 the inverses of f1, f2. As f2 ◦ µ1 = ν1 ◦ f1, by composing on

the left by g2 and on the right by g1 we have ν2 ◦ g1 = g2 ◦ ν1 so we have a commutative diagram with

exact lines

M1
µ1 //

f1

��

M2

f2

��

µ2 // M3

f3

��

// 0

N1
ν1 //

g1

��

N2

g2

��

ν2 // N3

g3

��

// 0

M1
ν1 // M2

//ν2 // M3
// 0

that we can complete uniquely in a commutative diagram with exact lines according to the first point

M1
µ1 //

f1

��

M2

f2

��

µ2 // M3

f3

��

// 0

N1
ν1 //

g1

��

N2

g2

��

ν2 // N3

g3

��

// 0

M1
ν1 // M2

//ν2 // M3
// 0

But by looking at the outer square, taking into account g1 ◦ f1 = IdM1
and g2 ◦ f2 = IdM2

, we have a

commutative diagram with exact lines

M1
ν1 //

Id

��

M2

Id

��

ν2 // M3

g3◦f3
��

// 0

M1
ν1 // M2

//ν2 // M3
// 0
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But we also have a commutative diagram

M1
ν1 //

Id

��

M2

Id

��

ν2 // M3

Id

��

// 0

M1
ν1 // M2

//ν2 // M3
// 0

which, thanks to the uniqueness in the first point, gives g3 ◦ f3 = IdM3 . By exchanging the roles of M,N,

we construct the right inverse of f3.

Let’s tur to the last point. By construction of the cokernel, we have a canonical exact sequence

(0) M1
µ1→ M2 → Coker(µ1) → 0

Apply the functoriality to the commutative diagram with exact lines

M1
µ1 //

Id

��

M2
//

Id

��

Coker(µ1) // 0

M1
µ1 // M2

µ2 // M3
// 0

We obtain exactly the same statement by «reversing the direction of the arrows»6

Proposition 4.4.0.2 (Functoriality II). Suppose we have a commutative diagram of R-modules where

the bottom horizontal line is exact and the top line is a complex.

0 // M1
// M2

µ2 //

��

M3

��
0 // N1

// N2
ν2 // N3

Then there exists a unique morphism

ι1 : M1 → N1

making the completed diagram commutative

0 // M1
//

ι1

��

M2
µ2 //

��

M3

��
0 // N1

// N2
ν2 // N3

If in addition, the top complex line is an exact sequence and the two arrows Mi → Ni, i = 2, 3 are

isomorphisms, then ι3 is an isomorphism. In particular, there is canonical isomorphism N1 = Ker (ν2).

6an injection 0 → M → N being thus replaced by a surjection M → N → 0 and vice versa! This is a general phenomenon:

any formal statement involving commutative diagrams, complexes, and exact sequences gives rise to an analogous statement

by reversing the direction of the arrows. We can give a precise sense to this statement valid in any «abelian category». We

will content ourselves, and it is quite sufficient, to see this as a meta-principle.
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A sometimes useful generalization is the famous (and formal) five lemma

Exercise(s) 4.4.0.3. Consider a

commutative diagram of modules with exact lines

M1
//

f1

��

M2
//

f2

��

M3
//

f3

��

M4
//

f4

��

M5

f5

��
N1

// N2
// N3

// N4
// N5

• If f2, f4 injective and f1 surjective, then f3 injective.

• If f2, f4 surjective and f5 injective, then f3 bijective.

Remark(s) 4.4.0.4. The above result is most often in the following weakened form. Consider a com-

mutative diagram of modules with exact lines

0 // M2
//

f2

��

M3
//

f3

��

M4
//

f4

��

0

0 // N2
// N3

// N4
// 0

If f2, f4 bijective f3 bijective.

Exercise(s) 4.4.0.5. Consider an exact sequence of modules 0 → M1
f1−→ M2

f2−→ M3 → 0. It is said

that σ ∈ HomR(M3,M2) is a section of f2 if f2 ◦ σ = IdM3
. When such a section exists, the sequence is

said to be split.

1. Assuming such a section exists, show that the application (m1,m3) 7→ f1(m1) + σ(m3) defines an

isomorphism M1 ⊕M3 ≃ M2. Deduce that M1 ≃ f1(M1) then admits a supplement.

2. Conversely, assume that M1 ≃ f1(M1) admits a complement S. Show that f3 defines an isomorphism

S ≃ M3.

3. Show that a submodule N of M is a direct factor if and only if the exact sequence 0 → N → M →

M/N → 0 is split. In this case, show that every supplement of N is isomorphic to M/N.

4. Show that if n > 1, the canonical exact sequence 0 → Z → Z → Z/nZ → 0 is not split. In particular

nZ has no complement in Z. �

5. Let π : Rn+m → Rm be the projection onto the last m coordinates. Show that there is an exact

sequence 0 → Rn → Rn+m
π−→ Rm → 0 and that this sequence is split.

6. Suppose there are three square matrices A,B,C with coefficients in R of size n, n+m,m making the

diagram commutative
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0 // Rn //

A

��

Rn+m //

B
��

Rn //

C

��

0

0 // Rn // Rn+m // Rn // 0

Show that B is block triangular and identify the diagonal blocks. State and prove a reciprocal and

compare with the preceding remark.

4.5 Universal properties

The question posed is to characterize the various modules M in question by the «calculation»of

h(T) = Hom(T,M) or h∨(T) = Hom(M,T)

for T an arbitrary «test module». Thus, T is seen as a variable and h, h∨ as a function of T whose values

are sets. One should say functor: the composition with f ∈ HomR(M,N) defines an application (linear)

hf (T) : hM(T) → hN(T) (resp. h∨f : h∨(N) → h∨M(T)) which is compatible with composition7 The

correct general framework to formulate what follows is that of the Yoneda lemma in categories, but we

will stay in the framework of modules for the examples that interest us to avoid unnecessary formalism.

4.5.1 Sum and product

Let Mi, i ∈ I be a family of modules. We denote Mi
φi→ ⊕Mi the canonical injections and

∏
Mi

πi→ Mi

the canonical projections. If T is a test module we have two tautological applications

h∨(T) :

 HomR(⊕Mi,T) →
∏

Hom(Mi,T)

f 7→ (φi ◦ f)

and

h(T) :

 HomR(T,
∏

Mi) →
∏

Hom(T,Mi)

g 7→ (g ◦ πi)

Lemma 4.5.1.1 (Universal properties of sum and product). The applications h(T) and h∨(T) are bijec-

tive.

The proof is immediate and left as an exercice. In the case of the direct sum, the meaning of the lemma

is that giving a morphism f : ⊕Mi → T is equivalent to giving a collection of morphisms fi : Mi → T

(thanks to the formula f(
∑
mi) =

∑
fi(mi) which is well defined because the sum is actually finite).
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4.5.2 Kernel and cokernel

Let f : M → N be a morphism of modules. By construction, we have two exact sequences

0 → Ker (f)
j−→ M → N

and

M → N
p−→ Coker(f) → 0

that characterize kernel and cokernel (see also 4.3.1.2 and 4.7.0.3).

If T is a test module we have two tautological applications

h∨(T) :

 Hom(Coker(f),T) → Hom0(N,T) = {ψ ∈ Hom(N,T)|ψ ◦ f = 0}

φ 7→ φ ◦ p

and

h(T) :

 Hom(T,Ker (f)) → Hom0(T,M) = {ψ ∈ Hom(T,M)|f ◦ ψ = 0}

φ 7→ j ◦ φ

Lemma 4.5.2.1 (Universal properties of kernel and cokernel). The applications h(T) and h∨(T) are

bijective.

Proof. Let’s prove, for example, the universal property of the cokernel ie construct the inverse of h∨(T).

Observing that we have an exact sequence 0 → T
Id−→ T → 0. Let then ψ ∈ Hom0(N,T). The condition

ψ ◦ f = 0 precisely ensures the commutativity of the diagram

M
f //

��

N
p //

ψ

��

Coker(f) // 0

0 // T
Id // T // 0

so that 4.4.0.1 ensures the existence of a unique φ making the diagram

M
f //

��

N
p //

ψ

��

Coker(f) //

φ

��

0

0 // T
Id // T // 0

7The reader will recognize the usual notion of «restriction»of a morphism for hf (T) and dually of «transpose»for h∨(f).
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commute. We verify that the application ψ 7→ φ is the inverse of h∨(T).

The meaning of the lemma is that providing a morphism φ from the cokernel to T is equivalent to

providing a morphism ψ from N to T such that the composition ψ ◦ f is zero, or ψ factors through

the quotient (or passes to the quotient) in φ if and only if ψ◦ = 0 (and the analogous for the kernel by

reversing the directions of the arrows). From a diagrammatic perspective, we often summarize by keeping

only the informal meaning of the statement:

T

If ψ ◦ f = 0 then M
f // N

ψ

;;

// Coker(f)

∃!φ

OO

Another way of expressing this, in terms of the functors h and h∨, is that the sequences of module

morphisms they define

0 → Hom(Coker(f),T) → Hom(N,T) → Hom(M,T)

and

0 → Hom(T,Ker (f)) → Hom(T,M) → Hom(T,N)

are exact.

4.6 Properties to handle with caution

Let us first summarize the notions we will be talking about. Unless their definitions are just mimicking

classical linear algebra, their properties in the module case are heavily different as we will discuss.

Finiteness and Freeness

Property/Definition Vector space Module

Free family (xi)i∈I

∑
λixi = 0 ⇒ λi ≡ 0 or R(I) λi 7→

∑
λixi−−−−−−−→ M injective

Generating family (xi)i∈I ⟨xi⟩ = M or R(I) λi 7→
∑
λixi−−−−−−−→ M surjective

Base (xi)i∈I (xi) free and generating or R(I) λi 7→
∑
λixi−−−−−−−→ M bijective

Free module M M ≃ R(I) i.e. M admits a base

Finite type module M finite generating family or Rn → M surjective

7Se 4.6.2.2 for the finite type case and chapter 6 in general.
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4.6.1 Finiteness

Mimicking the definition of finite dimensional vector space, we say that a module M is of finite type if it

has a finite generating family or, equivalently, if there exists a surjective morphism Rn → M. Contrary

to the vector space case, for general rings, its is not true that a submodule of a finite type module is of

finite type.. As we will see in full detail in chapter 6, rings for which this pathology does not happen �

are Noetherian rings, a huge generalization of fields containing almost all rings appearing naturally in

algebra or number theory. In a first approach8, let us explain here how they are defined and what this is

relevant for our finiteness problem.

Definition 4.6.1.1. A ring is Noetherian if every ideal is finitely generated.

For instance, fields and PID are Noetherian.

Exercise(s) 4.6.1.2. Show that the rings of continous real functions on R is non Noetherian.

Proposition 4.6.1.3. Let M be a finite type module over a Noetherian ring R and N ⊂ M a submodule.

Then N is of finite type.

Proof. Induction on the minimal number n of generators of M (obvisously true for n = 0!). Assume M

is generated by n + 1 element : we have a surjective morphism π : Rn+1 → M inducing a surjection

N = π−1(N) → N. We just have to prove that N is of finite type. The kernel of the projection

p :

 Rn+1 → R

(x1, . . . , xn+1) → xn+1

is Rn and we have an exact sequence 0 → N ∩ Rn → N → p(N) → 0. By induction, N ∩ Rn has a finite

number of generators gi. But p(N) is an ideal of R which has a finite number of generators of the form

p(γj). The finite family (gi, γj) generates N.

Exercise(s) 4.6.1.4. Adapt the proof below and prove that if R is a PID, any submodule of Rn is free

(we will give a far more general statement in 6.5.0.1).

4.6.2 Free modules

The reader will convince himself that the data of a basis (ei)i∈I of M is equivalent of the data of an

isomorphism R(I) ∼→ M. When such a data exists, we say that M is free. As soon as R is not a field,

there are plenty of non free module . Indeed, if x is neither 0 or invertible, the R-module R/(x) is never �

free (exercice).
8See 6.3 and 6.3.0.2 below
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Example(s) 4.6.2.1. 1. R is a free module with base 1. More generally, Rm is free with base (canon-

ical) (ej = E1,j)1≤j≤m or even R(I) is free with basis (ej)j∈J withej = δi,j , i ∈ I.

2. R<n[T] is a free R-module with base Ti, i < n therefore of rank n for n ∈ N = N ∪ {∞}.

3. Mn,m(R)is a free module with the standard base (Ei,j)1≤i≤n,1≤j≤m.

4. The module Rm is free with base (canonical) (ej = E1,j)1≤j≤m.

5. If (ei)1≤i≤n is a basisof the k-vector space V, the ei seen as constant polynomials of V[T] form a

basis for V[T], a module which we will thus identify with k[T]n through this means. Exolicitely, once

V has been identified to kn thanks to the basis ej,

6. the formula (
∑
j λi,jT

j)i =
∑
j(λi,j)iT

j identifies (k[T])n and (kn)[T] = V[T] which we will do

henceforth.

Proposition 4.6.2.2. Let M be a finite type module which is free. Then, there exist a unique integer n

such that M is isomorphic to Rn. This integer is called the rank of M.

Proof. Let (mi)i∈I be a basis of M and π : RN → M a surjection (M is of finite type). Let J ⊂ I be

the finite set of indices involved in the decomposition of each π(ek), k = 1, . . .N. The image Im(π) is

generated by (mi)i∈J. Because this subfamily is free, it generates a submodule M′ of M isomorphic to RJ.

By surjectivity of π, one has M′ = M and we get therefore RJ ∼→ M hence the existence of n = Card(J).

By (4) of 3.2.0.1, n is uniquely determined by M.

Exercise(s) 4.6.2.3. Using Krull’s theorem, how can you generalize the proposition for general free

modules ?

�

Remark(s) 4.6.2.4.

• This property fails if R is no longer assumed to be commutative (see 4.7.0.4).

• We already know that ⊕i∈IMi →
∏
i∈I is not an isomorphism unless all but a finite number of Mi

are zero. In fact, if I is infinite, the direct product RI is usually not even a free module9 (see4.7.0.6)!

4.6.3 Torsion

A torsion element of a module is an element of M annihilated by a nonzero element of R. If R is a field

(vector space situation) this notion is empty : 0 is the only torsion element. A module whose all elements
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are torsion is called a torsion module.

Example(s) 4.6.3.1. Any finite ring is torsion. In finite dimension, the k[T]-module Va associated

to a ∈ End(V) is torsion (use 3.1.2.2 for instance). More generally10, if I is a nonzero ideal of R, the

quotient module R/I (which will acquire a ring structure in the next chapter) is torsion.

If R is an integral domain11 and M a module, the set Mtors of torsion elements of M is a submodule called

torsion module . It is no longer true if R is no integral (observe that 2 mod 6 and 3 mod 6 are torsion �

in Z/6Z but that 5 mod 6 is not). We will prove in the sequel that if R is PID, finite type modules are

free6.5 if an only if they have no torsion. Not this not true in general (exercice TBD).

4.6.4 Summary of some specifics of Modules

Bases, Finiteness, Complements

Property/Definition Vector space Module

Torsion x ̸= 0 free x ̸= 0 free iff x non torsion

Permanence of finiteness

subvector spaces of kn are of

finite dimension

submodules of Rn of finite

type iff R Noetherian

Bases Always free

Plenty of non free modules if

R ̸= k

Complement submodules Always exist Usually don’t exist

Exact sequences Always split Usually don’t splitt

4.7 Supplementary Exercices

Exercise(s) 4.7.0.1. 1. Show that an abelian group is finite if and only if the associated Z-module is

of finite type and torsion.

2. Show that if Va corresponds to (V, a) (refer to 4.2.4), then V is finite-dimensional if and only if Va

is of finite type and torsion.

Exercise(s) 4.7.0.2. Let k be a field and R a ring.
10The advanced reader will notice that Va is isomorphic to k[T]/(µa) where µa is the minimal polynomial of a in the

case where a is a cyclic endomorphism. We will shortly discuss in detail these topics.
11Recall that this means that R is not zero and that the product of two nonzero elements is nonzero.
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• Show that the invertibles of k[T] are the non-zero constant polynomials from k∗.

• Show that a matrix from Mn(R) is invertible if and only if its determinant is an invertible of R×.

Deduce that M ∈ Mn(k[T]) is invertible if and only if det(M) ∈ k∗.

Exercise(s) 4.7.0.3 (Snake Lemma). Consider a commutative diagram of modules with exact rows:

A
i //

f

��

B
p //

g

��

C //

h
��

0

0 // A′ i′ // B′ p′ // C′

1. Show that i sends Ker f into Ker g and p sends Ker g into Kerh.

2. Show that i′ induces a morphism Coker f → Coker g and that p induces a morphism Coker g →

Cokerh.

3. Show that there exists a unique morphism δ : Kerh → Coker f such that the following sequence is

exact:

Ker f −→ Ker g −→ Kerh
δ−→ Coker f −→ Coker g −→ Cokerh.

Show that if i is injective and p is surjective, then the following sequence is exact:

0 −→ Ker f −→ Ker g −→ Kerh
δ−→ Coker f −→ Coker g −→ Cokerh −→ 0.

4. (Bonus) Retrieve the Five Lemma from the Snake Lemma.

Exercise(s) 4.7.0.4. We will show that if the ring R is not assumed to be commutative, then it may occur

that the R-modules Rn, n ≥ 1 are all isomorphic. To this end, we fix a real vector space V equipped with a

countable base (ek)k∈N and we denote R the ring of linear applications on V (equipped with composition),

identified as «infinite matrices» of

cRN×N. Define two linear applications T and T′ on V by the following relations for n ∈ N:T(e2n) = en,

T(e2n+1) = 0,

and

T′(e2n) = 0,

T′(e2n+1) = en.

Write the «matrices» of T and T′. Given n ∈ N∗, we consider Rn as an R-module for scalar multiplica-

tion:

R× Rn → Rn,


r,



T1

T2

...

Tn




7→



r ◦ T1

r ◦ T2

...

r ◦ Tn


.

1. Provide a one-element base for the R-module R1.

2. Show that (T,T′) is also a base for the R-module R1.
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3. Show that R1 and R2 are isomorphic as R-modules then that Rn is isomorphic to R for every n ∈ N∗.

Exercise(s) 4.7.0.5. Let d ≥ 1 be a natural number, R a principal ring and M = Rd. Let N be a

submodule of M. We aim to prove by induction on d that N is isomorphic to Rδ with δ ≤ d. Assume

d ≥ 1 and the theorem proven for submodules of Rd
′
if d′ < d.

1. Let ν = (ν1, · · · , νd) ∈ Nd − {0} and i such that ni ̸= 0. The map πi : (x1, · · · , xd) 7→ xi induces an

exact sequence

(iii) 0 → K → N
πi−→ C → 0

where C is a nontrivial submodule of A and K ⊂ Rd−1.

2. Show that there exist d′ < d and an exact sequence

0 → Rd
′ j−→ N

π−→ R → 0.

3. Show that there exists a section σ = A → N of π, i.e., satisfying π ◦ σ = IdA.

4. Show that the map

 Rd
′ ⊕ R → N

(x, y) 7→ j(x) + σ(y)
is an isomorphism.

5. Conclude.

Exercise(s) 4.7.0.6. Let N = Z(N) (direct sum of countable many copies of Z). It is a free submodule

of M = ZN (product of countable many copies of Z) with basis en = (δn,p)p∈N. Let φ ∈ HomR(M
∗,M) be

the morphism u 7→ (u(en))n∈N. We will prove that φ defines an isomorphism M∗ → N and then conclude

by a cardinality argument that M is not free12.

A. Determination of Ker(φ)

Let d ≥ 2 be an integer.

1. Show that Kerφ
∼→ G∗, where G = M/N.

2. Let Hd be the set of elements of G divisible by dk for all k. Show that Hd is a submodule of G.

3. Show that any linear form u : G → Z vanishes on Hd.

4. Determine H2 +H3. Conclude.

B. Determination of Im(φ)

For any x = 2vy ∈ Z, with y odd, we define |x|2 = 2−v; we set |0|2 = 0.

1. Check that (x, y) 7→ |y − x|2 is metric on Z. Show that if x1, . . . , xn are integers such that the |xi|2
are pairwise distinct, then

∑
|xi|2 is the largest among the |xi|2.

2. For x = (xn)n∈N ∈ M, define |x|2 = sup |xn|2. Show that |x|2 is a real number and ∀u ∈ M∗,∀x ∈

M, |u(x)|2 ≤ |x|2.
12This method of proof of Baer’s result comes from [7]
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3. Let x = (an)n∈N. Under what condition does the sequence (|x−
∑
k akek|2)n∈N converges to 0?

4. Let u ∈ M∗ and denote by S = {n | u(en) ̸= 0} the support of φ(u). Show that there exists x ∈ M be

an element whose support is S and such that the mappings S → |xs|2 and s 7→ u(es)|xs|2 from S to

R are strictly decreasing.

5. Let A ⊂ {0, 1}N be the set of all sequences with value in {0, 1} vanishing outside S. For ε ∈ A, define

Ψ(ε) = u(εx), where εx = (εnxn)n∈N. Determine |Ψ(ε)−Ψ(ε′)|2 as a function of s0 = inf{s | εs ̸=

ε′s}. Deduce that Ψ : A → Z is injective.

