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Abstract

We give a treatment of Kingman model for the balance between selection and mutation

[4] showcasing new proofs based on the recent developments around the model, in particular

by Yuan [7]; the main interest of these proofs, apart from being conceptually simpler, is to

be more robust to changes in the model, as we exemplify in a companion paper [1].

The interplay between selection and mutation is a major issue ([2], chapter 6.2) in population

genetics: mutations have the potential to increase genetic diversity, while selection tends to

concentrate the distribution of the genotypes around the fittest ones. Kingman model [4] is a

toy model designed to study the balance between the two effects, and a landmark property of

this model is the condensation effect, when a positive fraction of the population concentrates at

the highest possible fitness. The appeal of Kingman model is its great tractability that allows

one to precisely describe the analytical conditions under which this phenomenon to occur.

Precisely, we are given a probability measure q(dx) on the unit interval [0, 1], the mutation

measure, and a real number β ∈ (0, 1) quantifying the strength of the mutation with respect

to selection. For p0(dx) another probability measure on the unit interval (assuming that q(dx)

and p0(dx) are both distinct from δ0), we define inductively a sequence of probability measures

(pn(dx))n⩾0 on the unit interval by :

pn+1(dx) = βq(dx) + (1− β)
xpn(dx)

wn
and wn =

∫ 1

0
xpn(dx) (1)

Informally, pn(dx) should be thought of as the infinitesimal fraction of the population at time

n ⩾ 0 with fitness x ∈ [0, 1]. Selection biases the fitness distribution towards its highest values,

whereas mutation drives back the fitness distribution towards a fixed, unaltered distribution

q(dx). The first summand describes the effect of mutation (a simple resampling), while the

second describes that of selection (that acts through size biasing), and the relative strength of

these effects is quantified by β. The point of this model is that condensation may arise, namely
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the creation of an atom at the top fitness while nor p0(dx) neither q(dx) display such an atom,

and that the criterion to decide for condensation is explicit.

These lecture notes are based on the seminal article by Kingman [4], and a series of papers by

Yuan [5, 6, 7] on a more general version of the model focusing on the effect of a random parameter

β). The impetus of that work has been the realisation that the arguments developed by Yuan

[7] allow for a clean and conceptually straightforward derivation of Kingman’s theorem, without

the need of complex analysis and of the notion of completely monotone sequence, which were

the key technical (and almost magical) tools in the original proof by Kingman. The elements

showcased in this work are buried deep down in the work [7] and the aim of this work is to

promote this set of ideas by exemplifying their robustness in a companion paper [1].

Also and this is perhaps the main novelty in this article, we try to dissociate the question

of the convergence of the sequence (pn(dx)) conditionally on the convergence of the sequence

of the fitnesses (wn) from that of the convergence of the sequence (wn), the two questions

being tackled by quite distinct methods and treatments. The convergence of the sequence

(wn) is done using some simple but clever monotonicity property hidden in the model and

uncovered by Yuan [6], while the conditional convergence of (pn(dx)) in total variation then

follows by standard quantitative bounds. By comparison, the convergence of (wn)n in the

paper by Kingman was obtained separately in the two cases in Kingman : as the consequence

of explicit computations on generating functions in the case without condensation, and using

subtle properties of completely monotone sequences recently discovered again and independently

in [3]) in the case with condensation.

1 The invariant measures

Technically, we think there is an interest to offer a quick derivation of the invariant measures,

since they capture a lot of the complexity of the model. Also, this gives a very gentle starter for

our exposition. We shall say that a probability measure π(dx) is invariant if it is a fixed point

of equation (1), namely:

π(dx) = βq(dx) + (1− β)
xπ(dx)

w
and w =

∫ 1

0
xπ(dx) (2)

Notice that, with respect to (1), the only parameters of an invariant measure are β and q(dx).

We set ηq ∈ [0, 1] the max of the support of the measure q(dx), that is ηq = sup{x ∈ [0, 1] :

q([x, 1]) ̸= 0}.