6. Prove Im(φ) = N by considering the cardinality of A [Hint: use for instance the map ε 7→
∑∞
k=0 ε

k2−k ∈

[0, 1] and use that [0, 1] is not countable.]

C. Conclusion

1. Describe M∗.

2. Prove that M is not free by a cardinality argument?

3. Show that the evaluation biduality morphism N → N∗∗ defined by x 7→ (φ 7→ φ(x)) is an isomorphism,

even though N is freely generated over Z with infinite rank.



Chapter 5

Rings and Modules

5.1 Perspective

We will illustrate how modules are an important tool to study rings and...

conversely. In particular, we will emphasize the role of matrices which is crucial,

the first step towards the advanced notion of resolution of a module/ring.

5.2 Quotient rings

Recall that an ideal I of a ring R is a submodule of R, that is an additive subgroup of R such that

∀r ∈ R, rI ⊂ I. By 4.2.3, there exists a unique group structure on R/I making the projection π : R → R/I

a morphism.

5.2.1 Definition

The main (simple but important) result goes as follows:

61
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Proposition 5.2.1.1. There exists a unique group structure on R/I making the projection π : R → R/I

a morphism whose kernel is I. One has the following universal property (cf. 4.5.2.1) : for any ring T,

the natural sequence

0 → Homring(R/I,T) → Homring(R,T) → HomZ(I,T)

is exact. Moreover, if f ∈ Hom(R,R′), then f induces a canonical isomorphism of rings f : R/Ker(f) ≃

Im(f) (cf. 4.2.3.4).

In a diagrammatic way, the main point summarizes as

T

If ψ(I) = 0 then I
� � // R

ψ

>>

// R/I

∃!φ

OO

Proof. The proof goes straightforward as in the module case except for the fact that π is multiplicative

which follows from the computation

π(r1)π(r2) = (r1 + I)(r2 + I) + I = r1r2 + r1I + r2 + I2 + I = r1r2 + I

because r1I + r2 + I2 ⊂ I (recall that if I, J are ideals, IJ denotes the ideal generated bay all products ij

where i ∈ I, j ∈ J).

Exercise(s) 5.2.1.2. With the above notations, show that the map J 7→ J = π−1(J) identifies ideals J of

R = R/I and ideals J of R containing I. Show that π induces an isomorphism R/J
∼→ R/J.

Definition 5.2.1.3. An ideal I of R is prime if an only if R/I is an integral domain, maximal if R/I is

a field (cf. 5.7.0.3).

5.3 Algebras

Let us be given two rings A,B. We say that B is an A-algebra if B is further equipped with an A-module

structure compatible with the product in the sense that

a · (bb′) = (a · b)b′ ∀a ∈ A, b, b′ ∈ B.

It is equivalent to giving a ring morphism f : A → B since we can then define the module structure by

a · b = f(a)b for a ∈ A, b ∈ B. For example, C is an R-algebra, and a ring is a Z-algebra.

A morphism f ∈ HomA(B,B
′) of A-algebras is an A-module which is multiplicative with f(1B) = 1B′ .
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Proposition 5.3.0.1. Let B be an A-algebra and b ∈ B. There exists a unique algebra morphism

A[X] → B that sends X to b. Moreover, all morphisms are of this type.

Proof. Let φ be such a momorphism. Then, necessarily, φ(
∑
i aiX

i) =
∑
i aiφ(X)i and thus is determined

by b = φ(X). Conversely, we know (3.1.2.1) that this A-module morphism∑
i

aiX
i 7→

∑
i

aib
i

is also an A-algebra morphism.

Using the identification A[X,Y] = A[X][Y], we obtain that the algebra morphisms from A[X1, . . . ,Xn]

to B are identified with n-tuples b = (b1, . . . , bn) ∈ Bn (to such an element is associated the morphism

(P 7→ P(b))).

Note that if B is an A-algebra and I an ideal of B, the quotient ring B/I is also an A-module (since B

and I are A-modules) and thus B/I is canonically an A-algebra.

Exercise(s) 5.3.0.2. Describe an isomorphism of R-algebras between R[X]/(X2 +X+1) and C on one

hand, and between R[X]/(X(X + 1)) and R2 on the other hand.

5.3.1 Cyclic modules and quotient rings

As in the group case, a R-module is said cyclic if it can be gerated by a single element. If R = Z, it is well

known that that any cyclic group is isomorphic to Z/nZ. and that its supgroups are cyclic isomorphic

to Z/dZ with nZ ⊂ dZ, i.e.d|n. In general, we get

Lemma 5.3.1.1 (Cyclic modules). A module M is cyclic if and only if it is isomorphic to R/I for some

ideal I. In this case we have I = AnnR(M) = {λ ∈ R|λM = {0}}.

Proof. Let x be a generator of M. Then, the homotethy R/I
x−→ M is an isomorphism. The last point is

the formula I = AnnR(R/I).

If it is well known that subgroups of a cyclic groups are cyclic, it is no longer true for submodules of

cyclic modules in general. This is true essentially in the principal case where we recover the analogous

statement for subgroups of finite groups.
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Exercise(s) 5.3.1.2. Let M a cyclic module over a principal ideal ring (PID) R with annihilator

AnnR(M) = I. Prove that the submodules N of M are cyclic and are in one to one correspondence

with ideals J containing I. If R = k[T] or R = Z, prove that their number is finite unless M
∼→ R

(or equivalently I = {0})1. Prove that the ideal of real R[X,Y] vanishing at (0, 0) is not cyclic but is a

submodule of cyclic module.

5.4 Integrality

Let us illustrate how the close relation between rings and modules allows to prove stability results for

algebraic or integral elements.

5.4.1 An Application of Cayley-Hamilton

Proposition 5.4.1.1 (Determinant Trick). Let f be an endomorphism of a finitely generated R-module

M. There exists a monic polynomial P ∈ R[T] that annihilates f . If additionally f(M) ⊂ IM, it can be

assumed that the coefficients of f with index < deg(P) belongs to I.

Proof. Let mi, 1 ≤ i ≤ n be a finite family of generators of M and consider a matrix A = [ai,j of f ,

i.e.for each j, write (in a non-unique way)

f(mj) =
∑
i

ai,jmi.

Note that if f(M) ⊂ IM, we can assume ai,j ∈ I. It is then enough to look at P = det(TId − A) and

invoke Cayley-Hamilton theorem (3.1.2.2) for A ∈ Mn(R).

By applying the proposition to f = IdM, we obtain the famous Nakayama Lemma which is very important

in advanced commutative algebra.

Corollary 5.4.1.2 (Nakayama). Let M be a finitely generated module and I an ideal such that M = IM.

Then, there exists i ∈ I such that (1+ i)M = 0. In particular, if 1+ i is invertible (e.g., if i is nilpotent),

then M = 0.

5.4.2 Rings of Integers

Let R′ be an R-algebra (in other words, consider a ring morphism R → R′). An element r′ ∈ R′ is said

to be integral over R if it is annihilated by a monic polynomial with coefficients in R.
1As we will see, this result is true for all PID.
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Theorem 5.4.2.1. The subset of R′ of elements which integral over R forms a subring of R′.

Proof. 0 and 1 are integral. We must therefore prove that the difference and the product of two integral

elements r′ and r” are integral. Let M = R[r′, r”] be the ring of polynomial expressions in r′ and r”

with coefficients in R. If r′ and r” are annihilated by monic polynomials of degrees n′ and n”, the

family r′ir”j1 ≤ n′, j ≤ n” generates M and contains r′ − r” and r′r”. But if ρ ∈ M, the homothety

of ratio ρ defines an endomorphism hρ of M and thus (5.4.1.1) there exists a monic P ∈ R[T] such that

P(hρ) = hP(ρ) = 0. Applying to 1 ∈ M, we obtain P(ρ) = 0 so that all elements of M are integral over R.

Corollary 5.4.2.2. Let k be a subfield of a field k′. Then the subset of elements of k′ that are algebraic

over k forms a subfield of k′.

Proof. Following 5.4.2.1 applied to R = k, it suffices to show that the inverse of a non-null algebraic

element r′ ∈ k′ is still nonzero. Suppose therefore P is a unitary annihilator of r′. But then, Tdeg(P)P(1/T)

is a non-null annihilator of 1/r′.

Remark(s) 5.4.2.3. For instance, the set Q of complex numbers which are algebraic over Q is a subfield

of C and the Z of complex numbers which are integral over Z is a subring of Z. One can show without too

much difficulty that Q is algebraically closed (5.7.0.6), which is a good news, and that Z is non noetherain

(7.3.2.4), which in bad news in some extent.

Remark(s) 5.4.2.4. With a slight abuse, one often simply say that a complex number which is alge-

braic over Q is algebraic, the non algebraic complex numbers being the transcendental ones. A simple

countability argument shows that a randomly chosen complex number is almost surely (for the Lebesgue

measure) transcendental. For instance, both e (due to C. Hermite, 1873) ans π (F. Lindemann, 1883)

are transcendental.

Exercise(s) 5.4.2.5. 1. Show that a rational number is integral over Z if and only if it is an integer.

2. Show that the minimal degree monic polynomial P ∈ Q[T] that annihilates exp( 2iπn ) has integer

coefficients.
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5.5 Cokernel of Diagonal Matrices

5.5.1 A fundamental exact sequence

Let d ∈ R. Then, the sequence

(∗) R
r 7→dr−−−→ R

r 7→r mod d−−−−−−−−→ R/(d) → 0

is exact. More generally, let’s consider a "diagonal" rectangular matrix D ∈ Mn,m(R) «diagonal» in the

sense that its coefficients di,j are zero if i ̸= j. Thus, we have a block decomposition

D = (∆, 0) ∈ Mν,µ(R) if m ≥ n,D =

∆

0

 ∈ Mµ,ν(R) if n ≥ m

with ∆ = diag(di) ∈ Mν(R), ν = min(m,n), µ = sup(m,n) or in a synthetic way

D =

diag(di)ν,ν 0ν,m−ν

0n−ν,ν 0n−ν,m−ν


(and where allow with one non-positive size are empty!).

In this setup, the sequence (*) becomes (**)

(∗∗) Rm = Rµ × Rν−µ

X

Y

=D

X

Y

=7→∆X

−−−−−−−−−−−−−−−→ Rn = Rµ
r 7→(ri mod di)i−−−−−−−−−−−→

µ∏
i=1

R/(di) → 0 if m ≥ n

or

(∗∗) Rm = Rν

X7→DX=

∆X

0


−−−−−−−−−−−→ Rn = Rµ×Rν−µ

(r,r′)7→((ri mod di)i,r
′)−−−−−−−−−−−−−−−−→

µ∏
i=1

R/(di)×Rν−µ → 0 if m ≤ n

Lemma 5.5.1.1. The sequence (**) is exact. In particular, one has a canonical isomorphism

Coker(D) =

µ∏
i=1

R/(di)× R(ν−µ)+ .

Proof. Let’s deal with the case m ≥ n, the other case being completely analogous.

The arrow Rn = Rµ
r 7→(ri mod di)i−−−−−−−−−−→

µ∏
i=1

R/(di) being surjective as product of surjective maps, we have to

prove the exactness of the middle.

The composition of the two non trivial arrows is

X

Y

 7→ (dixi mod di)i and is therefore zero proving

the inclusion Im ⊂ Ker.
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If r ∈ Rµ maps to zero, we have ri mod di = 0 for all i and therefore there exists xi ∈ R such that

ri = dixi for all i. We have D

(xi)i

0

 = r proving Ker ⊂ Im hence the exactness. The last point is just

the functoriality of the cokernel 4.4.0.1.

With this generality, it’s impossible to recover the diagonal coefficient only from the cokernel. It is even

true for n = m = 1 : the cokernel of the [6] ∈ M1(Z) is Z/6Z but also Z/2Z×Z/3Z thanks to the usual

Chinese lemma. Let’s fix this problem.

5.5.2 Polycyclic modules

Definition 5.5.2.1. A polycyclic module is a finite direct sum of cyclic modules M = ⊕ni=1Mi with

AnnR(M1) ⊂ AnnR(M2) ⊂ · · · ⊂ AnnR(Mn). In other words, M is isomorphic to ⊕ni=1R/Ii where

I1 ⊂ I2 ⊂ · · · ⊂ In is an increasing sequence of proper ideals (eventually zero).

We will show that the Ii’s are uniquely determined by the module2

Proposition 5.5.2.2. Let M a polycyclic module as before. Then

1. The minimal number of generators of M is n.

2. For k = 1, . . . , n, the ideal Ik is equal to the set of all x ∈ R such that xM can be generated by fewer

than k elements.

We will refer to the Ik’s as the invariant ideals of our polycyclic module and to n as its rank.

Proof. (1).M is a quotient of Rn and has therefore a generating set consisting of n elements. Conversely,

if we have a generating family of d elements, we get a surjection Rd 7→ ⊕R/Ik ⊕ (R/In)
n which factors

through a surjection (R/In)
d → (R/In)

n implying d ≥ n by 3.2.0.1.(2)] Let x ∈ R, and let k ≤ n. For

any ideal I of R,let Ix = {y ∈ R|xy ∈ I}. By construction, the ideal Ix = R if and only if x ∈ I.

The multiplication by x defines an isomorphism xM ∼= ⊕n(x)k=1R/(Ik)x where n(x) is the largest k such

(Ik)x ̸= R. Because (Ik)x is increasing this shows that xM is polycyclic. Moreover, by (1) the module

xM can be generated by fewer than k elements if and only if the k-th factor R/(Ik)x is zero i.e.when

x ∈ Ik.

With the example of M = Z/2Z× Z/3Z, we observe that is polycyclic because it is isomorphic to Z/6Z

generated by a single element (1 mod 6 for instance) and that xM is generated by less than one element

if and only if x ∈ 6Z, as it has to be.
2This is well known, and easy, in the noetherian case, using the existence of enough irreducible elements, see below.

With this generality, I learned this nice argument form https://math.stackexchange.com/q/3147043.

https://math.stackexchange.com/q/3147043
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Remark(s) 5.5.2.3. In particular, we recover the fact that Rn and Rm are isomorphic if and only if

n = m.

5.6 The Chinese Remainder Lemma

We know that the rings Z/nmZ and Z/nZ×Z/mZ are isomorphic if n and m are coprime and the reader

probably knows that more generally that R/(ab)
∼→ R/(a)× R/(b) for corime ideals (a), (b) in a PID R.

This latter condition can also be written as (a) + (b) = R according to Bézout’s identity. We will give a

useful (fortunately quite straightforward) generalization in the case where R is a (commutative with unit)

algebra over some ring (rif we have just a ring structure, recall that any ring is uniquely a Z-algebra).

Let us give a slightly more general version.

«When General Han Ting arranges his soldiers in threes, there remain two soldiers, when he arranges

them in fives, there remain three, and when he arranges them in sevens, there remain two. How many

soldiers does Han Ting’s army consist of? », Sun Zi, around the 4th century.

Terracotta Army

Mausoleum of Emperor Qin

Proposition 5.6.0.1 (Chinese Remainder Lemma). Let I1, . . . , In, n ≥ 2 be ideals of R which are pairwise

coprime, i.e., such that Ii + Ij = R for i ̸= j and let M bean R-module. Let I(−j) = I1 · · · Îj · · · In be the

ideal product of the ideals Ii distinct from Ij
3

1.
∑
j I(−j) = R and I1 ∩ · · · ∩ In = I1 · · · In.

2. The canonical morphism R →
∏

R/Ij factors through ∩Ij to give an algebra isomorphism

φ : R/I1 ∩ · · · ∩ In ≃
∏

R/Ij .

Let εj ∈ I(−j) such that
∑
εj = 1 and ej = εj mod I1 . . . In.

3. φ(ej) = (δi,j)i and therefore eiej = δi,jei and
∑

ei = 1 (complete family of orthogonal idempotents)4.



5.6. THE CHINESE REMAINDER LEMMA 69

4. The canonical morphism M →
∏

M/Ij factors through ∩Ij to give an module isomorphism

φM : M/(I1 ∩ · · · ∩ In)M ≃
∏

M/IjM

whose inverse is (mj) 7→
∑

ejmj

Proof.

1. we can proceed by induction on n. If n = 2, this is the hypothesis I2 + I1 = R. Otherwise, we

apply the induction hypothesis to I1, . . . , In−1. We then obtain that the sum of the n − 1 ideals

I1 · · · Îj · · · In−1 is R. Multiplying by In, we get
∑
j<n I(−j) = In and the sum

∑
j I(−j) contains In.

Reapplying the same process to I2, . . . , In, we obtain that the sum contains I1. Since I1 + In = R,

the sum equals R.

2. The kernel of R → R/I1 × · · · × R/In is the intersection I1 ∩ · · · ∩ In. By the universal property of

the quotient, we thus have an injective algebra morphism. Let us verify that φ is onto. We write

1 =
∑
j εj , εj ∈ I(−j). Let xj mod Ij be arbitrary classes. Set x =

∑
j εjxj . Observe that

(∗) εj ≡ 0 mod Ii if i ̸= j and εj ≡ 1 mod Ij

and therefore x ≡ xjεj ≡ xj mod Ij for all j.

3. The other items follow directly from (*)

Remark(s) 5.6.0.2. The reader should notice that the quotient rings R of a finite product of rings∏
i∈I Ri (as in (2) above) is a finite direct product of quotient rings of Ri. For, let Ker be the ideal

Ker = Ker(
∏

Ri → R) and ei = (δi,j)j the i-th idempotent of
∏

Ri. Then, x =
∑

eix ∈ Ker if and

only if eix = 0 proving Ker =
∏

eiKer and R′ =
∏

Ri/eiKer . The ideals of fields being trivial, we

get in particular that any quotient
∏
i∈I Ki of a finite product of fields is isomorphic to

∏
j∈J Kj where

J = {i ∈ I|eiKer = {0}}.

Exercise(s) 5.6.0.3. Solve the following systems of equations, with the unknown x ∈ Z:


x ≡ 1 (mod 2)

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

4Recall that by definition its is the ideal generated by products of
∏

i ̸=j xi with xi ∈ Ii.
4By definition, an idempotent of a ring is an element e such that e2 = e. Two different idempotents are said to be

orthogonal if there product vanishes. A finite family of orthogonal idempotents is complete if there sum equals to 1.
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5.7 Supplementary Exercises

Exercise(s) 5.7.0.1. TBD

Exercise(s) 5.7.0.2 (Resultant). Let R be a ring and P,Q ∈ R[T] be two polynomials of degrees p, q > 0.

Let Res(P,Q) denote the resultant of P and Q, defined as the determinant, in canonical bases (cf. 4.2.4),

of the linear map between free modules of rank p+ q

ρ(P,Q) :

 R<q[T]× R<p[T] → R<p+q[T]

(A,B) 7→ AP+ BQ

1. Calculate Res(P,Q) if P has degree 1.

2. By considering the comatrix of ρ(P,Q), show that there exist A,B ∈ R[T] of degrees q, p respectively

such that AP+BQ = R(P,Q). Hence deduce that if P,Q have a common root in R, then R(P,Q) = 0.

3. If P,Q are also monic, show that ρ(P,Q) is the matrix of the multiplication µ : R[T]/(Q)×R[T] →

R[T]/(PQ) in canonical bases (of monomial classes Ti).

4. Still assuming P,Q are monic, show that there is a commutative diagram with exact rows

0 // R[T]/(PQ)
(T−r) // R[T]/((T− r)PQ)

evr // R // 0

0 // R[T]/(Q)× R[T]/(P)
(1,(T−r))//

ρ(P,Q)

OO

R[T]/(Q)× R[T]/((T− r)P)
evQ(r) //

ρ((T−r)P,Q)

OO

R //

Q(r)

OO

0

where ev(A) = A(r) and evQ(A,B) = A(r). Hence deduce that ρ((T − r)P,Q) is block triangular

with diagonal diag(ρ(P,Q),Q(r)), and then that Res((T− r)P,Q) = Q(r)Res(P,Q).

5. If Q is monic, show that Res(
∏

(T − ri),Q) =
∏

Q(ri). What happens if Q is not assumed to be

monic?

6. If R = k is a field, show that deg(PGCD(P,Q)) > 0 if and only if there exist nonzero A,B ∈ k[T]

of degree < q and < p respectively such that AP = BQ. Deduce that P,Q are coprime if and only if

their resultant Res(P,Q) ̸= 0.

Exercise(s) 5.7.0.3. Let M be an R-module and I an ideal.

1. Show that I is prime if and only if I is a proper ideal and xy ∈ I ⇒ x ∈ I or y ∈ I.

2. Show that I is maximal among the family of proper ideals of R if and only if R/I is a field.

3. Show that M is of finite type if and only if there exists a surjective R-linear mapping Rn → M for

some n ∈ N.

4. Show that if f ∈ HomR(R
m,Rn) = Mn,m(R) is surjective then m ≥ n.

Hint: Consider a maximal ideal I of R and see that after reduction modulo I, the application f

remains surjective modulo I.
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5. Show that if f is an isomorphism, then n = m.

6. Show that a free module of finite type L has a finite basis and that all its bases have the same

cardinality: the rank of L.

7. Show that the rank of L is the minimal cardinal of a finite generating family.

Exercise(s) 5.7.0.4. Let n be a positive integer and z1, . . . , zn be complex numbers. Define Pm(T) =∏
i(T− zmi ) for m ≥ 0 and suppose that 0 < |zi| ≤ 1 for all i and that P1 ∈ Z[T].

1. Show that the Pm(T) have integer coefficients.

2. Show that the set {Pm, m ≥ 0} is finite.

3. Conclude that the zi are roots of unity.

Exercise(s) 5.7.0.5. Existence corps alg clos.TBD

Exercise(s) 5.7.0.6. TBD k is algebraically closed.

Exercise(s) 5.7.0.7. Let R be a ring and P =
∑n
i=0 aiX

i ∈ R[X].

1. Let x be a nilpotent element of R. Show that 1 + x is invertible.

2. Show that P is nilpotent if and only if for all i ∈ N, ai is nilpotent.

3. Show that P is invertible in R[X] if and only if a0 is invertible and for all i ≥ 1, ai is nilpotent. Hint:

if Q =
∑m
i=0 biX

i is an inverse of P, one could start by showing that for all r ≥ 0, ar+1
n bm−r = 0.
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Chapter 6

Modules and Matrices

David Hilbert Matrix Equivalence Emmy Noether

6.1 Perspective

We will illustrate how the intertwining between finite type properties of modules

(Noetherian conditions) and matrix computations allows to obtain quite general

and non trivial result in an easy way like the structure theorem for finite type

abelian groups (6.5.0.3) or more generally of finite type modules over PID

(6.5.0.1).

6.2 Introduction

The notion of Noetherian ring inevitably leads back to Hilbert’s foundational paper from 1890 [10] with its

three major theorems, the first being the Basis Theorem 6.3.2.1 in the case of polynomial rings. However,

as a student rightly pointed out to me, talking only about this (tremendous) paper1 is unfair. Indeed,

it was Emmy Noether who developed the general vision as early as 1920 ([13]). We will give the basics

about Noetherian rings and modules and explain the link with linear algebra.

1The other two theorems in the article are none other than the Nullstellensatz and the Syzygy Theorem!

73
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The common thread we use to illustrate the chapter is the study the similarity equivalence relation ≡ on

Mn(k), in other words we would like to understand the quotient map of sets Mn(k) → Mn(k)/ ≡. We

need to answer two questions

1. Describe Mn(k)/ ≡ by giving a canonical representative in each similiraty class. This is achieved in

6.6.2.2.

2. Describe the map by giving an algorithmic way to decide when A ≡ B. This is achieved in 6.7.0.2.

To do that we have to study the equivalence class of T Id−A,A ∈ Mn(k) in Mn(R) wher R = k[T]. To

do that, we study the more general equivalence relation ∼ on Mp,q(R) for R a PID (or for our concern,

more specifically R Euclidean ring is enough).

As before, we need to answer two questions

1. Describe Mp,q(R)/ ∼ by giving a canonical representative in each similiraty class. This is achieved

in 6.4.2.2 (3).

2. Describe the map by giving an algorithmic way to decide when A ∼ B. This is achieved in 6.4.2.2

(1).

6.3 Noetherian Modules

The image of a family of generators of a module through a morphism generates the image module. Thus,

every quotient of a finitely generated module is still finitely generated. However, while a submodule of a

finitely generated R module is still finitely generated when R is a field, this is generally not the case (cf

4.2.4). However, it is the case in a Noetherian setting.

Lemma 6.3.0.1. Let M be an R module. The following properties are equivalent.

1. Every submodule of M is finitely generated.

2. Every increasing sequence of submodules eventually stabilizes.

3. Every non-empty family of submodules of M has a maximal element for inclusion.

Proof. 1 ⇒ 2. Let Mi be an increasing sequence of submodules. Then, ∪Mi is a submodule of M, thus

finitely generated. Choose a finite family of generators: for n large enough, they all belong to Mn and

therefore Mi = Mn if i ≥ n.

2 ⇒ 3. Let F be a non-empty family of submodules M without any maximal element (proof by contra-

position). We construct a strictly increasing sequence of elements of F ̸= ∅ by induction by choosing M0

one of its elements arbitrarily then by induction, assuming the sequence built for i ≤ n, we observe that

Mn is not maximal thus there exists Mn+1 in F which strictly contains Mn .
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3 ⇒ 1. Thus, let N be a submodule of M and let F be the family of its finitely generated submodules. As

{0} ∈ F, this family is non-empty. Let N′ be a maximal element. It is finitely generated contained in N

by construction. Conversely, let n ∈ N. The module Rn+ N′ is in F and contains the maximal element

N′: therefore, it is equal to it, so that n ∈ N′. We thus have N′ = N and therefore N is finitely generated.

Definition 6.3.0.2.

1. A module that satisfies the previously mentioned equivalent conditions is said to be Noetherian.

2. A ring that is Noetherian as a module over itself is said to be a Noetherian ring.

Thus, a ring R is Noetherian if it satisfies one of the following three equivalent propositions:

1. Every ideal is finitely generated.

2. Any increasing sequence of ideals eventually stabilizes.

3. Every non-empty family of ideals has a maximal element for inclusion.

Example(s) 6.3.0.3. Submodules of Noetherian modules are Noetherian (tautological), as are the quo-

tients of Noetherian modules (easy exercise). Fields, principal rings, and quotient rings of Noetherian

rings are Noetherian. However, a subring of a Noetherian ring is generally not Noetherian (for example,

a polynomial ring over a field with an infinity of variables is not Noetherian, whereas it is a subring of

its field of fractions which is!).

6.3.1 Stability under exact sequences

Proposition 6.3.1.1. Consider an exact sequence of modules

0 → M1
j−→ M2

p−→ M3 → 0.

Then M2 is Noetherian if and only if M1 and M3 are.

Proof. The direct part has already been observed in the previous example. Conversely, assume M1 and

M3 are Noetherian, and let M′
2 be a submodule of M2. We have an exact sequence

0 → j−1(M′
2) → M′

2 → p(M′
2) → 0.
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But j−1(M′
2) and p(M′

2) are finitely generated as submodules of M1 and M3. Therefore, one can choose a

finite family of generators for p(M′
2) of the form p(g′2,i) and a finite family of generators g1,k for j−1(M′

2).

The finite family j(g1,k), g′2,i of M′
2 generates it.

In particular, if R is Noetherian, then Rn is a Noetherian module, and thus so is any quotient. This leads

to the following important corollary.

Corollary 6.3.1.2. The Noetherian modules over a Noetherian ring are exactly the finitely generated

modules.

Remark(s) 6.3.1.3. Every Noetherain module is of finite presentation, meaning that there exists an

exact sequence Rm
A−→ Rn → M → 0. For, because M is of finite type, there exists a surjective morphism

Rn → M whose kernel K is again of finite type as submodule of he Noetherian module Rn. There exists

therefore a surjective morhism Rm → K and the composition with the inclusion K → Rn gives the wanted

exact sequence.

6.3.2 Hilbert’s Basis Theorem

Theorem 6.3.2.1. Let R be a Noetherian ring.

1. The polynomial ring R[T] is Noetherian.

2. Every finitely generated R-algebra is a Noetherian ring.

Proof. The second point is an immediate consequence of the first (by induction, any polynomial ring over

R with n variables is Noetherian, and thus so is any quotient). Let’s consider the first point.

Let I be an ideal of R[T] and I∗ = I − {0}. If P is a non-null polynomial, denote dom(P) its highest

degree non-null coefficient. The formula dom(TnP) = dom(P) ensures that {0}∪dom(I∗) is an ideal of R

(exercise). It thus has a finite number of generators of the form dom(Pi),Pi ∈ I∗ which can be assumed

to be of the same degree d ≥ 0 according to the previous formula. An immediate induction then shows

I ∩ R≥d[T] = ⟨Pi⟩. But I ∩ R≤d[T] is a sub-R-module of R<d[T] ≃ Rd: therefore, it is a Noetherian

module like Rd (6.3.1.2). One can thus take a finite number of generators Qj (as an R-module) and the

finite family (Pi,Qj) generates I.

We have in fact reused the argument of Euclidean division used to show that k[T] is principal, the problem

being that one can only divide in k[T] if the leading coefficient of the polynomial is an invertible of R×.

This is the reason for introducing the ideals of leading coefficients of I.
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6.4 Gauss algorithm in PID and Euclidean rings

6.4.1 Survival kit for PID and Euclidean rings

As usual, for x ̸= 0, y elements an integral ring R, we say that x|y if there exists z ∈ R such that y = xz.

We the write x|y. Recall that a principal ring is an integral ring whose ideals are cyclic. The usual

examples of PID are fields, the ring of integers Z or the rings of polynomials with field coefficients k[T].

Their common pattern is the existence of an Euclidean division.

Definition 6.4.1.1. An integral ring R is said Euclidean if there exists a function δ : R∗ → N such that

for any (a, b) ∈ R× R∗ there exists2q, r ∈ r such that a = bq + r and r = 0 or f(r) < f(b).

Remark(s) 6.4.1.2. The reader will check as an exercice that R[T] is Euclidean if and only if k is a field

(exercice). But for any ring3, one can always perform the division of a polynomial by a monic polynomial

: the division algorithm only uses that the leading term of the divisor is invertible. And the uniqueness

of quotient and rest remain true. This straightforward remark is important as we well see in the sequel.

Lemma 6.4.1.3. An Euclidean ring is principal.

Proof. Ler I be a non zero ideal of an Euclidean ring R. One can choose a nonzero b ∈ I such that f(b)

is minimal in f(I − {0} (which is a nonempty subset of N). Certainly, (b) ⊂ I. Let a ∈ I and write

a = bq + r with r = 0 or f(r) < f(b). Then, r = a − bq ∈ I. By minimality of f(b), one has r = 0 and

I ⊂ bR.

Exercise(s) 6.4.1.4.

1. Show that R = Z[i] ⊂ C is Euclidean (for (a, b) ∈ R × R∗ with a/b = x + iy, x, y ∈ R, define

q = [x] + i[y] and f(z) = |z|).

2. Show that R = Z[j] ⊂ C is Euclidean with j = exp( 2iπ3 ) (for (a, b) ∈ R×R∗ with a/b = x+yj, x, y ∈

R, define q = [x+ 1/2] + j[y + 1/2)] and f(z) = |z|).

2We do not require the uniqueness of (q, r).
3The commutativity assumption is even unnecessary in this monic situation. But of course, one has a left and a right

division with quotient and rests who have no reason to be the same in this non commutative case.
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Definition 6.4.1.5. Let (xi) be a family of elements of an integral ring R and assume at least one of

them is nonzero. We say that d ∈ R is a Greatest Commun Divisor of (xi) if d divides all the xis and if

d|xi for all i implies d′|d. We write d = GCD(xi).

A GCD, when it exists, is unique up to multiplication by u ∈ R× (exercise) : strictly speaking, the GCD

is an element of R∗/R×.

Proposition 6.4.1.6 (Bézout’s theorem). Let (xi) be a family of elements of an principal ring R and

assume at least one of them is nonzero. Then, any generator of the ideal (xi) generated by the xi’s is a

GCD of (xi). In particular, 1 = GCD(xi) of if and only if there exists a almost zero family yi ∈ R such

that
∑
yixi = 1. We say in this case that the xi’s are (globally) coprime

Proof. Let d such a generator of the ideal I generated by (xi). Its is ̸= 0 because at least one of the xi

is nonzero and therefore so is I. Because xi ∈ I = (d), we get d|xi. Conversely, assume that d′|xi for all

i, i.e.there exists yi|xi = yid
′. Because d belongs to I, one can write d =

∑
finite zixi = d′

∑
finite ziyi

hence d′|d and d = GCD(xi).

In particular, 1 = GCD(xi) implies the Bézout property : there exists a almost zero family yi ∈ R such

that
∑
yixi = 1. Conversely, if we have such a relation, we get 1 ∈ I and therefore I = R = R.1.

Proposition 6.4.1.7 (Gauss lemma). Let R be a PID and a, b, c ∈ R∗. If GCD(a, b) = 1 and a|bc then

a|c.

Proof. Write a Bézout identity 1 = au+ bv and, multiplying by c we get c = au+ bcv, whic is a sum of

two terms divisible by c.

Exercise(s) 6.4.1.8. Prove that any non zero prime ideal of a PID is maximal.

6.4.2 The general PID case

In this section, R is a PID, A = [ai,j ] ∈ Mn,m(R) is a matrix and ν = min(p, q) }. Let us adapt Gauss

elimination method 3.3.0.2 to prove the following proposition. We will need more than Gauss elementary

operations in this case.

Definition 6.4.2.1. Two matrices are if they differ by a series of left and right multiplications by

transvections and Bézout matrices diag(A, Id) with A ∈ SL2(R)
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We denote by ≃ the Bézout equivalence of matrices and by Ω the corresponding equivalence class of A.

The main observation is that (a, b) ≃ (GCD(a, b), 0) for any a, b ∈ R. Indeed, by Bézout theorem, there

exists u, v ∈ R|au+ bv = GCD(a, b) and therefore

(a, b)

u b/GCD(a, b)

v −a/GCD(a, b)

 = (GCD(a, b), 0).

We say that A′ = [a′i,j ] ∈ Ω is extremal if one of its coefficient is maximal in the (nonempty) set of ideals

F = {(a′i,j),A′ ∈ Ω}, the corresponding coefficient a′i,j being called an extremal cefficient.

Proposition 6.4.2.2.

1. A is Bézout equivalent to a diagonal matrix D with (d1) ⊂ (d2) ⊂ · · · ⊂ (dν).

2. The ideals (di) depends only on the equivalence classe of A. They are called the invariant ideals4of

A.

3. Two matrices are equivalent if and only if they have the same invariant ideals.

4. Equivalent matrices are Bézout equivalent. In particular the invariant factors of A are those of Idn,

they are equal to 1.

Proof.

• By functoriality of the cokernel (4.4.0.1), (2) and (3) are direct consequences of the computation of

the cokernel of A 5.5.1.1 and the uniqueness statement 5.5.2.2. Then (4) is a direct consequence of

(1) and (3).

• We are reduced to prove (1) by induction on n+m starting with the obvious case n+m = 2.

• Transposing if necessary, one can assume m ≤ n = ν ≥ 1. We define GCD(A) as the ideal generated

by its coefficients (which is precisely generated by a GCD of the coefficients!). We first observe that

two equivalent matrices have the same GCD : if A′ = PA or A′ = AQ, we have GCD(A′) ⊂ GCD(A)

by the product matrix formula and therefore we have equality if P,Q are invertible.

• Assume first n = 1 (A is a line matrix). I claim that A ≃ (d, 0, · · · , 0) with GCD(A) = (d). This is

true if m = 1 and, using the invariance of GCD by equivalence, is reduced by an immediate induction

to the m = 2 case whic we already know to be true. By a transpose argument, this shows that we

can replace a line or a column by a line or a column with all their coefficients being zero except the

first one: we refer to that as Bézout replacement. So we are done if either n = 1 or m = 1.
4By a slight language abuse, one says often that the di’s are the invariant factor of the matrix, even they are defined up

to multiplication by an invertible element.
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• Assume now n,m > 1. One can assume that A is extremal with some ai,j an extremal coefficient.

By Bézout replacement, A is equivalent to A′ with a′1,1 = ai,j . Because (a′1,1) = (ai,j) is maximal in

F, A′ is still extremal.One can therefore assume that d1 = a1,1 is extremal.

If a1,j , j > 1 is not divisible by a1, then (d1) is strictly contained in (GCD(d1, a1,j). But using Bézout

replacement, this contradicts the maximalitiy of (d1).

Therefore, d1|a1,j and (same argument d1|ai,1 for all i, j. By using usual Gauss operations, one can

assume that a1,j = ai,1 = 0 for all i, j > 1, without loosing extremality as before.

• I claim that in this situation d1|ai,j . If i > 1 say, the change L1 7→ L1 + Li changes L1 to

(d1, 0 . . . , 0, ai,j , 0, . . . , 0) and therefore d1|ai,j by the preceding Bézout replacement argument. The

matrix A is therefore of the form d1 diag(1,A) with A ∈ Mn−1,m−1(R) and we conclude by induction.

In this case, invariant ideals can be just computed using Gauss operations. We denote by ≡ the Gauss

equivalence.

Let start with a general lemma

Lemma 6.4.2.3. Let R be any ring and D an invertible diagonal matrix of Mn(R). Then, D ≡

diag(det(D), Idn−1).

Proof. An easy induction argument reduces to the n = 2 case. And we just perform the Gauss operations

(having in mind that the determinant remains 1 to simplify the computations5)

x 0

0 y

 Col≡

x x

0 y

 Lin≡

 x x

1− y 1

 Col≡

xy x

0 1

 Lin≡

xy 0

0 1



6.4.3 The Euclidean case

Proposition 6.4.3.1. With the notations of 6.4.2 assuming moreover that R is Euclidean, A is Gauss

equivalent to to a diagonal matrix D with (d1) ⊂ (d2) ⊂ · · · ⊂ (dν).

Proof. Let L = (a0, a1) ∈ R × R∗ and a0 = a1q0 + a2 with f(a2) < f(a1) or a2 = 0. Using the Gauss

operation a0 7→ a0 − q0a1, we get (a0, a1) ≡ (a1, a2) and we know GCD(a0, a1) ≡ GCD(a1, a2). By

induction, we construct ai such that (ai, ai + 1) ≡ (ai+1, ai+2) with GCD(ai, ai + 1) ≡ GCD(ai+1, ai+2)

5We indicate the pivot and the bold coefficient is the pivot
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and f(ai) strictly decreasing until ai+1 = 0 whre in this case ai+1 = GCD(a0, a2). It follows that for any

a, b, one has (a, b) ≡ (GCD(a, b), 0).

If know B =

a b

c d

 is a Bézout matrix, it follows that B ≡

GCD(a, b) 0

γ δ

 with GCD(a, b)δ = 1

because det(B) = 1. By a Gauss operation, because δ is invertible one can further assume γ = 0 and

we have B ≡ diag(δ, δ−1) and therefore B ≡ Id2 thanks to the previous lemma. Therefore, any Bézout

operation is a Gauss operation.

Corollary 6.4.3.2. If R is Euclidean, every invertible matrix M ∈ GLn(R) is Gauss equivalent to

(det(A), Idn−1).

Proof. If M is invertible, we know (6.4.2.2) that there invariant factors are equal to 1 proving that R is

Gauss equivalent to an invertible diagonal matrix and we apply lemma 6.4.2.3. In particular, SLn(R) is

generated by transvections.

6.4.4 Minors and invariant ideals

Assume that R is a PID and let A,B ∈ Mp,q(R). Let’s recall that for any integer subsets I ⊂ [1, · · · , p]

and J ⊂ [1, · · · , q] of the same cardinality n, the minor AI,J of A the square matrix (ai,j)i∈I,j∈J.

We define for n ≥ 1

δn(A) = GCD(∧n(A))

where ∧nA is the ideal generated by all minors of order n of A. For instance, if a square matrix A is

triangular and invertible, we have δi(A) = 1 for all i.

Lemma 6.4.4.1. If

D(P) =

diag(dr, · · · , d1) 0r,q−r

0p−r,r 0p−r,q−r

 dr| · · · |d2|d1 monic

then

δn(A) = dr · · · dr−n+1

with the convention here that dn = 0 if n ≤ 0.

Proof. All minors DI,J of D = D(P) are triangular with at least one zero diagonal element if I ̸= J. If

I = (i1 > · · · , > in), we have det(DI,I) = din · · · di1 if n ≤ r and is zero otherwise. If n ≤ r, we have

ij ≤ r + 1− j so that dr · · · dr−n+1|din · · · di1 because of the decreasing property of di for divisibility.
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Lemma 6.4.4.2. Let A,B ∈ Mp,q(R). If A and B are equivalent if and only if

δn(A) = δn(B) for all n ≥ 0.

Proof. Since the determinant of a matrix is equal to that of its transpose, we have δn(A) = δn(
tA) for all

n. It follows that it suffices to show that for any matrix P ∈ Mq,r(k[T]) (whether invertible or not) we

have

∧n(AP) ⊂ ∧n(A).

The learned reader will invoke the general Binet-Cauchy formula

det((AP)I,J) =
∑

K|Card(K)=n

det(AI,K) det(dK,J)

for computing minors of a product of arbitrary matrices. But we don’t need that precision. We can

proceed as follows. Each column of AP is a linear combination of columns of A. The multilinearity of

the determinant then ensures that the minor (AP)I,J is a linear combination of determinants of size n

matrices whose columns are columns of A (possibly equal) and rows are indexed by I. If two columns are

equal, the determinant is zero (the determinant is alternating). Otherwise, the set of columns in question

is indexed by a set K of cardinality n and the determinant in question is of the form AI,K which implies

that det(AP)I,J is a linear combination of det(AI,K) with Card(K) = n, and therefore is indeed in ∧n(A)

proving the direct implication.

The previous calculation in the diagonal case (6.4.4.1) is 6.4.2.2 and implies converse implication.

Example(s) 6.4.4.3. Let A ∈ Mn(k[T]) be a matrix such that ai,j = 0 if i > j + 1 and ai+1,i = 1:

∗ ∗ ∗ . . . ∗

1 ∗ ∗ . . . ∗

0 1 ∗ ∗ . . .