Theorem 1. Set

x0 = inf

{
x′ ∈ [ηq,∞) :

∫ ηq

0

βq(dx)

1− x
x′

⩽ 1

}
. (3)

There is the following alternative:
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(i) If x0 ⩽ 1, the set of invariant probability measures is(
βq(dx)

1− x
x1

+ π1δx1

)
x1∈[x0,1]

,

with π1 = 1−
∫ ηq
0

βq(dx)
1− x

x1

.

(ii) If x0 > 1, the measure βq(dx)
1− x

x0

is the unique invariant probability measure.

Remark. 1. For definiteness, in case q(dx) has an atom at ηq we take the convention that∫ ηq
0

βq(dx)
1− x

ηq

= ∞. Then the map

x′ 7→
∫ ηq

0

βq(dx)

1− x
x′

is continuous decreasing on [ηq,∞), hence the set of which we take the infimum in the

RHS of (3) is a non-empty closed interval of the form [x0,∞);

2. In case x0 ⩾ 1, there is a unique invariant probability measure; this is in particular the

case when ηq = 1.

3. It is natural to distinguish the following cases.

(a) In case
∫ ηq
0

βq(dx)
1− x

ηq

> 1, we have x0 > ηq; this is the case in particular when q(dx) has

an atom at ηq.

(b) In case
∫ ηq
0

βq(dx)
1− x

ηq

= 1, we have x0 = ηq and the invariant measure associated with

x1 = x0 has no atom at x0.

(c) In case
∫ ηq
0

βq(dx)
1− x

ηq

< 1, we have x0 = ηq again but the invariant measure associated

with x1 = x0 has an atom at x0.

4. π1 is the atom at x1 of the invariant measure indexed by x1 in case (i) : indeed the only

case that would prevent this from being true is when x1 = ηq and q(dx) has an atom at

ηq, but in such a case,
∫ ηq
0

βq(dx)
1− x

ηq

= ∞ hence x1 ⩾ x0 > ηq, a contradiction.

5. We have
∫ ηq
0

βq(dx)
1− x

x0

= 1 iff
∫ ηq
0

βq(dx)
1− x

ηq

⩾ 1, and in this case the invariant probability measure

associated with x1 = x0 in case (i) has no atom at x0.

6. In case ηq < x0 < 1, the max of the support of the measure associated with x1 is ηq if

x1 = x0 (because π1 = 0) and x1 if x1 > x0 (because then π1 ̸= 0); as a consequence, the

max of the support describes the set

{ηq} ∪ (x0, 1]

as x1 describes [x0, x1], which displays a ”hole”.
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Lemma 1. Let π(dx) be an invariant measure. Then the mean w = intxπ(dx) of π(dx) satisfies:

w ⩾ (1− β)ηq.

Proof 1. Assume by contradiction that (1−β)ηq > w then choose ε > 0 small enough such that

(1−β)(ηq−ε) > w. Then we observe that if π(dx) solves (2), then the support of π(dx) contains

that of q(dx). This implies the strict inequality:∫ ηq

ηq−ε

1− β

w
xπ(dx) >

∫ ηq

ηq−ε
π(dx)

Then we integrate equation (2), π(dx) = βq(dx) + 1−β
w xπ(dx), on [ηq − ε, ηq] and find that

0 >
∫ ηq
ηq−ε βq(dx), which is absurd.

Proof 2. By induction, one can expand π(dx) a solution of (2) for any integer n ⩾ 0 as follows:

π(dx) =
n∑

k=0

(
1− β

w

)k

xkβq(dx) +

(
1− β

w

)n+1

xn+1π(dx) (4)

Assume now by contradiction that w < (1 − β)ηq and choose ε > 0 small enough such that

w < (1−β)(ηq−ε). Then one may lower bound the n-th term in the sum on the RHS as follows:∫ ηq

ηq−ε

(
1− β

w

)n

xnβq(dx) ⩾

(
(1− β)(ηq − ε)

w

)n

β q([ηq − ε, ηq]) → ∞, as n → ∞

which is absurd since π(dx) is a probability measure and all term in the decomposition (4) are

non-negative measures.

Proof of Theorem 1. First, on [0, ηq), using that w ⩾ (1− β)ηq, we can divide and write :

π|[0,ηq)(dx) =
βq(dx)

1− 1−β
w x

If furthermore w > (1− β)ηq, then we have the reinforcement π|[0,ηq ](dx) =
βq(dx)

1− 1−β
w

x
· Second, on

(ηq, 1], the equation for the invariant measure π(dx) simplifies to:

π|(ηq ,1](dx) =

(
1− β

w

)
xπ|(ηq ,1](dx),

and a moment of thought gives that this equation has λδw/(1−β), 0 ⩽ λ ⩽ 1, as a unique solution

on the set of sub-probability measures. Altogether,

1. if (1− β)ηq < w, setting x1 =
w

1−β , the invariant measure has to take the form:

βq(dx)

1− x
x1

+ π0δx1

which is indeed an invariant measure for every x1 ∈ (ηq, 1] such that
∫ βq(dx)

1−x/x1
⩽ 1, setting

then π0 = 1−
∫ βq(dx)

1−x/x1
: this the case x0 > ηq.
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2. if (1− β)ηq = w, the only possibility is

βq(dx)

1− x
ηq

+ π0δηq ,

which is indeed an invariant measure iff
∫ βq(dx)

1−x/ηq
⩽ 1, setting then π0 = 1−

∫ βq(dx)
1−x/ηq

: this

is the case x0 = ηq .

2 Convergence of the sequence (pn)

2.1 Kingman’s theorem

We now turn to our main topic, namely the convergence of the fitness distributions in Kingman

model. It will be assumed throughout that η0 = sup{x ∈ [0, 1] : p0([x, 1]) ̸= 0} the max of

the support of p0(dx) satisfies the property : η0 ⩾ ηq. This is no loss of generality since one

may start the recursion with p1(dx) instead of p0(dx), without changing the convergence issues.

Recall the mean fitness wn is defined by wn =
∫
xpn(dx).

Theorem 2 (Kingman, 1987). Set

y0 = inf

{
x′ ∈ [η0,∞) :

∫ ηq

0

βq(dx)

1− x
x′

⩽ 1

}
, (5)

The sequence of probability measures (pn(dx))n defined in (1) converges in total variation on

[0, ξ] for each ξ < η0, and weakly on [0, η0], to :

π(dx) :=
βq(dx)

1− x
y0

+ π0δη0 , (6)

where π0 := 1−
∫ ηq
0

βq(dx)
1− x

y0

· The convergence also holds in total variation on [0, η0] in case π0 = 0.

Furthermore, the sequence of mean fitnesses (wn)n⩾0 converges to (1− β)y0.

Remark. 1. Observe that π0 ̸= 0 iff
∫ ηq
0

βq(dx)
1− x

η0

< 1, and in such a case, y0 = η0. Also, y0 = η0

iff
∫ ηq
0

βq(dx)
1− x

η0

⩽ 1.

2. In case π0 ̸= 0 but p0({η0}) = q({η0}) = 0, and in this case only, see Proposition 4, the

limiting distribution is not absolutely continuous with respect to q(dx) (in particular, the

convergence does not hold in total variation); this phenomenon where an atom builds up

at the max of the support of p0(dx) is sometimes coined ”condensation”.

3. Of course, π0 coincides with π({η0}) when ηq < η0. However, there exists cases where

π0 does not coincide with π({η0}): for instance, if ηq = η0 and q has an atom at ηq,

then
∫ ηq
0

βq(dx)
1− x

η0

= ∞ and π0 = 0 by the previous remark, whereas, from (6), π({η0}) ⩾

βηq/(1− ηq/y0) > 0.
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4. (Domain of attraction) Let p0(dx) be a given probability measure, with limit probability

measure π(dx); what is the set of probability measures p′0(dx) (with max of the support

η′0 such that the limit π′(dx) concides with π(dx) ? The simple answer depends as follows

on π0:

(a) if π0 = 0, then the set is {p′0(dx) : η′0 ⩽ y0 ∧ 1}.