. . .

0 . . . 0 1 ∗


Then, the elementary divisors of A are (1, . . . , 1,det(A)). Indeed, the (n − 1) minor A1c,nc is upper

triangular with diagonal entries equal to 1 showing δi(A) = 1 for i < n as already observed

Exercise(s) 6.4.4.4. Let P,Q ∈ k[T] be monic polynomials and A =

P 0

0 Q

. Compute δ1(A) and

δ2(A) and deduce that the invariant ideals of A are GCD(P,Q), lcm(P,Q). Retrieve this result using the

pivot.
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Deduce another algorithm than the Gauss elimination algorithm to compute the invariants ideals of a

diagonal matrix in Mp,q(R).

6.5 Finite type modules over PID

Let us reap the benefits of our labor.

Theorem 6.5.0.1 (Structure theorem of finite type modules over PID). Let M be a finite type module

over a PID R.

1. Every submodule of M is of finite type.

2. There exists an exact sequence Rm
A−→ Rn → M → 0 and M is polycyclic with invariant factors Ik

the proper invariant ideals of A.

3. Two finite type R-modules are isomorphic if and only if they have the same invariant ideals.

4. For any exact sequence Rm
A−→ Rn → M → 0, the proper invariant factors of A are the invariant

ideals of M.

5. M is (non canonically) isomorphic to Mtors ⊕ Rr with r = rank(M) and Mtors ⊕Ik ̸=0 R/Ik.

6. M is free if and only if M has no torsion.

7. Every submodule N of a rank n free module M is free of rank r ≤ n. Moreover, there exists a basis

e1, . . . , en of M and 0 ̸= dr| . . . |d1 such that diei, i ≤ r is a (so called adapted) basis of N.

Proof. All the proofs have been given. Precisely.

1. R is Noetherian and so is M (6.3.1.2).

2. The existence of the exact sequence comes from 6.3.1.3. We know that A is equivalent to a diagonal

matrix (6.4.2.2). Its cokernel is threfore polycyclic (5.5.1.1) by functoriality of the cokernel (4.4.0.1).

3. Special case of unicity of invariant ideals of polycyclic modules (5.5.2.2).

4. The proof of (2) is valid for any such exact sequence.

5. If Ik are the invariant factor,we have M
∼→ ⊕R/Ik. Therefore the torsion part Mtors is isomorphic to

the torsion part of ⊕R/Ik which is ⊕Ik ̸=0R//Ik. Then r is the number of zero ideals among the Ik’s.

6. Direct consequence of the preceding point

7. Direct consequence of the previous item and of 3.2.0.1.
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8. By choosing basis of M and N, the inclusion N → M becomes Rr
A−→ Rn with A ∈ Mn,r(R) an

injective matrix. Therefore, there exists D diagonal and P,Q invertible with A = PDQ (6.4.2.2).

Then, N = PDQ(Rr) = PD(Rr) and we set ej = (Pi,j)i the j-th column of P ∈ GLn(R) and

di = Di,i.

Exercise(s) 6.5.0.2. With keep the notation above. Assume that M is not cyclic with infinite cardinality.

Prove that there the number of submodules of M is infinite. Prove the converse if R = k[T] or R = Z (cf.

5.3.1.2)6.

Corollary 6.5.0.3 (Structure theorem of finite type abelian groups). Let G be a finite type abelain group.

There exists a unique sequence of integers 2 ≤ dn| . . . |d1 and r ≥ 0 such that G ∼→ ⊕iZ/diZ⊕ Zr.

Proof. Set M = G and R = Z in the previous structure theorem.

6.6 Similarity in Mn(k)

The main theorem 6.5.0.1 has a version of polynomial rings. We use it to classify

matrices of Mn(k) up to similarity. The useful version in classical linear algebra

come from the use of the k[T]-module Va associated to an endomorphism of V

(4.2.4).

6.6.1 Similiarity invariants

Let a, b ∈ Endk(V) be an endomorphism of an n dimensional vector space V.

Corollary 6.6.1.1 (Similarity invariants of vector space endomorphisms).

1. The torsion k[T]-module Va is a torsion module.

2. There exists a unique sequence of monic polynomials Pn| . . . |P1 (the similarity invariants of a) such

that Va
∼→ ⊕ik[T]/(Pi).

3. a and b are similar if and only if there similarity invariant are equal.

Proof.

6As we will see, this result is true for all PID (7.3.2.2).
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1. There exists a non zero P ∈ k[T] such that P(f) = 0 (use Cayley-Hamilton theorem or more

elementary a dependence relation between the n2 + 1 elements Id, f, . . . , fn
2

in the n2-dimensional

vector space Endk(V)).

2. By the previous theorem applied to R = k[T] and M = Va, there exists a unique sequence Pr| . . . |P1

or non-constant polynomials such that Va
∼→ k[T]/(Pi). By a dimension (of vector spaces) argument,

we have r ≤ n. We define Pi, r < i ≤ n by Pi = 1.

3. By 4.2.4.1, the similarity of a and b is equivalent to Va
∼→ Vb whose invariant ideals are precisely

the non constant similarity invariants of a and b.

6.6.2 Explicit computations of similarity invariants

We keep in mind the notations and result of 4.3.2. Let (ei), 1 ≤ i ≤ n be a basis of V and A the matrix

of a in this basis. The map (Pi(T) =
∑
j Pi,jT

j) 7→
∑
i,j Pi, jeiT

j is an isomorphism of k[T]-modules

(k[T])n
∼→ V[T] and the exact sequence 0 → V[T]

TId−ã−−−−→ V[T]
πa−→ Va → 0 becomes

0 → (k[T])n
TId−A−−−−→ (k[T])n

πA−−→ Va → 0.

Because det(T Id−A) = χa(T) is non zero, all the invariant ideals of the size n matrix T Id−A are non

zero and are generated by the non constant diagonal terms of any D ∈ Mn(k[T]) equivalent to T Id−A

(6.4.2.2).

Exercise(s) 6.6.2.1. If k is infinite, prove that Va is cyclic if and only if it V has a finite number of

subspaces by stable by a (cf. 6.5.0.2).

Corollary 6.6.2.2. Let A,B ∈ Mn(k) be the matrices of a, b ∈ Endk(V) in some basis. If Pi, 1,≤ i ≤ n

are the similarity invariant of a, then T Id−A is Gauss equivalent to diag(Pi) and Va
∼→ ⊕k[T]/(Pi).

Moreover, the following conditions are equivalent.
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1. A and B are similar in Mn(k).

2. T Id−A and T Id−B are equivalent in Mn(k[T]).

3. The k[T]-modules Va and Vb are isomorphic.

We get then the following relations between the similarity invariants.

Corollary 6.6.2.3. We have the following formulas.

1.
∏n
i=1 Pi = χa(T).

2. P1|χa|Pn1 . In particular χa and P1 have the same irreducible factors (and hence the same roots in

any extension of k).

3. P(a) = 0 if and only if P1|P. In other words, µa is the minimal polynomial of a.

Proof.

1. There exists ,QQ′ ∈ GLn(R) such that T Id−A = Qdiag(Pi)Q
′. Because det(P) ∈ k∗, their

determinant χa(T) and
∏

Pi(T) differ by a multiplication by a scalar which is 1 because both

polynomials are monic.

2. Because P1 is a multiple of each Pi, by taking the product, we find that Pn1 is a multiple of χa, thus

P1|χa|Pn1 .

3. P kills Va
∼→ ⊕k[T]/(Pi) iff and only if P kills all the k[T]/(Pi) in other words when Pi|P. Because

Pi|P for all i, we are done.

Remark(s) 6.6.2.4.

• Notice that the above proposition 6.6.2.3 proves the very existence of µa without any previous knowl-

edge. By construction, it is the unique monic polynomial of least degree annihilating a.

• The interested reader can check that we did’nt use the Cayley-Hamilton theorem (3.1.2.2) to prove

these results. Therefore, the divisibility P1 = µa|χa is another (too complicated) proof in the field

case.

• As we will see later (for example 6.7.0.3), the last Pi are often equal to 1. They contribute by the

zero module to Va.
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• Unlike the polynomial characteristic, the similiraty invariants does not vary continuously with a. For

instance, the similarity invariant of diag(0, t) are 1,T(T− t) if t ̸= 0 and are T,T if t = 0.

�

Finally, let us give two classical results.

Corollary 6.6.2.5. Let A,B ∈ Mn(k) and K a field containing K. We have

1. A and tA are similar.

2. A,B are similar in Mn(k) if and only if they are similar in Mn(K)

Proof. 1. Observe that T− IdA = Qdiag(Pi)Q
′ implies T− Id tA = tQ′ diag(Pi)

tQ.

2. If Pi,Pi are the similarity invariants of A in Mn(k) and Mn(K, we have T Id−A ≃ diag(Pi) in

Mn(k[T]) and therefore T Id−A ≃ diag(Pi) in Mn(k[T]) because GLn(k[T]) ⊂ GLn(K[T]). But by

definition of Pi, we have also T Id−A ≃ diag(Pi) in Mn(K). By uniqueness, we get Pi = Pi, hence

the result.

6.7 Frobenius Decomposition

Ferdinand Georg Frobenius

We will rephrase the previous results in terms of companion matrices providing

a canonical representative C(P) in each similarity class A.

Definition 6.7.0.1. Let P = Tn +
∑n−1
i=0 aiT

i ∈ k[T] and P = (Pn, · · · ,P1) be a sequence of monic

polynomials.

1. The companion matrix C(P) the of P is

C(P) =



0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
. . .

...
...

0 0 · · · 1 −an−1


∈ Mn(k).
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Thus, C(P) is the empty matrix if P = 1

2. The generalized companion matrix C(P) = diag(C(Pi)). Its size
∑

deg(Pi).

Theorem 6.7.0.2 (Frobenius Reduction). Let P = (Pn| · · · |P1) be a sequence of unitary polynomials of

k[T] with
∑

deg(Pi) = n and Pn| . . . |P1 and A ∈ Mn(k). Then, A ≈ C(P) if and only P is the sequence

of similarity invariants of A.

Proof. Let W = ⊕k[T]/(Pi) and b ∈ Endk(W) be the multiplication by T. We have Wb = ⊕k[T]/(Pi)

as k[T]-module and therefore the similarity family of similarity invariants of b is P (5.5.2.2).

Let V = kn and a = C(P) ∈ Endk(V). Let B⊔Bi where Bi is the k-basis (1,T, . . . ,Tdeg(Pi)−1) mod (Pi)

of k[T]/(Pi).

We have MatB(a) = C(P). In other words, if f ∈ Homk(V,W) mapping B to the canonical basis of

kn, we have a = f−1 ◦ b ◦ f and therefore Va
∼→ Wb (4.2.4.1) . In other words, the family of similarity

invariants of C(P) is P. We conclude by 6.6.1.1.

Using 5.3.1.1, we get the more or less classical result in the case of a unique companin block C(P)

Corollary 6.7.0.3. Let a ∈ Endk(V). The following statements are equivalent7:

1. The matrix of A in a suitable basis is the companion matrix C(P).

2. µa = χa = P.

3. The similarity invariants are 1, · · · , 1,P.

4. Va and k[T]/(P) are isomorphic k[T]-modules.

5. Va is cyclic as (k[T]-module) and µa = P.

Using 5.3.1.1 again, an equivalent formulation of the Frobenius reduction theorem 6.7.0.2 is

Theorem 6.7.0.4 (Frobenius Decomposition). Let P = (Pn| · · · |P1) be a sequence of unitary polynomials

of k[T] and a ∈ Endk(V). Then,if P is the sequence of similarity invariants of a, there exists a direct

sum decomposition Va =
∑

Vi into cyclic modules with Annk[T](Vi) = (Pi). Conversely, if such a

decomposition exists, then P is the similarity invariant sequence of a.

7This also equivalent for infinite fields that V has a finite number of subspaces stable by a (6.6.2.1).
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6.8 Application: Commutant

It is then easy to study the commutant (see 4.2.4.1)

Endk[T](Va) ≃ Endk[T](⊕k[T]/(Pi)).

for example, to calculate its dimension.

Proposition 6.8.0.1. The dimension of the commutant of a is
∑

(2i − 1) deg(Pi). In particular,

dimEndk[T](Va) ≥ n with equality if and only if a is cyclic.

Proof. We have

Endk[T](⊕k[T]/(Pi)) = ⊕i,j Homk[T](k[T]/(Pi),k[T]/(Pj))

Since k[T]/(Pi) is cyclic generated by the class of 1, an element of

Homk[T](k[T]/(Pi),k[T]/(Pj))

is determined by its image (P mod Pj) where P satisfies

(∗) PiP ≡ 0 mod Pj

(universal property of the quotient 5.2.1.1). If i ≤ j, we have Pj |Pi, and this condition is automatically

satisfied so that

Homk[T](k[T]/(Pi),k[T]/(Pj)) ≃ k[T]/(Pj) if i ≤ j

If i > j, we have Pi|Pj so the condition (∗) reads P ≡ 0 mod Pj/Pi so that

Homk[T](k[T]/(Pi),k[T]/(Pj)) ≃ Pj/Pik[T]/(Pj) ≃ k[T]/(Pi) if i > j

We therefore have

dimk(Endk[T](Va)) =
∑
i≤j

deg(Pj) +
∑
i>j

deg(Pi)

=
∑
j

j deg(Pj) +
∑
i

(i− 1) deg(Pi)

=
∑

(2i− 1) deg(Pi)

Usin n =
∑

deg(Pi), we get dimEndk[T](Va) − n = 2
∑n
i=1(i − 1) deg(Pi) ≥ 0. Furthermore, equality

implies (i − 1) deg(Pi) = 0 for every i, thus deg(Pi) = 0 if i > 1 so that equality is equivalent to the

cyclicity of a.

Exercise(s) 6.8.0.2 (Bicommutant, difficult). Show that the inclusion k[a] in his bicommutant, that is

the set of endomorphisms that commute with all elements of Endk[T](Va), is an equality.
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6.9 Summary

Collating what we have proved, we have the following results which was wanted in 6.2.

Let A,B ∈ Mn(k) and P = (Pn| · · · |P1) a family of monic polynomials.

• A and B are similar if and only if they have the same similarity invariants.

• The family of similarity invariants of C(P) is P.

If P is the family of similarity invariants of A, we have:

• A and C(P) are similar.

• VA ≃ ⊕k[T]/(Pi) where A also denotes the endomorphism of V = kn associated.

• T Id−A is equivalent to diag(P1, · · · ,Pn).

• P is calculated by Gauss elimination by "diagonalizing" T Id−A in Mn(k[T]).

• We have χA = P1 · · ·Pn and P1 = µA.

• The similarity invariants of C(P) are (1, · · · , 1,P).

The proof strategy is illustrated by the following diagram.

TId-B1TId-A1

diag(P1)

TId-B2TId-A2

diag(P2)

diag(P)| ∑deg(Pi)≠ n

A3(T) B3(T)Polynomial Invariants
P=(Pn,…,P1)

Mn(k[X])/∼

A1 B1

C(P1)

A2 B2

C(P2)

Mn(k)/≈

Similiraty 
classes

Equivalence
Classes 

A--->TId-A

diag(P)| ∑deg(Pi)= n

A3 B3
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6.10 Supplementary Section: Insight into K-Theory

This section is cultural and can therefore be skipped at the first glance. It aims

to introduce an important idea in mathematics: how to measure the obstruction

to a result being true. Here, the question is how to measure the potential

impossibility of diagonalizing matrices by means of Gaussian elimination in a

ring R.

The precise question one naturally addresses is then: is the group GLn(R) generated by the elementary

matrices of transvections of pivot type (1.2)? We will consider the matrices of permutation and dilatations

(because they can be easily handled through the determinant function below).

The first step is to move away from n: for this, we view GLn(R) as the subgroup of GLn+1(R) consisting

of block diagonal matrices of the form diag(M, 1), where M ∈ GLn(R). This allows us to consider their

infinite union GL(R), seen as the set of matrices of infinite size, containing all finite-sized linear groups.

We then define E(A) as the subgroup of GL(A) generated by all transvections with determinant 1 that

we can reach by Gauss elimination (even if we allow enlarging the matrices).

The first result is both simple and remarkable, especially in the proof provided by [12].

Lemma 6.10.0.1 (Whitehead). For any ring R, the group E(R) is the derived group [GL(R),GL(R)]

generated by the commutators [A,B] = ABA−1B−1 of matrices in GL(R).

In particular, E(A) is a normal subgroup, and the quotient K1(R) = GL(R)/[GL(R),GL(R)] is a com-

mutative group, as it is the abelianization of GL(R)! This is the group of algebraic K-theory of degree 1.

As the determinant of any commutator is 1, the determinant map passes to the quotient (5.2) to define

the special group of algebraic K-theory of degree 1:

SK1(R) = Ker (GL(R)
det−−→ R×).

This group avoids considering dilations and permutation matrices, which do not play a crucial role in

pivoting. The inclusion R× = GL1(R) ↪→ GL(R) followed by the quotient projection GL(R) ↠ K1(R)

allows us to define a map:

R× × SK1(R) → K1(R),

which is visibly an isomorphism.

The group SK1(R) is evidently the obstruction to the Gauss eliminaition algorithm (infinite) being able to

diagonalize matrices. And our results prove that if R is Euclidean, SK1(R) = 0. It is noteworthy that this

obstruction is very sudden. For example, in the case of the non-Euclidean principal ring R = Z[ 1+
√
−19
2 ],

we have SK1(R) = {1} (this follows from a general deep theorem about so-called Dedekind rings, [1]).

In other words, this is not an example where the pivot with elementary matrices is insufficient, at least
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when allowing to increase the size of matrices. Finding a principal R such that SK1(R) is non-trivial is

difficult. An example is given in [9]: take the subring of Z(T) generated by Z[T] and the (Tm − 1)−1 for

m ≥ 1. This is a principal ring (!) whose SK1 is even infinite.

6.11 Supplementary Exercises

Exercise(s) 6.11.0.1. Let k ∈ N ∪∞ and R = Ck(R,R).

1. Show there exists a unique fn ∈ Rsuch that fn(x) = exp(−2−nx−2) for all x ̸= 0.

2. Prove that the sequence of ideals (fn) is strictly increasing.

3. Prove that R is not Noetherian.

Exercise(s) 6.11.0.2. Let R be the ring of holomorphic functions on C.

1. Prove that R is a domain.

2. Prove that for any n ≥ 0 there exists a unique fn ∈ R, such that fn
∏n
k=0(z − k) = sin(πz).

3. Compute fn(k) for k ∈ Z.

4. Prove that R is not Noetherian.

Exercise(s) 6.11.0.3. Let R be ring of complex power series with positive convergence radius. Prove

that R× is the set of series not vanishing at zero. Deduce that R is a PID and is even Euclidean (it is

an example of the so called discrete valuation rings).

Exercise(s) 6.11.0.4. Transform the proof of 6.4.3.1 into an algorithm and then to a Python program

(use SageMath for instance). What can you say about the complexity of this algorithm? About its

numerical stability?

Exercise(s) 6.11.0.5. Let M be a non zero finite type module of a noetherian ring R.

1. Prove that there exists m ∈ M− {0} such that AnnR(m) is a prime ideal p of M.

2. Prove that there exists a module injection A/p ↪→ M.

Exercise(s) 6.11.0.6. Let R be any ring and A ∈ Mm,n(R).

1. Prove Krull’s theorem for Noetherian ring without the axiom of choice.

2. Prove that R is injective (resp. surjective) if and only if there exists a subring R0 of A such that

A ∈ Mm,n(R0) and the associate morphism A0 : Rn0 → Rm0 defied by A has the same property.

3. Give another proof of (2) and (4) of 3.2.0.1.

4. Using 6.11.0.5, give another proof of (3) and (4) of 3.2.0.1.
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Example(s) 6.11.0.7. Prove that R[T] is a PID if an only if R is a PID.

Exercise(s) 6.11.0.8. Let R be an integral ring K its with fraction field . Prove that the R-module K is

free if and only if R is a field and therefore if and only if R = K. Deduce that if R is a PID, K is torsion

free but not free as a R-module.

Exercise(s) 6.11.0.9. Let R be a Euclidean ring. Show that there exists x ∈ R \ R∗ such that the

restriction of the natural surjection π : R → R/(x) to R∗ ∪ {0} is surjective. Show that then R/(x) is a

field.

Exercise(s) 6.11.0.10. Let R = Z
[
1+i

√
19

2

]
= Z[α] ⊂ C.

1. Check that R is an integral ring isomorphic to Z[T]/(T2 − T+ 5).

2. Prove that (2) is a maximal ideal of R.

3. Prove that R× = {±1} (look at the square N(z) = |z|2 of the module of an invertible element z ∈ R×).

4. Deduce from the preceding exercise that R is not Euclidean.

5. Assume that for all a, b ∈ R \ {0}, there exist q, r ∈ A such that N(r) < N(b) and

a = bq + r or 2a = bq + r.

6. Prove that this implies that R is a PID.

7. Let a, b ∈ R \ {0}. Prove that x can be written x = u+ vα, where u, v ∈ Q.

8. Let n = [v] and assume v /∈
[
n+ 1

3 , n+ 2
3

]
. Looking at the closest integers to u and v, prove that

there exists there exist q, r ∈ A such that N(r) < N(b) and a = bq + r.

9. Prove that if v ∈
[
n+ 1

3 , n+ 2
3

]
, there exist q, r ∈ A such that N(r) < N(b) and

2a = bq + r

.

10. Conclude.

Exercise(s) 6.11.0.11. 1. Give an algorithm to solve a finite number of linear equations with integral

coefficients and test in a suitable computer language like Python.

2. Solve the system

Base adaptée et équation diophantienne TBD
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Exercise(s) 6.11.0.12. Let G be a finite group operating (on the left) on a ring R. Assume that the

cardinality n of G is invertible in R and denote RG the subring of R of elements invariant by G. Denote

π : R → R the application x 7→ 1
n

∑
g∈G gx.

1. Show that p is a projector of image RG.

2. Show that p is RG linear.

3. Show that if R is Noetherian, RG is Noetherian.

Exercise(s) 6.11.0.13. Let P be a polynomial with integer coefficients P without rational root, d its

degree and x ∈ R a real root of P. Let (p, q) ∈ Z×N∗.

1. Show d > 1 .

2. Show |P(pq )| ≥
1
qd

.

3. Show there exists C > 0 such that if p
q ∈ [x− 1, x+ 1] then∣∣∣∣x− p

q

∣∣∣∣ ≥ C

qd
.

4. Show that ℓ =
∑
n≥0

10−n! is transcendental [Hint : what can you say about the periodicity of a decimal

expansion of a rational number ?].
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Chapter 7

The Irreducible Toolbox

7.1 Perspective

Blabla

7.2 Introduction

In this chapter, R denotes a domain, i.e.an ring (commutative with unity as usual) and k is its field of

fractions.

7.3 An UFD Criterion

Definition 7.3.0.1. We say that r ∈ R∗ is irreducible if it is non-invertible and if the equation r = r1r2

implies r1 or r2 is invertible, that is all divisors of d are equal to 1 or d up to multiplication by an

invertible.

97
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Notice that whether r is irreducible only depends on (r), i.e., it is invariant by multiplication by an

invertible.

Example(s) 7.3.0.2.

• Irreducible elements of Z are ±-prime numbers.

• Irreducible polynomials in k[T] are degree one polynomial for k = C and degree one polynomial plus

degree two polynomial without real root if k = C (exercise).

7.3.1 Uniqueness Condition

We know that positive irreducible integers are precisely prime numbers. Generally, we only have one

implication

Lemma 7.3.1.1. Let r ∈ R∗. If the ideal (r) is prime then r is irreducible.

Proof. If r = r1r2, the product r1r2 is zero in R/(r) which by definition is integral. Hence, the class (r1

mod r) for example is zero so that r = ρ1r and r = ρ1rr2. Simplifying by r (integrity), r2 is invertible.

The converse is the so called Euclid property and is the heart of the uniquess property of irreducible

decomposition.

Definition 7.3.1.2 (Euclid’s Property). We say (by abuse) that Euclid’s lemma is true in R if the ideal

generated by an irreducible is prime, that is if any irreducible dividing a product divides one of the factors.

The following lemma is well known
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Lemma 7.3.1.3. Euclide’s lemma is true for PID.

Proof. Let r, r1, r2 ∈ R∗ with r|r1r2 irreducible and let d = GCD(r, r1). Because d|r and r irreducible,

up to R×, we have d = 1 or d = r. In the second case, we have have done because r ∼ d|r1 by definition.

In the first case, we apply Gauss lemma for PID (6.4.1.7) and we get r|r2.

Definition 7.3.1.4. Let R be a domain. A domain is said to be a Unique Factorization Domain (UFD)

if

1. every non-zero element has a unique decomposition r = u
∏n
i=1 pi with u ∈ R× and pi irreducible;

2. if r = u′
∏n′

i=1 p
′
i, with u′ ∈ R× and p′i irreducible is another decomposition, then,e n = n′ and, with

renumbering, (pi) = (p′i).

The link with what precedes is

Lemma 7.3.1.5 (Uniqueness Lemma). Assume every non-invertible element of R admits a decomposition

into irreducible elements. Then, R is UFD if and only it satisfies Euclid’s property.

Proof. Assume R is UFD and let r be irreducible. Then (r) is nonzero like r. Suppose we have a

decomposition r = r1r2. We decompose each ri into irreducibles ri = ui
ni∏
j=1

pi,j giving r = u1u2
∏
i,j

pi,j .

Thus, we have two decompositions of r into irreducibles, one having of length 1, the other of length

n1 + n2. Thus, by uniqueness, 1 = n1 + n2 and for instance n1 = 0 which proves that r1 is invertible.

Assume now that R satisfies Euclid’s property. We prove the uniqueness by induction on the sum ℓ of

the lengths of two possible decompositions of the same non-zero element. If ℓ = 0, there is nothing to

prove. Assume that we have (with the previous notation)

u1

n1∏
j=1

p1,j = u2

n2∏
j=1

p2,j

with ℓ = n1 + n2 ≥ 1. We have for instance n1 ≥ 1 and p1,1|
∏
p2,j . By Euclide’s property, renumbering

if necessary, one has (p1,1) = (p2,1) implying at once n2 ≥ 1. Changing u2 to another unit, we get by

integrality of R

u1

n1∏
j=2

p1,j = u2

n2∏
j=2

p2,j

and we conclude by induction.
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Corollary 7.3.1.6. The number of divisors of a nonzero element of an UFD is, up to multiplication by

R×, finite.

7.3.2 Existence Criterion

Lemma 7.3.2.1. Every nonzero and non-invertible element in a Noetherian domain R is a product of

irreducible elements.

Proof. Then, let F be the set of proper and nonzero principal ideals (r) of R with r is not a product of

irreducible elements. If F were non-empty, it would have a maximal element (r) ∈ F for inclusion. But r

is not irreducible because otherwise (r) ̸∈ F, so r can be written r1r2 with r1 and r2 non-invertible. Thus

(r) ⊊ (ri). By maximality, (ri) /∈ F so that each ri is a product of irreducibles, and so is their product

r. A contradiction.

Corollary 7.3.2.2. An integral Noetherian domain is UFD if and only if it satisfies Euclid’s Property.

In particular, PIDn are UFD and therefore the number of divisors of a nonzero element of an PID is

finite up to multiplication by R× (7.3.1.6)

Corollary 7.3.2.3. A PID is UFD. .

Notice that lemma 7.3.2.1 implies that the existence of decomposition into irreducible elements is very

often automatic, but, unfortunaletly, more or les useless without uniqueness. For example, according

to the above, the ring R[T,Y]/(T2 − Y3) is Noetherian, obviously integral (exercise). Yet, the element

T2 = Y3 of the quotient has two decompositions (non-equivalent, exercise) because both T and Y are

irreducible in the quotient .

Corollary 7.3.2.4. The ring Z of complex algebraic integers over Z is neither Noetherian nor UFD.

Proof. W already know that Z ∩Q = Z therefore Z is not a field (because 1/2 ̸∈ Z for instance). If Z

were noetherian, there would exist at least one irreducible element p 7.3.2.1. But
√
(p) = T2 − p and

therefore the subring of Z[p,√p] of C is of finite type over Z proving √
p ∈ Z. The formula p = (

√
p)2

contradicts the irreductibility of p.
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By invoking the existence of decompositions in the Noetherian case (7.3.2.1 and Euclid Property for

principal ideal domain (7.3.1.3), we get

7.4 Transfer

We know demonstrate the following UFD transfer theorem to polynomial rings

Theorem 7.4.0.1. If R is UFD, then R[T] is UFD.

We must therefore demonstrate the uniqueness of decompositions (thus Euclid’s lemma) and their unique-

ness. For this, we will compare the notion of irreducibles in R[X] and k[X] using the notion of content

(due to Gauss). We will use the equality (R[T])× = R× which is true for any domain R (just because in

this case we have deg(PQ) = deg(P) + deg(Q), see exercise 5.7.0.7 for the general case).

7.4.1 GCD, LCM in UFD

Let (ri) be a finite family of elements of R which we will assume are not identically zero. Recall that an

element r ∈ R∗ is a GCD of the ri if it is maximal among the common divisors to the ri. Two GCDs of the

same family, when they exist, are of course associated, which is why we speak of the GCD. Therefore, we

can consider the GCD,LCM as elements of the monoid R/ ∼. Considering maximal common multiples,

we obtain the notion of LCM. As with integers, we have

Lemma 7.4.1.1. If R is UFD, the GCD and the LCM of the (ri) exist.

Proof. Consider decompositions into irreducible factors of each of the ri ̸= 0 and let qj be a family of

irreducibles not associated with each other so that all these factors are associated with exactly one of the

pi. We can then write uniquely

ri = ui
∏

j
q
vi,j
j , vi,j≥0 and ui ∈ R×.

We then define

GCD(ri) =
∏

j
q
mini(vi,j)
j and GCD(ri) =

∏
j
q
maxi(vi,j)
j

which are verified to be suitable.

Note that GCD and LCM are homogeneous of weight 1 for multiplication by R∗.

Exercise(s) 7.4.1.2. Show that if R is principal, the GCD(ri) is a generator of the ideal generated by

the (ri). Provide a characterization of the LCM in terms of ideals.
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7.4.2 Content

In the remainder of this chapter section, R denotes an UFD domain.

Definition 7.4.2.1. Let P ∈ R[T] be nonzero. We define he content c(P) of P as the GCD ∈ (R/ ∼) of

its coefficients1. A polynomial with content c(P) ∼ 1 is said to be primitive.

For example, monic polynomials of R[T] are primitive. The content is homogeneous of weight 1 under

multiplication by nonzero element like the GCD.

Theorem 7.4.2.2 (Gauss). Let P,Q be be nonzero polynomials of R[T]. Then, c(PQ) ∼ c(P)c(Q).

Proof. By homogeneity, we may assume P,Q are primitive and we must demonstrate that PQ is primitive.

Otherwise, let p be an irreducible of R dividing c(PQ). Since R is UFD, it satisfies Euclid’s lemma and

the quotient R = R/(p) is integral. The coefficient reduction morphism R → R induces a ring morphism

R[T] → R/(p) such that 0 = PQ = P · Q. Since R[T] is integral like R, for example P = 0, i.e.p|c(P), a

contradiction because c(P) ∼ 1.

Corollary 7.4.2.3. The irreducibles of R[T] are

1. The irreducibles of R;

2. Primitive polynomials of R[T] that are irreducible in k[X].

Proof. Recall the equality (R[T])∗ = R×. The first point follows immediately for reasons of degree.

If P is irreducible in R[T] of degree > 0, it is certainly primitive according to the first point.

Suppose it is the product of two polynomials P̃1, P̃2 ∈ k[T]. By reducing to a common denominator

di ∈ R∗ for the coefficients of P̃i, we can write P̃i = Pi/di with Pi ∈ R[X]. We then have

(∗) d1d2P = P1P2

so that d1d2 = d1d2c(P) = c(P1)c(P2) (homogeneity and multiplicativity of content). Replacing in (*),

we get

P = P1/c(P1)P2/c(P2)

with Pi/c(Pi) ∈ R[T] by definition of content. As P is irreducible in R[T], we deduce for example

P1/c(P1) is invertible, thus of degree zero, and therefore the same for P̃1 which is proportional to it by

a scalar Hence the irreducibility in k[T].

The converse is tautological (who can do more can do less)
1Let’s emphasize that c(P) belongs to R/ ∼, i.e.is only defined up to multiplication by a unit.
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7.4.3 The Transfer Theorem

Theorem 7.4.3.1. If R is UFD, then so is R[T].

Proof. Because the defining properties of UFD are invariant under multiplication by a unit of R×, for

simplicity we simply write by an equality an equality up to R×.

Existence of decomposition. Let P ∈ R[X] be non-zero. If P is a constant r ∈ R∗, we write the

decomposition r =
∏
pi into irreducible factors in R and invoke (7.4.2.3).

If P is of degree > 0, by factoring out a GCD of its coefficients, we can assume P is primitive. As in

the proof of 7.4.2.3, a common denominator argument then allows us to write its decomposition in the

principal therefore UFD k[X]

P =
∏

Pi/di

with Pi ∈ R[T] irreducible in k[T] and di ∈ R∗. By taking the contents, we have c(P) =
∏
di and

P =
∏

Pi/c(Pi) which is the sought decomposition .

Uniqueness of decomposition in R[T]. Let’s demonstrate that R[T] satisfies Euclid’s lemma (7.3.1.2).

Suppose then P irreducible divides the product of P1,P2 ∈ R[T]. If P is of degree > 0, it is primitive

and irreducible in k[T] according to (7.4.2.3). As k[T] is UFD since principal, P|P1 for example (in k[T]

) and a common denominator argument allows once more to write dP1 = Q1 ·P with d ∈ R∗,Q1 ∈ R[T].

By taking the contents we again have dc(P1) = c(Q1) and therefore P1 = c(P1)Q1/c(Q1)P and thus P

divides P1 in R[T].

For example, a polynomial ring in n variables over a field, a principal ring more generally, is UFD. But

beware, this remarkable stability of factorality does not pass to quotients as does the property of being

Noetherian. The knowledgeable reader will relate this to the notion of non-singularity in geometry.

Exercise(s) 7.4.3.2. Show that the ring R[X,Y]/(X2 −Y3) is integral, Noetherian but not UFD.

7.5 Irreducibility of the Cyclotomic Polynomial Over Q

From now on, in the rest of this chapter, k = Q and Ω = C.

We can take here ζn = exp
(
2 Idπ
n

)
so that the primitive n-th roots of unity (in C) are the complex

numbers of the form ζmn = exp
(
2 Idπm
n

)
, where m ∈ (Z/nZ)∗.

Definition 7.5.0.1. We define the n-th cyclotomic polynomial

Φn(T) =
∏

m∈(Z/nZ)∗

(
T− exp

(
2 Idπm

n

))
.
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We will show that Φn is irreducible and has integer coefficients.

Lemma 7.5.0.2. We have Φn(T) ∈ Z[T].

Proof. Then, every n-th root of unity has an order d that divides n: it is a primitive d-th root of 1.

Conversely, if ζ is a primitive d-th root of 1 with d|n, it is an n-th root of 1. We deduce that the set of

n-th roots of 1 is the disjoint union parameterized by the divisors d of n of the primitive d-th roots. As

Tn − 1 =
∏

ζ∈µn

(T− ζ),

we deduce the formula

(i) Tn − 1 =
∏

d|n
Φd(T).

Starting from Φ1(T) = T − 1 ∈ Z[T], we assume by induction on d that Φd has integer coefficients

according to whatever d < n. We just have to recall that the quotient of an integer coefficient polynomial

by a monic integer coefficients polynomial is an integer coefficient polynomial (6.4.1.2) to conclude his is

also true for d = n.

But we have in our case the transfert theorem

Lemma 7.5.0.3 (Gauss). Let P ∈ Z[T] be a non-constant polynomial.

1. If P is irreducible in Z[T], it is irreducible in Q[T].

2. If P is monic, then the monic irreducible factors of the factorization of P in Q[T] have integer

coefficients.

Proof. It is just an immediate consequence of (7.4.3.1) with R = Z.

Recall that complex number is said to be an algebraic integer if it is the root of a monic polynomial with

integral coefficients. For example, ζn is an algebraic integer, but 1/2 is not (cf. Exercise 7.5.0.4).

The consistency of the terminology is ensured by the following result.

Exercise(s) 7.5.0.4. Show that x ∈ Q is an integer over Z if and only if it is in Z.

Gauss’s Lemma 7.5.0.3 for ploynomials immediately gives the following result.

Corollary 7.5.0.5. The minimal polynomial of an algebraic integer has integralcoefficients.
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Then:

Theorem 7.5.0.6. The cyclotomic polynomial Φn is irreducible over Q.

The proof, due to Gauss, is very clever.

Proof. Let P be the minimal polynomial of ζn. It suffices to prove Φn|P, or that all primitive roots of

unity cancel P.

Let p be a prime not dividing n and let ζ be a root of P. Then ζ is necessarily a primitive root because

P|Φn. The key is the following lemma.

Lemma 7.5.0.7. ζp is a root of P.

Proof. Suppose, by contradiction, the opposite. Write

Tn − 1 = P(T)S(T)

with S(T) ∈ Q[T]. Since ζn is an integer, we have P(T) ∈ Z[T] according to Corollary 7.5.0.5. P(T)

being moreover monic, S(T) ∈ Z[T]. Since P(ζp) is assumed to be non-zero, we have S(ζp) = 0. Thus,

the polynomials P(T) and Q(T) = S(Tp) have a common complex root. Their GCD (calculated over Q)

is therefore non-constant, so that P divides Q in Q[T] (irreducibility of P) and also in Z[T] since P is

moreover monic. Reduce modulo p. We obtain

Q(T) = S(Tp) = (S(T))p

using the Frobenius morphism. Since by hypothesis n ̸= 0 in Fp, Tn − 1 and its derivative nTn−1 have

no common root in Fp, so that Tn − 1 and P have no common factor in Fp[T]. Let Π be an irreducible

factor of P. As it divides S
p
, it divides S, so that Π2|Tn − 1 in Fp[T]. We obtain a contradiction since P

is separable.

We can now finish the proof of Theorem 7.5.0.6.

Let then ζ be a root of P and ζ ′ be any root of Φn. We write ζ ′ = ζm with GCD(m,n) = 1 (because ζ ′

is primitive). By decomposing m into a product of prime factors, a repeated application of the lemma

gives that ζ ′ is a root of P and therefore Φn|P.

7.6 Torsion Modules over PID

Let M be a torsion module (M = Mtors) over a PID R and let P be the set of nonzero prime ideals of R.
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7.6.1 Primary Decomposition

Definition 7.6.1.1. Let (p) = p ∈ P. The p-primary part (or p-primary part) of M is the submodule

M[p] = M[p] = {x ∈ M|∃n ≥ 0}pnx = 0}.

Proposition 7.6.1.2. Let f : M → N be a morphism of torsion modules and
∏
pni
i be the decomposition

of x ∈ R∗ into distinct primes ((pi) ̸= (pj) if i ̸= j).

1. For all j, there exists εj ∈ (
∏
i̸=j p

ni
i ) such that

∑
j εj = 1.

2. The natural map ⊕p∈PM[p] → M is an isomorphim.

3. For any p ∈ P, we have functoriality of primary components meaning that the natural diagram

⊕p∈PM[p]

��

// M

��
⊕p∈PN[p] // N

4. If xM = {0}, the scalar multiplication by εi is the projection πi : M
∼→ ⊕iM[pi] → M[pi] ↪→ M.

Moreover
∑
πi = IdM and πi ◦ πj = δi,jpi.

Proof. This a direct consequence of the "more general" statement.

Lemma 7.6.1.3 (PID Splitting Lemma). Let f : M → N be a morphism of modules. Assume that M

and N are canceled by x =
∏
xi with GCD(xi, xj) = 1 if i ̸= j.

1. If x, y ∈ R∗ are coprime then for any n,m > 0, GCD(xn, ym).

2. For all j, there exists εj ∈ (
∏
i̸=j xi) such that

∑
j εj = 1.

3. The natural map ⊕iAnnM(xi) → M is an isomorphim.
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4. For any i, the natural diagram

⊕iAnnM(xi) //

��

M

��
⊕iAnnN(xi) // M

5. The scalar multiplication by εj is the projection πj : M
∼→ ⊕iAnnM(xi) → AnnM(xi) ↪→ M.

Moreover
∑
πi = IdM and πi ◦ πj = δi,jxi.

Proof.

1. By the Newton formula in R, (au+ bv)n+m can be written anU+ bmV which proves (1) by Bézout’s

theorem.

2. This is (1) of the Chinese Remainder Lemma because GCD(xi, xj) if i ̸= j.

3. Let mi ∈ Ann(M(xi). With the notation of (2), mi =
∑
j εjmi = εimi because xi|εj if j ̸= i. For

the same reason, εjmi = 0 if j ̸= i.

Injectivity. If
∑
mi = 0, by multiplying by εj , we have mj = εjmj = −

∑
i ̸=j εjmi = 0 hence the

injectivity.

Surjectivity. et m ∈ M and define mi = εim. Because x|εixi, we have mi ∈ AnnM(xi) and m is the

wanted preimage..

4. Clear.

5. Direct consequence of the previous relations εmi = δi,jmi for mi ∈ AnnM(xi) and 1 =
∑
εi.

Example(s) 7.6.1.4. Let a ∈ Endk[V] and P,Q ∈ k[T] coprime polynomials. Applying lemma 7.6.1.3

to Va, we get the famous "kernel lemma2" Ker(PQ(f)) = Ker(P(a))⊕Ker(Q(a)).

7.6.2 Invariant Ideals and Primary Decomposition

Assume moreover that M is of finite type with (non zero) invariant ideals (d1) ⊂ · · · ⊂ (dn) ̸= R and let

d1 =

r∏
j=1

p
d1,j
j

2This terminology is only French Universal.
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a prime decomposition with (pi) ̸= (pj) if i ̸= j. Then, up to unit, each di can be uniquely written

di =

r∏
j=1

pdi,jj with d1,j ≥ d2,j · · · ≥ dr,j ≥ 0.