(b) if π0 ̸= 0, then the set is {p′0(dx) : η′0 = η0}.

Of course, Theorem 1 follows from Theorem 2: it is easy, using the continuity of the operator

p0(dx) 7→ p1(dx), to check that any limit probability measure is invariant, and that the set of

limiting measures coincides with the set of invariant probability measures as given by Theorem

1. We nonetheless chose to present Theorem 1 first because it allows to grasp the intuition of

the model quickly, and because it admits a simple and autonomous proof.

2.2 Outline of the proof of Theorem 2

The general line of the proof is that, conditionally given the convergence of the sequence of mean

fitnesses (wn)n, the convergence of the sequence (pn(dx)) of fitness distribution is easy. This

section details the general startegy of the proofs, that are presented hereafter in Section 2.4. We

start as Kingman did by expanding pn(dx).

Lemma 2 (Expanded form of pn). We have for every integer n ⩾ 1:

pn(dx) =
∑

0⩽k⩽n−1

(1− β)k

wn−1 . . . wn−k
xkβq(dx) +

(1− β)n

wn−1 . . . w0
xnp0(dx). (7)

We take the convention that the product over an empty set is 1, so that the term associated

with k = 0 in the sum on the RHS is βq(dx). The proof, by induction, is left to the reader. We

deduce the following a-priori bound. Recall our standing assumption that η0 ⩾ ηq.

Corollary 1. Assume wn → w. Then w ⩾ (1− β)η0.

Proof. The proof follows from inspection of the second term of the sum in the RHS of (7),

proceeding as in proof 2 of Lemma 1.

The next step is to prove, starting from (7), the following key Proposition.

Proposition 1. Assume wn → w.

• In the general case where w ⩾ (1 − β)η0, the sequence (pn(dx))n⩾0 converges towards the

sub-probability measure βq(dx)

1− 1−β
w

x
in total variation on [0, ξ] for every ξ < η0, hence also

weakly on [0, 1], towards the probability measure

βq(dx)

1− 1−β
w x

+

(
1−

∫ ηq

0

βq(dx)

1− 1−β
w x

)
δη0 . (8)
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• If furthermore w > (1− β)η0, the sequence (pn(dx))n⩾0 converges towards :

βq(dx)

1− 1−β
w x

(9)

in total variation on [0, η0] this time, in particular,
∫ ηq
0

βq(dx)

1− 1−β
w

x
= 1.

The proof of Proposition 1 (given in the next section) is technical but quite standard; intu-

itively it justifies one can pass to the limit ”under the sum” in (7). In a nutshell, the key idea

to get bounds in total variation is to put some space between (1 − β)x/w and 1 for every x in

the support of p0(dx) (which includes the support of q(dx) under our assumption). In general

however, we only have (1 − β)η0/w ⩽ 1, and in the equality case, we will need to localize to

[0, ξ], where (1− β)ξ/w < 1, which explains that Proposition 1 takes a different form in the two

regimes. Theorem 2 then readily follows, had we proved the sequence (wn) converge, as we now

show.

Proof of Theorem 2 conditionally on the convergence of the sequence (wn). Assume that wn →
w. Based on Proposition 1, we only have to identify the limiting probability measures (8) or (9)

with the ones given in the statement of Theorem 2. We shall distinguish two cases:

• If 1−β
w = 1

η0
, the measure βq(dx)

1− 1−β
w

x
is only a sub-probability measure in general, that is:

∫ ηq

0

βq(dx)

1− x
η0

⩽ 1,

which implies that y0 defined by (5) satisfies y0 = η0 hence 1
y0

= 1−β
w as expected.

• If 1−β
w < 1

η0
, the measure βq(dx)

1− 1−β
w

x
is a probability measure, which implies by (strict)

monotonicity ∫ ηq

0

βq(dx)

1− x
η0

> 1

hence 1−β
w = 1

y0
again holds.