By the Chinese Remainder Lemma, we get

M[pj ]
∼→ ⊕iR/(p

di,j
j ).

Conversely, assume that we have some direct sum decomposition

M
∼→ ⊕i,jR/(p

di,j
j ).

Reordering if necessary, we can assume that each sequence (di,j)i≥1 is decreasing with di,j = 0 for i large

enough. Then, we define

di =

r∏
j=1

pdi,jj .

The sequence of ideals (di) is decreasing and its proper terms are the invariant ideals of M.

Graphically, for each prime (pj), we order powers that appear in descending order (di+1,j ≤ di,j) in the

jth column,

d1 → p
d1,1
1 p

d1,2
2 · · ·

d2 → p
d2,1
1 p

d2,2
2 · · ·

...
...

...

and read off the invariant factors d1, d2, etc., from the rows (starting from the first one).

7.7 Application: Jordan Reduction

Camille Jordan

Let us explain why the Frobenius reduction and the primary decomposition of

Va immediately leads to the Jordan reduction of endomorphisms a ∈ Endk(V)

under the assumption that the characteristic polynomial χa is split. We retain

the previous notations (and remind that a matrix of size ≤ 0 is an empty

matrix).

Let A ∈ Mn(k) and P = (Pn| . . . |P1 = µa) the similarity invariants of A. Assume χA, or equivalently3

µA, splits over k and denote by Λ the set of its distinct roots. One gets

χA(T) =
∏

Λ
(T− λ)dλ .

If we specialize to the case χA = Tn, we have Pi = Tdi with di ≥ 0 decreasing and
∑
di = n.

3see 6.6.2.3
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Definition 7.7.0.1. A partition of an integer n ≥ 0 is a decreasing sequence d = (di)1≤i≤n of integers

≥ 0 such that
∑
di = n.

Since each Pi divides χA, we have

(ii) Pi =
∏

Λ
(T− λ)dλ,i where dλ = (dλ,i)iis a partition of dλ.

The primary decomposition of the Frobenius decomposition of VA implies

VA[T− λ] = Ker(a− λ Id)dλ
∼→ ⊕ik[T]/((T− λ)dλ,i

and

VA
∼→ ⊕λ ⊕i k[T]/((T− λ)dλ,i).

Let Bλ,i = ((T− λj) mod (T− λ)dλ,i)j<dλ,i
. It is a k-basis of k[T]/((T− λ)dλ,i . The formula

T(T− λ)j = (T− λ)j+1 + λj(T− λ)j

ensures that the matrix MatBλ,i
(T) theof multiplication by T on k[T]/((T− λ)dλ,i is λ+ Jdλ,i

where

Jm = C(Tm)

the standard Jordan block

Jm =



0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0

...
...

. . .
...

...

0 0 · · · 1 0


is the standard Jordan block of size m . Using 7.6.2, we get

Theorem 7.7.0.2 (Jordan Reduction). Under the assumptions and notations above, we have:

1. A is similar to a unique diagonal matrix diag(λ + Jdi,λ) with for every λ the sequence (di,λ)i being

a partition of dλ.

2. In particular, if χA = Tn (i.e., A is nilpotent), there exists a unique partition d = (di) of n verifying

A is similar to the diagonal block matrix Jd = diag(Jdn , · · · , Jd1). The similarity invariants of A are

Tdn ,Tdn−1 , · · · ,Td1 .
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7.7.1 Examples

(1) The elementary divisors of the Jordan reduction

λ 1 0 0 0 0

0 λ 0 0 0 0

0 0 λ 1 0 0

0 0 0 λ 0 0

0 0 0 0 λ 0

0 0 0 0 0 µ


(where λ ̸= µ), are

(T− λ)2 (T− µ)

(T− λ)2

(T− λ).

The similarity invariants are thus

(T− λ) , (T− λ)2 , (T− λ)2(T− µ).

(2) If M =


0 4 2

−1 −4 −1

0 0 −2

, we have

TI−M =


T −4 −2

1 T + 4 1

0 0 T + 2

 .

Let’s perform elementary operations according to the algorithm - or rather its outline - described in the

proof of the proposition 6.4.2.2 :


T −4 −2

1 T + 4 1

0 0 T + 2

 L1↔L2−−−−→


1 T + 4 1

T −4 −2

0 0 T + 2



L2→L2−TL1−−−−−−−−→


1 T + 4 1

0 −4− T(T + 4) −2− T

0 0 T + 2


C2→C2−(T+4)C1

C3→C3−C1

−→


1 0 0

0 (T + 2)2 −2− T

0 0 T + 2



L2→L2+L3−−−−−−−→


1 0 0

0 (T + 2)2 0

0 0 T + 2


C1↔C2

L1↔L2

−→


1 0 0

0 T + 2 0

0 0 (T + 2)2

 .
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The similarity invariants are thus T+2 and (T+2)2 and the Jordan reduction is


−2 1 0

0 −2 0

0 0 −2

. An

endomorphism with matrix M is not cyclic.

(3) If M =


3 1 0 0

−4 −1 0 0

6 1 2 1

−14 −5 −1 0

, we obtain as the reduction for TI−M the matrix


(T− 1)2 0 0 0

0 (T− 1)2 0 0

0 0 1 0

0 0 0 1

 .

The invariant factors are (T − 1)2 and (T − 1)2, and the Jordan reduction is


1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

. An

endomorphism with matrix M is not cyclic.

(4) An endomorphism is cyclic if and only if, for each eigenvalue, there is only one Jordan block.

7.8 Appendice : Algorithm from equivalence to similarity

We know therefore that if TId−A and TId−B are equivalent, i.e., if there exist P(T),Q(T) polynomial

and invertible matrices such that

P(T)(TId−A) = (TId− B)Q(T)−1,

then there exists P ∈ GLn(k) such that B = PAP−1.

Proposition 7.8.0.1 (Thanks to O. Debarre). There exists an algorithm for computing such a P.

Proof. We can perform the divisions by monic (here of degree one) in R[T] with R = Mn(k[T])

P(T) = (TId− B)P1(T) + P0,

Q(T)−1 = Q̃1(T)(TId−A) + Q̃0,

with P0 and Q̃0 in Mn(k) (let’s stress that R is not in a commutative ring). We obtain by substituting

((TId− B)P1(T) + P0)(TId−A) = (TId− B)(Q̃1(T)(TId−A) + Q̃0)
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or also

(TId− B)(P1(T)− Q̃1(T))(TId−A) = (TId− B)Q̃0 − P0(TId−A).

The left-hand side is therefore of degree at most 1 in T, which is only possible if P1(T) = Q̃1(T). Thus

(TId−B)Q̃0 = P0(TId−A) (argue by contradiction and look at the highest degree term). The equality

of the coefficients of T gives Q̃0 = P0, that of the constant coefficients gives BQ̃0 = P0A. It remains to

show that Q̃0 is invertible. We perform another division i R[T]

Q(T) = Q1(T)(TId− B) + Q0

and we write

Id = Q(T)−1Q(T)

= (Q̃1(T)(TId−A) + Q̃0)Q(T)

= Q̃1(T)(TId−A)Q(T) + Q̃0Q(T)

= Q̃1(T)P(T)
−1(TId− B) + Q̃0(Q1(T)(TId− B) + Q0)

=
(
Q̃1(T)P(T)

−1 + Q̃0Q1(T)
)
(TId− B) + Q̃0Q0.

Again, as Q̃0Q0 is constant, the factor of TId− B is zero and Q̃0Q0 = Id, hence the conclusion.

7.9 Supplementary Exercices

Exercise(s) 7.9.0.1. Let M ∈ Mn(k) be a nilpotent matrix.

1. Show that rk(M) = n− 1 if and only if the Jordan reduction is Jn.

2. If k = R, show that the set of nilpotent matrices of rank n − 1 is the largest open set of the set of

nilpotent matrices on which the Jordan reduction is continuous (with the topology defined by a norm

on Mn(R)).

3. Show that rk(M) = n−2 if and only if M has exactly two Jordan blocks Jp, Jn−p where p is the index

of nilpotency of M. Show that p ≥ n/2.

4. Let p ≥ n/2, an integer q = n− p, and set for t ∈ k, let Mt = diag(Jp, Jq) + tEp+q,p (adding t at the

bottom of the p-th column). Calculate the index of nilpotency of Mt depending on t. Deduce that the

Jordan reduction of Mt is diag(Jp+1, Jq−1) if t ̸= 0 and diag(Jp, Jq) otherwise.

5. Assume k = R. What is the set of continuity of the Jordan reduction application restricted to the

subset of nilpotent matrices of rank n− 2 (with the topology defined by a norm on Mn(R))?



Chapter 8

Diagonalization and Semisimplicity

Jorge Luis Borges

Simplicity// It opens, the gate to the garden/ with the docility of a page/ that

frequent devotion questions and inside, my gaze/ has no need to fix on objects/

that already exist, exact, in memory.// I know the customs and souls/ and that

dialect of allusions/ that every human gathering goes weaving./ I’ve no need to

speak/ nor claim false privilege;/ they know me well who surround me here,/

know well my afflictions and weakness.// This is to reach the highest thing,/

that Heaven perhaps will grant us:/ not admiration or victory/ but simply to

be accepted/ as part of an undeniable Reality,/ like stones and trees.

8.1 Perspective

8.2 Diagonalization

We will denote by kλ the k[T]-module kλ = k[T]/(T− λ). Its is of dimension 1 as a k-vector space, and

conversely any k[T]-module of k-dimension 1 is of this form for a unique λ characterized by T.1 = λ.

By definition, a ∈ Endk(V) si diagonalizable if and only if V has a basis of eigenvectors, i.e.if Va =

⊕Ker(a − λ Id). Equivalently, a if diagonalizable if its matrix in an arbitrary matrix is similar to a

diagonal matrix. The invariant similarity theory allows to quickly recover the following facts.

113
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Proposition 8.2.0.1. The following assertions are equivalent.

1. a is diagonalizable.

2. a is cancelled by some non zero P ∈ k[T] which is split with GCD(P,P′) = 1.

3. µa is split with GCD(µa, µ
′
a) = 1.

4. Va is a direct sum of dimension 1 module kλ.

5. The primary components Va[T − λ] = Ker(a − λ Id)dλ of Va are (7.7) are the eigenspaces Ker(a −

λ Id)dλ .

Proof. We prove (1) ⇒ (2) · · · ⇒ (5) ⇒ (1).

• (1) ⇒ (2). If D is the diagonal matrix of a in a diagonalization matrix, then the product P =∏
(T− di) where di runs over the distinct diagonal terms of D cancels a.

• (2) ⇒ (3). µa|P.

• (3) ⇒ (4). Each similarity invariant of Pi divides P and therefore is a product of distinct linear

factors. The primary decomposition of Va is therefore isomorphic to a direct sum ⊕kλ (7.6.2) (one

factor for each factor Tλ dividing a Pi).

• (4) ⇒ (5). By definition, 1 ∈ kλ is an eigenvector of T with eigenvalue 1 and therefore the some

of these dimension 1 spaces for a given λ is the eigenspace Ker(a − λ Id). It is by definition the

(T− λ)-primary component because T− λ acts by µ− λ ̸= 0 on kµ if µ ̸= 0.

• (5) ⇒ (1). Va is always the direct sum of its primary components.

Corollary 8.2.0.2. Let W be a subspace of V which is stable by a which is diagonalizable.

1. Then, the restriction a|W is diagonalizable and W has a complement which is stable by a.

2. Conversely, if χa is split and if any stable subspace has a stable complement then a is diagonalizable.

Proof.

1. a|W is cancelled by µa which is split without square factors by (3) of 8.2.0.1 implying it is diagonal-

izable by (2) of 8.2.0.1. By fonctoriality of the primary decomposition, we have Wa[p] = W ∩ Va[p]

for any irreducible polynomial p and Wa = W∩Va = ⊕W∩Va[p] = Wa[p]. But because Va[p] is an

eigenspace by 8.2.0.1 (5), so is Wa[p].
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2. Induction on dim(V).

8.2.1

This splitness condition on χa is too restrictive (when the field is not algebraically close), in particular

because it is extremely difficult to verify in general! We have two interesting directions to generalize

1. the condition GCD(µa, µ
′
a) = 1 of 8.2.0.1.

2. the existence of stable complement of stable subspaces of 8.2.0.2.

(1) is easy to verify (Euclid’s algorithm), has nice diagonalization properties for the matrice of a but

unfortunately only over Ω.

(2) has nice geometric properties for the matrice of a on k itself, but seems difficult to check (except

for diagnonalizable endomorphism or some cyclic morphisms like for instance a rotation in an Euclidean

plane of angle ̸= 0 mod π (it has no non trivial invariant supbspace!).

We would like know to look at (1) -absolute semisimplicity- and (2) -semi simplicity and to compare

these notions. Fortunately, these conditions are often equivalent (in k is of zero characteristic or more

generally if k is perfect, sec-perfect). But in general, (2) is delicate to check and not so well behaved.

Because these notions of semismplicity are important in general, we have chosen not to restrict ourself

to the linear algebra situation. The good news is that the proofs are not more complicated in this setup.

8.3 Semisimple Modules

Ryoan-ji, Kyoto

Definition 8.3.0.1. Let M be the set of maximal ideals of R and (µ) ∈ M. Let M be an R-module.

1. We define M(µ) = {m ∈ M|(µ)m = {0}} and k(µ) = R/(µ) (which is a field by definition).
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2. M is said

• semisimple if every submodule of M has a complement;

• simple if M non-zero and has no non-trivial submodules.

3. An endomorphism a ∈ Endk(V) is semisimple if the k[T]-module Va is.

In this commutative situation, the theory is very... simple. Observe first that simple modules are certainly

semisimple as alll modules if R is a field. Moreover, (µ) canceling M(µ), the R-module structure on M

defines a canonical k(µ)-vector space structure on M(µ). The key lemma is the following.

Lemma 8.3.0.2. Let M be a semisemple module and N a submodule and S a complement of S.

1. N is isomorphic to the quotient M/S and M = M/N is isomorphic to the submodule S.

2. Submodules and quotient modules of M are semisimple.

Proof.

1. Clear.

2. Enough to prove that M/N is semi-simple by (1). Let π : M → M b the canonical sutrjection and S′

a complement of π−1(N) in M. Then π(S′) is a complement of N in M (check !).

Proposition 8.3.0.3. Let M be an R-module.

1. M is semi simple if and only if the natural morphism ⊕(µ)∈MM(µ) → M is an isomorphism.

2. A direct sum of semisimple modules is semisimple.

3. Up to isomorphism, {k(µ), (µ) ∈ M} is the set of all simple modules.

4. A semisimple module is a direct sum of simple modules.

Proof.

1. Let us observe that ⊕M(µ) → M is always injective.Let (mµ ∈ M(µ))µ ∈ F a finite family such

that
∑

Fmµ = 0 (∗). Let eµ ∈ R/I be the complete family the Chinese Remainder Lemma where

I =
∏
µ∈F(µ). The action of R on ⊕µ∈FM(µ) factors through R/I and we have eµmν = δµνmµ.

Multiplying (*) by each eµ we get mµ = 0 for all µ ∈ F hence the injectivity.



8.4. «REMINDER» ON PERFECT FIELDS 117

Assume M is semisimple. Let S be a complement of (the image of) ⊕M(µ) in M. If S ̸= {0}, let

s nonzero in S and µ ∈ M containing I = AnnR(s) (Krull’s lemma 1.3.0.4). Then Rs is semisimple

(8.3.0.2) and isomorphic to R/I which is also semisimple (8.3.0.2 again). But k(µ) = R/(µ) is a

quotient of R/I = Rs and therefore isomorhic a submodule of Rs ⊂ S. But the image of 1 in S is

cancelled by (µ) and therefore belongs to M(µ), a contradiction.

Conversely, assume ι : ⊕(µ)∈MM(µ) → M is surjectove and let N be a a submodule of M. The

injection N(µ) → ⊕N is surjective because ι is. Let Sµ be a complement of the N(µ) in M(µ) as

k(µ)-vector spaces. Then S = ⊕Sµ is complement of N in M.

2. (2), (3) and (4) follow immediately from (1).

Remark(s) 8.3.0.4.

• It follows that every semisimple module is a torsion module except R is a field.

• If R is a field any module is semisimple : this the existence of complement of vector spaces which is

at the earth of the preceding proof and depens on Zorn’s lemma.

• If M is of finite type, semiseimple modules are Noetherian modules thanks to 8.3.0.2. The reader will

check by himself (exercise) that the use of Zorn’s lemma is unnecessary in this case (which would be

sufficient for our purpose).

• If R is a PID, Krull’s lemma is elementary once we know that R is an UFD and that nonzero prime

ideals are maximal.

Corollary 8.3.0.5. Let a ∈ Endk(V) with V of finite dimension. Then a is semisimple if and only if µa

is square free in k[T].

Proof. The maximal ideals of k[T] are the principal ideals generated by irreducible polynomials. By

8.3.0.3, if a is semisimple, a is cancelled by the products of
∏

P where P is monic irreducible such that

Va(P) ̸= {0}. Conversely, we have the decomposition in primary component Va = ⊕P|µa
Va[P] and

Va[P] = Va(P) if µa is square free (Chinese Remainder Lemma) and we conclude by 8.3.0.3 again.

8.4 «Reminder» on Perfect Fields

On a general field K, it may happen that a polynomial without squared factors has multiple roots in a

larger field. For example, this is the case with T2+ t in K = F2(t), the field of fractions of the polynomial
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ring F2[t] [t is assumed to be transcendental over F2]. This does not occur in perfect fields. Let p be a

prime number and R a ring such that pR = {0}. The well-known divisibility p|

p
n

 for 1 ≤ n ≤ p − 1

and the binomial formula ensure that the application F : r 7→ rp is a ring morphism called the Frobenius

morphism. If R is a field, it is additionally injective as any morphism of fields.

Definition 8.4.0.1. A field of characteristic p is said to be perfect if p = 0 or if every element admits a

p-th root, i.e. if its Frobenius morphism is an isomorphism.

Thus, every finite field is perfect since an injection between finite sets is bijective. Therefore, we must

prove the following statement.

Lemma 8.4.0.2. Let k be a perfect field and P ∈ k[T]. Then, P is square-free if and only if GCD(P,P′) =

1. In particular, if k is perfect and P irreducible, then GCD(P,P′) = 1.

Proof. The direction ⇐ immediately follows from Bézout’s identity. Let’s consider the direct direction.

Suppose P is without squared factors and write P =
∏

Pi with Pi irreducible. If GCD(P,P′) ̸= 1, one of

the Pi divides P′ =
∑
i P

′
i

∏
j ̸=i Pj and thus Pi|P′

i. By comparing degrees, we have P′
i = 0. This implies

that the characteristic of k is a prime number p and that all coefficients of Pi of indices not multiples

of p are zero: Pi =
∑
n anpT

np. But in this case, we have Pi = (
∑
n a

1/p
np Tn)p because the Frobenius of

k[T] is a ring morphism. A contradiction with the irreducibility of Pi

Exercise(s) 8.4.0.3. Let V be a k-vector space of finite dimension and φ an automorphism of k. Denote

[φ] ⊗ V as the vector space with underlying group V and external law λ.[φ]v = φ(λ)v. Show dim(V) =

dim([φ]⊗V). Deduce that any field of finite dimension over a perfect field is still perfect.

8.4.1 Criterion for Semisimplicity of Va

The calculation of GCD of polynomials does not depend on the base field (for example because Euclid’s

algorithm does not depend on it) nor does that of the minimal of the matrix. According to 8.2.0.1, the

condition GCD(µa, µ
′
a) = 1 therefore means that the matrix of a is diagonalizable in Mn(Ω). In the case

of Va, this can be summarized as follows.

Proposition 8.4.1.1. Let a ∈ Endk(V) (with k perfect) whose matrix A ∈ Mn(k) is in a given base.

The following propositions are equivalent:

1. A is diagonalizable in Mn(Ω).
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2. GCD(µa, µ
′
a) = 1.

3. Va is semisimple.

4. Every submodule of Va is semisimple.

If these equivalent conditions are met, a is said to be semisimple (ditto for a matrix of a).

Proof. The equivalence (1) ⇔ (2) follows from 8.2.0.1.

• (2)⇒ (3). The minimal µa is certainly square free and 8.3.0.3 gives (3).

• (3)⇒ (4) This is 8.3.0.2.

• (4)⇒ (2) Va is semi simple and therefore µa is square free. But k is perfect, therefore GCD(µa, µ
′
a) =

1 by 8.4.0.2 (the only place where perfectness matters) hence (12)

8.5 Commuting families of Diagonal Matrices

Diagonal matrices commute. We have a converse.

Lemma 8.5.0.1. If a, b ∈ Endk(V) commute, then any eigenspace of a is b-stable.

Proof. Let v ∈ Ker(a−λ Id). One has a(b(v)) = b(a(v)) = b(λv) = λb(v) proving b(v) ∈ Ker(a−λ Id).

Corollary 8.5.0.2. Let (ai) be an arbitrary family of diagonalizable endomorphisms of V. Then, if

fi ◦ fj = fj ◦ fi for all i, j, there exists a common diagonalization basis for all the fi.

Proof. We use induction on n = dim(V) ≥ 0. We may assume that n > 0 and that the statement is true

in dimension < n. If all the fi are homotheties λi Id, any basis is suitable. Otherwise, let i such that

fi is not a homothety. Then, fi has at least two distinct eigenvalues so that all its eigenspaces Ei(λ)

are of dimension < n. But they are stable by all the fj and their restrictions fj(λ) to each Ei(λ) are

diagonalizable for all j. For each λ, we then choose a common diagonalization base for the fj(λ) and the

union of these bases suits.
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Corollary 8.5.0.3. Let a, b ∈ Endk(V) with a, b semisimple that commute (k perfect) and P ∈ k[X,Y].

Then, P(a, b) is semisimple.

This corollary is false in the imperfect case.

Remark(s) 8.5.0.4. When the base field K is not perfect, there are semisimple matrices over K which,

considered in a superfield, are no longer so. With the notations of 8.4, this is the case with A =

0 t

1 0


over K = F2(t) because χA(T) = T2 + t is irreducible over K but not over K(t1/2) = K[τ ]/(τ2 − t) and a

fortiori over Ω ⊃ K. Moreover, A + t1/2 Id is even nilpotent! The correct notion in the non-perfect case

is that of absolute simplicity defined by the condition GCD(µa, µ
′
a) = 1, stronger than semisimplicity.

8.6 Jordan-Chevalley Decomposition

Let’s begin with a very important result, although easily demonstrated, which allows the construction of

polynomial roots step-by-step (adaptation of Newton’s method).

8.6.1 Hensel’s Lemma and Existence

Kurt Hensel

Gotlib

Isaac Newton
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Lemma 8.6.1.1 (Hensel-Newton). Let I be a nilpotent ideal (IN = 0) of an arbitrary ring R and P ∈ R[T].

Assume there exists x0 ∈ R such that P(x0) ≡ 0 mod I and P′(x0) mod I is invertible. Then, there exists

x ∈ R such that x ≡ x0 mod I and P(x) = 0.

Proof. First, observe that if a mod I is invertible, then a is invertible in a. Indeed, if b mod I is its

inverse, ab = 1− i with i ∈ I. Formally expanding 1/(1− i) into a series, we deduce that 1− i is invertible

with the inverse
∑
k<N i

k since ik = 0 for k ≥ N and thus b/(1− i) is the inverse of a.

We will compute (algorithmically) an approximate root

xk mod I2
k

|P(xk) ≡ 0 mod I2
k

and xk ≡ x0 mod I

by successive approximations. Proceed by induction on k ≥ 0 (with tautological initialization). Assuming

the property holds at rank k, we then seek xk+1 in the form xk+1 + ε, ε ∈ I2
k

so that xk+1 is indeed an

approximation of xk mod I2
k

.

The entire Taylor formula gives

P(xk+1) = P(xk) + εP′(xk) + ε2Q(xk, ε)

with Q[T,Y] ∈ R[T,Y] (check this!). Since xk ≡ x0 mod I, we have P′(xk) ≡ P′(x0) mod I and therefore

P′(xk) mod I2
k

is invertible. We then set ε = −P(xk)/P
′(xk). ε ∈ I2

k

is guaranteed by the construction

of xk. As ε2 ∈ I2
k+1

, this choice is suitable. To conclude, we choose k such that 2k ≥ N + 1 and set

x = xk: the algorithm converges exponentially!

Corollary 8.6.1.2 (Existence). Let a ∈ Endk(V) (with k a perfect field). There exist d, ν ∈ k[a] ⊂

Endk[a] such that a = d+ ν and d semisimple, ν nilpotent. In particular, d and ν commute.

Proof. Let π ∈ k[T] be the product of the irreducible factors of the minimal µa of a. As it is without

squared factors, it is coprime with its derivative. Choose α, β ∈ k[T] such that απ + βπ′ = 1.

Let I be the ideal π(a)k[a] of k[a]. We have µa|πn and therefore πn(a) = 0 so that In = 0. Furthermore,

we have β(a)π′(a) = 1 mod I and thus π′(a) mod I is invertible. By setting x0 = a ∈ k[a], we deduce

the existence of x ∈ k[a] such that x = a mod I and π(x) = 0 mod In = (0). We then set d = x and

ν = a−P(a). As π(d) = 0, d is absolutely semisimple. Since ν = a−P(a) ∈ I and In = 0, ν is nilpotent.

■

Remark(s) 8.6.1.3. This is essentially Chevalley’s proof. Beyond its algorithmic character (very fast),

it is important because it allows the definition of semisimple and nilpotent parts within the context of Lie

algebras and algebraic groups (on a perfect field), see for example the excellent [3].
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8.6.2 Uniqueness

Theorem 8.6.2.1 (Jordan-Chevalley). We still assume k is a perfect field.

1. Let a ∈ Endk(V). There exists a unique pair (d, ν) with d semisimple, ν nilpotent, d and ν commuting

with a = d+ ν.

2. Let χ ∈ k[T] be a monic polynomial of degree n. There exists P ∈ k[X] (depending only on χ) such

that if χa = χ, then d = P(a) and in particular d, ν ∈ R = k[a] ⊂ Endk[a].

Proof. Only uniqueness requires an argument given the above. Suppose d, ν as in the theorem and a pair

d′, ν′ ∈ k[a] as in Corollary 8.6.1.2. Since d, ν commute with each other, they commute with d+ ν = a.

They therefore also commute with d′, ν′ because these are polynomials in a. But d + ν = d′ + ν′ i.e.,

d− d′ = ν′ − ν. However, ν′ − ν is nilpotent (as a sum of commuting nilpotents) and d− d′ semi-simple

(as a sum of commuting semi-simples, 8.5.0.3); an endomorphism that is both semi-simple and nilpotent

being zero since its minimal polynomial has no squared factors and divides Tn, we indeed have d = d′

and u = u′.

�

A diagonalizable endomorphism a thus decomposes into d = a and ν = 0. Thus a =

1 2

0 2


decomposes into a+ 0 and not into

1 0

0 2

+

0 2

0 0

 as one might be tempted to write.

Furthermore, the assumption of k being a perfect field cannot be relaxed: the matrix

0 t

1 0

 from 8.5.0.4

does not have a Jordan-Chevalley decomposition. If one wants such a decomposition in the imperfect case,

one must restrict to endomorphisms with separable characteristic polynomials and replace semi-simple

with absolutely semi-simple. The proof is then identical.

8.6.3 Similarity class of the components

We retain the previous notation. a = d+ ν. The invariant factors of the semi-simple part d are entirely

determined by χa since two diagonalizable endomorphisms with the same characteristic polynomials

are similar over Ω and the invariants do not depend on the base field (cf. 8.6.4.1). Similarly, the

similarity invariants of a determine the nilpotent type da of ν. One way to see this is to observe that the

nilpotent parts of two similar matrices have similar nilpotent parts by uniqueness of the Jordan-Chevalley

decomposition.
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8.6.4 Appendix: What about the algorithmic nature of the decomposition?

On re-examining the proofs supra, one easily convinces oneself that finding d and ν is algorithmic once

one knows the product π of the distinct irreducible factors of Pn. SageMath does this very well thanks

to the factor command. But what if this command did not exist? In characteristic zero, one is easily

convinced of the formula

π = Pn/GCD(Pn,P
′
n)

so that the process is algorithmic thanks to Euclid’s GCD algorithm in k[T]. In characteristic p > 0, it

is more complicated because there are polynomials with a null derivative: the polynomials in Tp. The

following exercise provides an «algorithm» to find π for a perfect field of characteristic p >0. The quotes

are justified by the assumption that the inverse of the Frobenius1 F : x 7→ xp of k is known algorithmically.

Exercise(s) 8.6.4.1. Let k be a field and χ =
∏
πni
i the decomposition into unitary irreducible factors

of P a unitary polynomial of degree n. We denote χred =
∏
πi. In the first four questions, k is assumed

to be a perfect field of characteristic p > 0 and I the set of indices i such that ni is coprime with p.

1. Show that χ/GCD(χ, χ′) =
∏
i∈I πi.

2. Show that
∏
i/∈I πi is a p-th power in k[T].

3. Write an algorithm computing
∏
i∈I πi and

∏
j /∈I π

nj/p
j .

4. Deduce an algorithm computing χred.

5. What is χred in characteristic zero?

6. Program the algorithm on Fp? On Fpn? On a general perfect field?

7. How to generalize on a non-perfect field?

8. Always for k a general field, consider the sequence of polynomials χ
red

= (χi)1≤i≤n defined by

χ1 = χred, χi+1 = (χ/(
∏
j≤i χj)red. Show that χ

red
is the sequence of invariant factors of the

semisimple endomorphisms with characteristic polynomial χ.

9. Assuming again k perfect and let D,N be the Jordan-Chevalley decomposition of M ∈ Mn(k). What

are the similarity invariants of D based on the invariants P of M [Use the previous question]? Can

you similarly describe the invariants of N based on Pi [Place yourself in k and study the application

Pi 7→ Pi/Pi,red and its iterates]? Program the obtained algorithm for example on Fp.

Regarding Hensel’s lemma, the very writing of the proof is an algorithm that lives in k[a] ⊂ Md(k) where

d = dim(V). It involves calculating the inverse of P′(xn) as long as 2n < d. This is a small number of

times, but if the matrices are large, the calculation is heavy. One way to lighten it is to consider the

1Which is the case, for example, for finite fields.
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algebra isomorphism k[T]/µa
∼−→ k[a] that sends T to a (exercise) and to work within this quotient, which

is less computationally demanding.

Despite this, these algorithms are very unstable. For two reasons. The first is that the Gaussian pivot is

a numerically unstable algorithm. And working with polynomial coefficients does not help. The second

is more serious. As will be seen below, the similarity invariants do not vary continuously with the

coefficients of the matrix (see, for example, the theorem 10.2.0.2). Therefore, approximating the values

of the coefficients becomes perilous. When the matrices have rational coefficients, or are in finite fields,

one can, with great care, control the height of the coefficients and thus work with true equalities. Even

though these algorithms tend to explode the sizes of the integers involved... In short, a real subject

for reflection, one of the motivations that led us to include the topological study of similarity classes in

chapter 10.

8.7 Supplementary Exercises

Exercise(s) 8.7.0.1. Let λ be an eigenvalue of a and dλ its multiplicity as root of χa. Prove dim(a −

λ Id) ≤ dλ (∗). Prove that a is diagonalizable if and only if χa spits over k with equality in (*) for all

eigenvalues.

Exercise(s) 8.7.0.2. Let M be a complex square matrix of size n > 1. We denote by Mnil the nilpotent

component of its Jordan-Chevalley decomposition. The goal is to give some properties of Mnil. Recall

that the exponential of M is defined by the absolutely convergent series (for any norm on Mn(C)):

exp(M) =

∞∑
k=0

Mk

k!

and that the exponential of the sum of two commuting matrices is the product of their exponentials.

1. Compute exp(M)nil in terms of Mnil and M.

2. Show that exp(M)nil = 0 if and only if Mnil = 0. What can be deduced from this?

3. Show that the set of diagonalizable complex matrices is dense in Mn(C).

4. Show that the map M 7→ Mnil is not continuous on Mn(C).

5. What is the set of points of continuity of the map M 7→ Mnil (Difficult)?

Exercise(s) 8.7.0.3. Recall that the exponential of a complex square matrix of M is defined by the

absolutely convergent series (for any norm on Mn(C)):

exp(M) =

∞∑
k=0

Mk

k!

and that the exponential of the sum of two commuting matrices is the product of their exponentials.

1. If M ∈ Mn(R), prove that det(M) ≥ 0.
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2. Show that exp(Mn(R) is the set of square of real matrices.

3. If n > 1, show that there exists real matrices of size n with positive determinant but who are not

square of any real matrix.

Exercise(s) 8.7.0.4. Let p be prime, K the field of fractions of Fp[T] and V = K[X,Y]/(Xp−T,Yp−T).

Show that V is of finite dimension over K and that the K-endomorphisms of V multiplying by X and Y

respectively are semisimple, commute but their difference is nilpotent (this is exercise 14 chapter VII.5

[5] rewritten without tensor product).

Exercise(s) 8.7.0.5. Let A,B ∈ Mn(k) be two commutting matrices. Show that the k-algebra k[A,B] is

a quotient of k[T1,T2]/(µA, µB). Deduce using 5.6.0.2 that if the minimals of A,B and their respective

derivatives are coprime, any element C of k[A,B] is semi-simple (without using 8.5.0.3). Is µC necessary

coprime with its derivative?



126 CHAPTER 8. DIAGONALIZATION AND SEMISIMPLICITY



Chapter 9

The Duality Toolbox

René Magritte

9.1 Basic notions

As always, V denotes in this chapter a finite dimensional1 k-vector space and V∗ = Hom(V,k) denotes

its dual; the vector space of linear applications from V to k, i.e. linear forms of V.

If φ ∈ V∗, v ∈ V, we note ⟨φ, v⟩ = φ(v) the duality bracket2 V∗ ×V → k.

A hyperplane is the kernel of a non-zero linear form φ. Conversely, any hyperplane H determines φ up to

multiplication by a non-zero scalar: choosing any v /∈ H defines a direct sum decomposition H⊕ kv = V

and φ is unambiguously defined by any (nonzero) value of v.

We recall that any any free family of V can be completed in a basis of V. In particular, any proper

subspace of V is contained in some hyperplane and in fact is precisely the intersection of hyperplanes

that contain it (i).

1Unless otherwise stated.
2Be careful, the dual acts to the right on vectors, cf. [4].

127
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Proposition 9.1.0.1. Let V be a n-dimensional vector space and let Vi finitely many proper sub-vector

spaces. If k is infinite or if the number of subspaces is ≤ 2, then ∪Vi ̸= V.

Proof. By the above remark, we can assume that all the Vi’s are hyperplanes Ker(φi). Choosing a

(finitye) basis of V, these linear forms φi are nothing but (homogeneous) degree one polynomial in the

coordinates. By assumption
∏
φi is zero on kn and therefore the polynomial

∏
φi(X1, . . . ,Xn) is zero in

k[X1, . . . ,Xn] because k is infinite. But a polynomial ring is an integral domain, showing that one the φi

is zero, a contradiction. If k is a finite field (of characteristic p ≥ 2), the cardinaliy of V is pn. The union

of two hyperplanes has cardinality at worst 2pn−1 − 1 ≤ pn − 1 (because 0 belongs to bot hyperplanes)

and the proposition follows.

We recall that if B = (ei) is a (finite) basis of V, we define the dual basis B∗ = (e∗i ) of V∗ by the

formula ⟨e,ie∗j ⟩ = δi, j. In other words, e∗i is the i-th coordinate function and we have v =
∑
j⟨v, e∗j ⟩ej . In

particular, dim(V∗) = dim(V).

If V = kn = Mn,1(k) (column vectors), we have M1,n(k) = kn = V∗ (row vectors) and the duality bracket

is ⟨L,C⟩ = LtC where L ∈ V∗ is a row and C ∈ V a column. If B = (ei = [δi,j ]1≤j≤n) is the canonical

basis (Ei,1 = ei) of kn = Mn,1(k) = V, its dual basis B∗ is formed from the rows e∗i = tei, which is the

canonical basis (E1,i = e∗i ) of M1,n(k) = kn = V∗.

If B is a basis of an infinite dimensional vector space, the family B∗ is still free but is

never a basis. For instance, the linear form φ defined by ⟨φ, ei⟩ for all i is certainly not

in the span of B∗. Even as a set, Card(V∗) > Card(V) (exercise). In fact, in the infinite

dimensional case, the algebraic dual is not the good notion. As the reader who has notion

in functional analysis knows, the good notion is a the appropriate topological dual of

topological vector spaces.

If W is a subspace of V (or even a subset), we recall that its orthogonal is defined by

W⊥ = {φ ∈ V∗|⟨φ,w⟩ = 0 for all w ∈ W} ⊂ V∗.

If now W∗ is a subspace of V∗ (or even a subset) its polar in V is defined by

W◦
∗ = {v ∈ V|⟨φ, v⟩ = 0 for all φ ∈ W∗} ⊂ V.

Example(s) 9.1.0.2. An important example comes from differential geometry. If f is a regular function

on an open Ω of Rn, its differential at ω ∈ Ω is a linear form on TωΩ = Rn: the differential df(ω).

In the canonical basis ( d
dxi

(ω))i of TxΩ, this form is the Jacobian J(ω) = ( dfdxj
(ω))j thus seen as a row

matrix. The kernel of df(ω) is none other than the tangent hyperplane at ω to the hypersurface defined
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by the equation f = 0 as long as the differential is non-null at that point. The generalization to several

functions is contained in the notion of higher-dimensional submanifolds.

9.2 Motivation

Two useful ways compete to define a vector subspace W of V = kn.

1. Via generators vi ∈ V: W = Vect{vi}.

2. Via equations eqi ∈ V∗: W = {v|⟨eqi, v⟩ = 0} with

⟨eqi,


x1

...

xn

⟩ =
∑
j

ai,jxj = (ai,1, · · · , ai,n)


x1

...

xn

 .

The duality first focus on the second point of view, thus on the dual V∗ and the set of all possible

equations of W: the orthogonal W⊥ = {φ ∈ V∗|φ(W) ≡ 0} and then to the link with the first point of

view.

9.3 Formal Biorthogonality

Whether V is of finite dimension or not, any subspace W is tautologically contained in the space defined

by the set of its equations

W ⊂ (W⊥)◦ ⊂ {v|(⟨φ, v⟩ = 0 for all φ ∈ W⊥}.

In general, this inclusion is formal in the sense that it is always an equality, without any further assumption

about the dimensionality of V.

(i) W = (W⊥)◦ = {v|(⟨φ, v⟩ = 0 for all φ ∈ W⊥}.

Indeed, if v ̸∈ W, one can choose a complement S of W⊕kv in W and define for example φ ∈ W⊥ by the

conditions ⟨φ,W⟩ = ⟨φ,S⟩ = {0} and (⟨φ, v⟩ = 1 which implies v /∈ (W⊥)◦ proving the reverse inclusion.

9.4 Ante-dual Basis: Biduality

Henceforth, in this chapter, V is finite-dimensional.
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Proposition 9.4.0.1. Let V be of dimension n∞. Then

1. The evaluation linear application

ev :

 V → V∗∗

v 7→ (φ 7→ (⟨φ, v⟩)

is an isomorphism.

2. For any basis B∗ of V∗, there exists a unique basis B of V called ante-dual whose dual is B∗, i.e.

such that B∗ = B∗.

Proof. For (1), note that ev is injective between spaces of the same finite dimension.

For (2), note that B = ev−1((B∗)
∗) is the unique solution to the problem posed.

9.5 Orthogonal and Polar in Finite Dimension

Proposition 9.5.0.1. Let W,W∗ be two subspaces of V,V∗ respectively. We have

1. dim(W) + dim(W⊥) = n.

2. dim(W∗) + dim(W◦
∗) = n.

3. W∗ = (W◦
∗)

⊥.

4. W = (W⊥)◦.

5. ev(W◦
∗) = W⊥

∗ .

6. ev(W) = W⊥⊥.

Proof. For (1), choose a basis (ei, 1 ≤ i ≤ d of W and complete it to a basis B = (ei, 1 ≤ i ≤ n of V. If

B∗ = (e∗i ) is the dual basis, then by construction W⊥ = Vect(ei, i > d).

For (2), choose a basis (φi, 1 ≤ i ≤ d of W∗ and complete it to a basis B∗ = (φi, 1 ≤ i ≤ n of V∗. If

B = (ei) is the ante-dual basis, then by construction W◦
∗ = Vect(φi, i > d).

Applying the argument from (1) to W = W◦
∗ and using the basis εi = en−i, we get W⊥ = (W◦

∗)
⊥ =

Vect(φi, i ≤ d) = W∗ which gives (3).

(4) is added for reference and does not use finite dimension (i).

For (5), if φ ∈ W◦
∗ and w ∈ W, then ev(v)(φ) = φ(w) which is null because φ ∈ W◦

∗ and therefore

ev(W◦
∗) ⊂ W⊥. Since these two spaces have the same dimension as established previously, this inclusion

is an equality.
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For (6), if w ∈ W, and φ ∈ W⊥, then ev(v)(φ) = ⟨φ, v⟩ = 0 so that W ⊂ W⊥⊥. As these two spaces

have the same dimension as established previously, this inclusion is an equality.

Example(s) 9.5.0.2. If V is an euclidean space with scalar product (v, w) 7→ v.w, the partial linear

map w 7→ (v 7→ v.w) has zero kernel and is therefore an isomorphism V 7→ V∗. One checks that

this isomorphism identifies W⊥ with the usual Euclidean orthogonal {v ∈ V|v.W = {0}} recovering

the classical dimension formula in Euclidean geometry dim(W⊥) = n − dim(W). Moreover, with this

identification, w ∈ W ∩W⊥ satisfies w.w = 0 and therefore is zero ensuring in the Euclidean space the

so called usual orthogonal decomposition W
⊥
⊕ W⊥ = V.

Remark(s) 9.5.0.3. Note that orthogonality and polarity are strictly decreasing applications for inclu-

sion.