Also, in both cases, we have that the limit w of (wn)n⩾0 satisfies 1−β
w = 1

y0
. Last, from Lemma

8, in case w = (1− β)η0 and
∫ ηq
0

βq(dx)

1− 1−β
w

x
= 1, the convergence stated in Proposition 1 also holds

in total variation on [0, η0].

We now turn to the meat of the proof, namely the convergence of the sequence of mean

fitnesses (wn)n⩾0, building on Yuan [7]. We start with the easy cases, then show how to build

on them to catch the remaining and more difficult cases.

Lemma 3. It holds

• (p
(δη)
n (A))n⩾0 is non-decreasing for every A ∈ [0, η), and (p

(δη)
n ({η}))n⩾0 is non-increasing.
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• In particular, (w
(δη)
n )n⩾0 is a non-increasing sequence.

• In particular, (p
(δη)
n )n⩾0 converges in total variation, and if π(δη) denotes its limit, it holds:

∥p(δη)n − π(δη)∥TV,[0,η] = p
(δη)
n ({η})− π(δη)({η}) → 0.

Relying on this special case, we now come back to the general case of an arbitrary initial

measure p0(dx), whose support has maximal element η0. The following is the key to the novel

approach pioneered by Yuan. Let us set

W
(δη0 )
n =

n−1∏
k=0

w
(δη0 )

k .

Lemma 4. Let p0(dx) be a probability measure and η0 be the max of its support. Assume that

limn((1− β)η0)
n/W

(δη0 )
n = 0.

• It holds

∥pn − p
(δη0 )
n ∥TV,[0,η0] ⩽

((1− β)η0)
n

W
(δη0 )
n

• The sequence of probability measures (pn)n⩾0 converges in total variation towards π(δη).

In the remaining cases, we have no direct access to convergence in total variation, but we

can still compare the fitnesses. We denote by w(δη0 ) the limit of the non-increasing sequence

(w
(δη0 )
n )n⩾0.

Proposition 2. Let p0(dx) be a probability measure and η0 be the max of its support. The sequence

(wn)n⩾0 converges towards w(δη0 ).

In case p0 = δη0 , the proposition is proved in Lemma 3. If p0 ̸= δη0 , the idea is to compare

pn with p
(δη0 )
n . Since the sequence w

(δη0 )
n is non-increasing with limit ⩾ (1− β)η0, by point 2 of

Lemma 3 and Corollary 1, we get that w
(δη0 )
n ⩾ (1− β)η0 holds for each n, hence the sequence

((1−β)η0)
n/W

(δη0 )
n is non-increasing and has a limit; we shall then distinguish according to the

following cases1:

A− limn((1− β)η0)
n/W

(δη0 )
n = 0.

B− limn((1− β)η0)
n/W

(δη0 )
n > 0 and p0({η0}) ̸= 0.

C− limn((1− β)η0)
n/W

(δη0 )
n > 0 and p0({η0}) = 0.

1for the existence of the limit :
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2.3 Proof of Proposition 2

We introduce two partial orders between probability measures, the second one (introduced by

Yuan in [6]) being taylor-made to fit Kingman’s recursion.

Definition 1. For two probability measures p(dx) and q(dx) on [0, 1], and η ∈ (0, 1],we write:

• p ≼ q if p([0, x]) ⩾ q([0, x]) for any x ∈ [0, 1] ( standard stochastic order)

• p ⩽η− q if p(A) ⩽ q(A) for any A ⊂ [0, η) Borel.

Let us collect in a Lemma a few facts :

Lemma 5. (i) p ⩽η− q iff for any non-negative h : [0, 1] → R+ such that h(x) = 0 for x ⩾ η,∫ 1
0 h(x)p(dx) ⩽

∫ 1
0 h(x)q(dx).

(ii) p ≼ q iff for any non-negative non-decreasing h : [0, 1] → R+,
∫ 1
0 h(x)p(dx) ⩽

∫ 1
0 h(x)q(dx).

(iii) p ⩽1− q implies q ≼ p.

(iv) p ≼ q implies
∫ 1
0 xp(dx) ⩽

∫ 1
0 xq(dx),

(v) p ⩽ηq− q implies
∫ 1
0 xp(dx) ⩾

∫ 1
0 xq(dx).