Corollary 9.5.0.4. Let φi ∈ V∗, i = 1, · · · ,m. Then, the rank of Vect{φi} is that of the evaluation

application

 V → km

v 7→ (φi(v))i

Proof. It suffices to observe that the kernel of the evaluation is the polar of Vect{φi} and then to invoke

the previous

proposition and the rank theorem.

Exercise(s) 9.5.0.5. Let V be the real vector space of polynomial of degree ≤ 3. Let a < c < b be reals

and define I ∈ V∗ by

⟨I,P⟩ =
∫ b
a

P(t)dt.

Compute dimSpan(eva, evc, evb, I) depending on the value of c. Deduce a formula for I depending only

on evaluation forms.

9.6 Biduality Conventions (Finite Dimension)

The previous paragraph allows, in finite dimension therefore, thanks to ev to identify V and its bidual,

polar W◦
∗ of W∗ and orthogonal W⊥

∗ , W and biorthogonal W⊥⊥. We generally simply note W⊥
∗ for W◦

∗.

Generally, in finite dimension, we consider spaces and dual, but we do not dualize the dual thanks to ev

and we simply write W = W⊥⊥ whether W is a subspace of V or of V∗.
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As an illustration, let’s give the algebraic lemma, easy but important, which in real cases is the algebraic

content of the theorem of linked extrema in differential geometry (interpret the result in terms of tangent

spaces of submanifolds of Rn in the spirit of the example 9.1.0.2).

Exercise(s) 9.6.0.1. Compare the orthogonal of a sum or intersection of sub vector spaces with the sum

or intersection of their orthogonals.

The following lemma is the algebraic part of the search of extrema through constraints equalities (see ??

for constraint inequalities).

Lemma 9.6.0.2. Let φ and φi, i ∈ I be linear forms of V. Then, φ is a linear combination of the φi if

and only if ∩iKer (φi) ⊂ Ker (φ).

Proof. By strict decrease of the orthogonal, the condition

∩iKer (φi) = Span(φi)
⊥ ⊂ Ker (φ) = Span(φ)⊥

is equivalent to the inclusion

Span(φ) = Span(φ)⊥⊥ ⊂ Span(φi)
⊥⊥ = Span(φi).

Exercise(s) 9.6.0.3. Les φi, i = 1, . . . ,N linear forms on V and Ψ ∈ Hom(V,kN) = (φi). Prove that

the rank of Ψ is the dimension of the span of the φi’s.

Remark(s) 9.6.0.4 (Farkas’ Lemma). If k = R, we have an analogous result for finite families of half-

spaces H+,H+
i defined by the inequalities f ≥ 0, fi ≥ 0. Indeed, ∩iH+

i ⊂ H+ if and only if φ is a linear

combination with positive coefficients of the φi. See ??.

9.7 Contravariance

Let Vi, i = 1, 2, 3, be arbitrary vector spaces,

Definition 9.7.0.1. If f ∈ Homk(V1,V2), we note tf ∈ Homk(V
∗
2,V

∗
1) the transpose of f defined by

tf(φ2) = φ2 ◦ f , in other words, ⟨tf(φ2), v1⟩ = ⟨φ2, f(v1)⟩ for every φ2inV
∗
2, v1inV1.
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Let’s recall that a matrix and its transpose have the same rank: this is for instance an immediate

consequence of the fact that equivalent matrices have equivalent transpose and that equivalence classes

of matrices (with coefficients in a field) are classified by the rank).

We have the following (formal) proposition

Proposition 9.7.0.2. If f ∈ Homk(V1,V2) and Bi are bases of Vi.

1. The application f 7→ tf is linear injective.

2. If fi ∈ Homk(Vi,Vi+1), we have ( contravariance of the transpose) t(f2 ◦ f1) = tf1 ◦ tf2.

Assuming further that the Vi’s are finite dimensional, we have

3. We have MatB∗
2 ,B

∗
1
(tf) = tMatB1,B2(f).

4. rk(f) = rk(tf).

5. With the identifications (9.6), the transposition is involutive.

6. Im(tf) = Ker(f)⊥ and Ker(tf) = Im(f)⊥.

7. If V1 = V2 = V, a subspace W of V is stable by f if and only if W⊥ is stable by tf .

Proof. Let’s just give an argument for 5)(the verification of the rest is left as an exercise). First, it suffices

to show one of the two formulas (change f to tf and use the involution of the transposition and of the

orthogonal). Then, Im(tf) and Ker(f)⊥ having the same dimension according to 1) and 9.5.0.1, it suffices

to prove Im(tf) ⊂ Ker(f)⊥. Now, if f(v1) = 0, then ⟨tf(φ2), v1⟩ = ⟨φ2, f(v1)⟩ = 0.

9.8 Supplementary Exercises

Exercise(s) 9.8.0.1. Let X be any set and V a finite dimensional vector subspace of the R-vector space

of functions from X to R. Let n = dim(F).

1. Show that the family (evx), x ∈ X generates V∗

2. Show that there exists fi ∈ F, xi ∈ X, i = 1, . . . , n such that det(fi(xj)) ̸= 0.

3. Assume that all the functions of V are bounded on X. Show that any pointwise convergent sequence

of elements of F is uniformly convergent on X.

4. Does the result previous remain true if one no longer with no boundeness assumption?
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Chapter 10

Topology of Similarity Classes*

Hasse diagram of A5

(6) 30

(5, 1) 28

(4, 2)
ppp LLL 26

(4, 12)
NNN

(32)
rrr

24

(3, 2, 1)
ppp LLL 22

(3, 13)
NNN

(23)
sss

18

(22, 12) 16

(2, 14) 10

(16) 0

Baohua FU GeometryNilpOrbits

Hasse Diagram of GL6

10.1 Perspective

Here we provide a perspective on the geometry of similarity classes through

their topology. To avoid formalism, we restrict ourselves to the usual topology

on complex matrices even though the so called Zariski topology whose closed

sets are defined by families of polynomial equations would have been more

natural1.

10.2 Introduction

1As mentioned above, in the case of a general infinite field, the Zariski topology should be considered, which adds no

real difficulty once its definition is known. In fact, the topology must be finer than that of Zariski, the usual operations on

matrices must be continuous, and the points of k must not be open, ensuring that the closure of k∗ is k. This is where the

infinitude of the field comes into play in the case of the Zariski topology.
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Definition 10.2.0.1. An n-type is a sequence P = (Pn|Pn−1| · · ·P1) of monic polynomials of k[T] such

that
∑

deg(Pi) = n. We denote O(P) the set of matrices in Mn(k) similar to the companion matrix

C(P).

Thus, O(P) is the orbit of C(P) under the action of GLn(k) by conjugation. The theory of similarity

invariants tells us that O(P) consists of matrices with similarity invariants P and that Md(k) is the

disjoint union of O(P) as P covers all the n-types (6.7.0.2).

Our goal is to study the closure O(P) of the orbits O(P). We will therefore assume in the remainder

of this chapter that k is the field of complex numbers C, with matrix spaces equipped with some norm

(let’s recall that all matrix norms are equivalent).

We then define a (topological) relation on complex n-types by

P ⪯ Q if and only if O(P) is contained in the closure O(Q).

It is clearly a order. Since O(Q) is invariant by conjugation, it is a union of orbits and we have O(Q) =

∪P⪯QO(P). We will characterize this order in a combinatorial manner as follows.

We define a (combinatorial2 relation on complex n-types by

P ≤ Q if and only if and only if we have the divisibility
∏
j≤i Pj |

∏
j≤iQj for every i = 1, · · · , n.

It is also a (partial) order. Note that necessarily then
∏n
i=1 Pi =

∏n
i=1 Qi for degree reasons.

Theorem 10.2.0.2. Let P,Q be two complex n-types. Then, P ⪯ Q if and only P ≤ Q. In other words,

the topological and combinatorial orders on n-types coincide.

Remark(s) 10.2.0.3. This theorem is a reformulation, more transparent in my opinion, of Theorem

4 from [8]. Indeed, to my knowledge, it was Gerstenhaber who fully elaborated the structure of orbit

closures, although I have not been able to find this statement stricto sensu.

We will proceed by reduction to the nilpotent case using topological results from ??. Let’s start with the

crucial case.

10.3 Closure of a Nilpotent Orbit

Thus, we have again a topological order on the partitions of n defined by
2Compare with cf. 10.3.
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Nilpotent orbits are classified by partitions d of n (7.7.0.2), the dictionary

between type and partition being given by d 7→ Td = (Tdn , . . . ,T
d1). We then

denote O(d) the orbit O(Td) accordingly.

d ⪯ δ if and only if O(d) is contained within the closure O(δ)

and a combinatorial order

d ≤ δ if and only if for every i = 1, · · · , n we have the inequality
∑
j≤i dj ≤

∑
j≤i δj .

In the nilpotent case, the theorem 10.2.0.2 then becomes

Theorem 10.3.0.1 (Nilpotent Case). Let d, δ be two partitions of n. Then, d ⪯ δ if and only if d ≤ δ.

Thus, we aim to show that the topological order ⪯ and the combinatorial order ≤ on the partitions

coincide.

Remark(s) 10.3.0.2. A partition is always defined by indicating the number of times an integer is

repeated, often in ascending order. For n = 6, for example, the partition (3, 1, 1, 1, 0, 0) is then denoted

(13, 3) while the partition (6, 0, 0, 0, 0, 0) is noted as (6). The diagram describing the order is then called

a Hasse diagram. We will not use these notations except in the picture at the beginning of this chapter.

10.3.1 Order and Duality on Partitions

We use notations and results on nilpotent matrices from ??. We

will demonstrate that the duality of partitions is decreasing for the

combinatorial order ≤. For this, and what follows, the key is the

classic lemma of disassembling whose proof I reproduce from [14].

We say that d ≤
e
δ (d elementarily inferior to δ) if there are indices i < j such that

(δ1, . . . , δn) = (d1, . . . , di−1, di + 1, . . . , dj − 1, . . . , dn).

Obviously

d ≤e δ ⇒ d ≤ δ
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Lemma 10.3.1.1. Let d, δ be two partitions of n. Then, d ≤ δ if and only if there exists a series of

elementary inequalities d = ν0 ≤
e
ν1 ≤

e
. . . ≤

e
νN−1 ≤

e
νN = δ.

Proof. It suffices to prove the existence of a partition ν such that d ≤
e
ν ≤ δ when d ̸= δ and to iterate

the process (which stops when νN = δ.) We thus seek i < j such that ν ≤ δ with

ν = (d1, . . . , di−1, di + 1, . . . , dj − 1, . . . , dn).

If ν = δ, we are done. Otherwise, ν < δ.

There exists therefore k such that

(1) d1 + · · ·+ dk < δ1 + · · ·+ δk

Let i be the smallest integer k satisfying (1)

Furthermore, as
∑
dk =

∑
δk, there must exist k > i such that

(2). d1 + · · ·+ dk ≥ δ1 + · · ·+ δk

Let j be the smallest integer k > i satisfying (2).

We have

(3) d1 + · · ·+ dk + 1 ≤ δ1 + · · ·+ δk for all k ∈ [i, j − 1]

and

(4) d1 + · · ·+ dj = δ1 + · · ·+ δj

With these values of i and j, we demonstrate that ν is a partition, i.e. di−1 > di (or i = 1) on one hand

and dj > dj+1 on the other.

By construction, i is the smallest integer such that di < δi and thus di < δi ≤ δi−1 = di−1 (or i = 1).

Furthermore, since d1 + · · · + dj−1 < δ1 + · · · + δj−1 and d1 + · · · + dj = δ1 + · · · + δj dj > δj ; since

furthermore and d1 + · · · + dj+1 ≤ δ1 + · · · + δj+1 we also have dj+1 ≤ δj+1. Combining both, we get

dj+1 ≤ δj+1 ≤ δj < dj , which is what we wanted.

We then observe that the inequality ν ≤ δ is equivalent to (3).

Corollary 10.3.1.2. The duality of partitions is strictly decreasing.

Proof. It suffices to show the decrease in the elementary case d ≤ δ. For this, we observe that δ∗ satisfies

δ∗k =


dk if k ̸= di, dj

dk − 1 if k = di

dk + 1 if k = dj

so that δ∗ ≤ d∗. To see this, we note that di > dj and consider the following table
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k d∗ δ∗ comparison Card(δ∗)− Card(d∗)

[1,i-1] dk ≥ α dk ≥ α same 0

i dk ≥ α dk ≥ α+ 1 same except if α = di -1

[i-1,j-1] dk ≥ α dk ≥ α same 0

j dk ≥ α dk ≥ α− 1 same except if α = dj +1

[j+1,n] dk ≥ α dk ≥ α same 0

using the formula for calculating the dual partition d∗α = Card{k|dk ≥ α} (??). The proof also provides

strict decrease (even though the strict character follows from the fact that duality is involutive)

10.3.2 Rank and Nilpotent Orbits

Let M be a nilpotent matrix with associated partition d. According to the formula (??) from ??, we have

for all n− rk(Mi) =
∑
j≤i d

∗
j . However, the rank is lower semi-continuous: there exists a neighborhood U

of M where all matrices N ∈ U satisfies rk(N) ≥ rk(M). If M is in the closure of O(δ), this neighborhood

intersects O(δ): thus, let N ∈ U ∩ O(δ). Then n − rk(Ni) ≤ n − rk(Mi) for all i, meaning δ∗ ≤ d∗ and

therefore δ ≤ d.

Corollary 10.3.2.1. Let d, δ be partitions of n. Then,

d ⪯ δ ⇒ d ≤ δ.

Let us demonstrate the reciprocal implication.

10.3.3 A Nilpotent Matrix Deformation
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Following Lemma 10.3.1.1, we simply need to demonstrate the implication in the elementary case. Thus,

let d ≤
e
δ and let us show that d ⪯ δ. It therefore exists indices i < j such that

(δ1, . . . , δn) = (d1, . . . , di−1, di + 1, . . . , dj − 1, . . . , dn).

We consider Jd which we want to show is in the closure of O(δ), therefore, we want to demonstrate that

Jd is a limit of matrices from O(δ).

As d and δ only differ at indices i and j, we can assume without loss of generality that we have only

two indices. We must therefore show that J(di,dj) is in the closure of O((di − 1, dj + 1)). Let us set for

example N(x) = J(di,dj)+xEdi+dj ,di . This is a triangular block matrix of size di+dj and rank di+dj−2

with di > dj . Its type is characterized by its nilpotency index which is di − 1 (7.9.0.1) for non-zero x so

that N(x) is of type di− 1, dj +1. Thus, N(0) = limx→0 N(x) ∈ O(δ) and d ⪯ δ. Hence, recalling 10.3.2.1

d ⪯ δ ⇐⇒ d ≤ δ

We have therefore proved the theorem 10.3.0.1 in the nilpotent case.

Remark(s) 10.3.3.1. It is for this argument sequence (and the one in the following paragraph) that the

knowledgeable reader wanting to generalize to the Zariski topology of general fields will use the assumption

that the field is infinite.

Let us move to the general case.

10.4 Closure of an Arbitrary Orbit

All work has been done to reduce the general case to the nilpotent case. Let’s

explain. We consider two n-types P,Q and study the inclusion O(P) ⊂ O(Q).

In other words, we consider a sequence of matrices Am in O(Q) converging

towards A∞ ∈ O(P). We then freely use the notations and results from ??.

By the continuity of the characteristic polynomial, it already ensures that χAm ,m ∈ N is a constant

polynomial χ whose set of complex roots we denote by Λ. It follows that the characteristic spaces of Am

have a constant dimension dλ: the multiplicity order of the root λ of χ.

Then (??), we have

limAm = A∞ if and only if for all λ ∈ Λ, limAm,λ = A∞,λ

But, for each λ, the matrix Am,λ − λ Id ∈ Mn,C is nilpotent and its n-type is (??) is

δλ = 1, · · · , 1, (X− λ)vλ(Q), i = dλ, · · · , 1 if n <∞
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and

dλ = 1, · · · , 1, (X− λ)vλ(P), i = d, · · · , 1 otherwise

where the 1s are repeated dλ−vλ(χ) times in all cases. But according to the characterization of nilpotent

orbits - necessary condition - (10.3.0.1), the existence of this sequence of matrices leads to

(i) For all λ ∈ Λ, dλ ≤ δλ

Conversely, assuming this condition is satisfied. We denote pλ the spectral projectors of A∞ of type P.

Following the sufficient part of the characterization of nilpotent orbits (10.3.0.1), for every λ there exist

nilpotent matrices Nm,λ that converge to N∞,λ = A∞,λ − λpλ. By setting Am =
∑
λ(Nm,λ + λpλ), we

have limAm = A∞. Thus,

P ⪯ Q ⇐⇒ for all λ ∈ Λ, dλ ≤ δλ.

Moreover, for two polynomials P,Q whose roots are in Λ, we have

P|Q ⇐⇒ for all vλ(P) ≤ vλ(Q)

The condition (i) can therefore be rewritten as

for all i = 1, · · · , n, we have
∏

j≤i
Pj |

∏
j≤i

Qj

This concludes the proof of theorem 10.2.0.2.

10.5 Additional Exercises

Exercise(s) 10.5.0.1. Let Q be an n-type and χ =
∏

Qi the corresponding characteristic polynomial.

1. Show that O(χ
red

) (cf. 8.6.4.1) is the only closed orbit contained in O(Q). Deduce that closed orbits

are semi-simple orbits and that χred) = (χn, . . . , χ1) is a minimal type for ⪯.

2. Show that the closure of O(χ
red

)) is the set of matrices A such that χ1(A) = 0 and χA = χ.

3. Generally, show that minimal n-types are of the form χ
red

for χ monic of degree n. Can you prove

this result directly?

4. Conversely, show that maximal n-types are of the form (1, . . . , 1, χ). Deduce that maximal orbits are

those of companion matrices C(χ).
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5. Show that the closure of O(C(χ)) is the set of matrices A whose χA = χ.

Exercise(s) 10.5.0.2. Let k be a subfield of C. Here we consider only n-types k-rational d, i.e. verifying

Pi ∈ k[T], i = 1, . . . , n. We denote Ok(d) the conjugacy class of C(d) under GLn(k). Show in this case

Ok(P) = OC(P) ∩Mn(k). Using ?? and the main theorem 10.2.0.2, show Ok(Q) = ∪P≤QOk(P).



Chapter 11

Index et bibliography

143



Index

adapted basis, 83

Algebraic Identities Permanence Principle, 29

basis,

ante-dual, 129

dual, 128

bicommutant, 89

Bézout equivalence, 78

Bézout matrix, 12

Cayley-Hamilton Theorem, 30, 31

cokernel, 43

commutant, 89

commutative diagram, 48

commutator, 34

Companion matrices, 87

complex of modules, 46

content, 102

decomposition,

Frobenius, 88

derived subgroup, 34

determinant trick, 64

diagram, 48

diagram,

Hasse diagram, 137

dilatation, 12

duality bracket, 127

duality,

contravariance, 133

convention of biduality, 131

differential, 128

Jacobian, 128

orthogonal, 128

polar, 128

transpose, 132

endomorphism,

cyclic, 88

absolutely semisimple, 120

semisimple, 119

equivalent matrices, 32

exact sequence, 46

factorial, 99, 103

functor, 52

functoriality,

of the cokernel, 48

of the kernel, 50

Gauss equivalent, 32

Gauss,

elimination, 32

GCD, 101

Greatest Commun Divisor GCD, 78

idempotent, 68

inductive set, 12

inequality, Cauchy-Schwarz,

real, 20

integer

algebraic, 104

integers,

rings of, 64

integral domain, 57

integral element, 64

irreducibility of Φn over Q, 105
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irreducibles,

existence, 100

of R[T], 102

uniqueness of the decomposition into, 99

Jordan-Chevalley decomposition, 120

LCM, 101

lemma

of Zorn, 13

lemma,

five, 51

Gauss lemma for PID, 78

Hensel, 120

Krull, 13

Nakayama, 64

of Euclid, 98

PID splitting, 106

minor of a matrix, 81

module, 40

module,

Va, 45

torsion, 57

associated with an endomorphism, 45

cyclic, 63

free, 55

noetherian, 74

quotient, 43

semi-simple, 115

morphism,

Frobenius, 118

Noetherian,

Hilbert’s basis theorem, 76

ring, 75

noetherian,

module, 74

order,

≤ on partitions, 136

≤ on types, 136

⪯ on partitions, 137

⪯ on types, 136

orientation, 22

orientation,

direct basis, 22

positively oriented basis, 22

partition,

of an integer, 109

perfect group, 34

permutation matrix, 12

polycyclic module,

invariant ideals, 67

rank, 67

polycyclic modules, 67

polynomial

cyclotomic, 103

primary decomposition, 105

primitive, 102

quotient, 43

reduction,

Jordan, 108

Frobenius, 88

ring,

Euclidean, 77

Noetherian, 75

Noetherian UFD, 100

UFD or factorial, 99, 103

semi-simple,

module, 115

semisimple,

endomorphism, 119

similar matrices, 45

similarity invariants, 86
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similiarity invariants, 84

Snake lemma, 58

space,

stable, 45

theorem,

structure of finite type modules over PID, 83

torsion, 56

transvection, 12, 33

type, 136

UFD, 99, 103

universal property,

of the cokernel, 53

of the kernel, 53

of the product of modules, 52

of the sum of modules, 52
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