Notice the inequality is reversed in fact (v) with respect to fact (ii). Fact (v) perhaps

requires a justification: applying (i) with h(x) = (1 − x
ηq
)1x⩽ηq , we find

∫ ηq
0 (1 − x

ηq
)p(dx) ⩽∫ ηq

0 (1− x
ηq
)q(dx) hence∫ ηq

0
xq(dx) ⩽

∫ ηq

0
xp(dx) + ηq · p((ηq, 1]) ⩽

∫ 1

0
xp(dx),

using Markov inequality at the last inequality.

Lemma 6. Let p0 and p′0 be two probability measures, and let η′0 be the max of the support of p′0;

if p0 ⩽η′0− p′0, then the probability measures p1 and p′1 obtained from p0 and p′0 after one step of

Kingman recursion satisfy:

p1 ⩽η′0− p′1. (10)

Proof of Lemma 6. We apply fact (ii) with h(x) = x1A(x), and use the inequality on the mean,

fact (v), to get the inequality:

p1(A)− p′1(A) = (1− β)

(∫
A xp0(dx)∫ η
0 xp0(dx)

−
∫
A xp′0(dx)∫ η
0 xp′0(dx)

)
⩽ 0.

Lemma 6 has two direct corollaries. We denote by (p
(δη0 )
n (dx))n⩾0 the fitness distribution

sequence started at δη0 , and by w
(δη0 )
n =

∫
xp

(δη0 )
n (dx) its fitness.
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Corollary 2. Let p0(dx) be a probability measure on [0, 1] and η0 be the max of its support

(η0 ⩾ ηq). For each integer n ⩾ 0, it holds,

p
(δη0 )
n ⩽η0− pn, hence w

(δη0 )
n ⩾ wn.

Corollary 3. Let η0 ∈ (0, 1] be such that η0 ⩾ ηq. For each integer n ⩾ 0, it holds

p
(δη0 )
n ⩽η0− p

(δη0 )
n+1 , hence w

(δη0 )
n ⩾ w

(δη0 )
n+1 .

The proof of both corollaries is by induction and follows from Lemma 6, noting for the

initialisation that the assumption p0 ⩽η0− p1 is satisfied since p0(A) = δη0(A) = 0 for any

A ⊂ [0, η0), and noting for the induction that η0 is the max of the support of the measures pn

and p
(δη0 )
n+1 . The fact that (w

δη0
n )n is non-increasing then follows from fact (v).

Proof of Lemma 3. For the bound in total variation, observe that for any A ⊂ [0, η), p
(δη)
n (A) ⩽

p
(δη)
n+1(A) hence p

(δη)
n (A) ⩽ p(δη)(A), and a moment of thought then gives :

∥p(δη)n − π(δη)∥TV,[0,η] = sup
A⊂[0,η]

(
p
(δη)
n (A)− π(δη)(A)

)
= p

(δη)
n ({η})− π(δη)({η}).

Proof of Lemma 4. Let p0 have max of its support η0, we wish to compare pn started from p0

and p
(δη0 )
n We decompose as before :

pn(dx) = qn(dx) + p0,n(dx)

p
(δη0 )
n (dx) = q

(δη0 )
n (dx) + p

(δη0 )
0,n (dx)

Applying Corollary 2, we get wn ⩽ w
(δη0 )
n implies qn(A) ⩾ q

(δη0 )
n (A) for any A ∈ [0, η0] (we stress

the interval [0, η0] is closed here), hence :

pn(A) = qn(A) + p0,n(A) ⩾ q
(δη0 )
n (A) = p

(δη0 )
n (A)− ((1− β)η0)

n

W
(δη0 )
n

1A(η0)

which implies :∥∥∥pn − p
(δη0 )
n

∥∥∥
TV,[0,η0]

= sup
A⊂[0,η0]

(
pn(A)− p

(δη0 )
n (A)

)
⩽

((1− β)η0)
n

W
(δη0 )
n

→ 0

Recalling from Lemma 3 that
∥∥∥p(δη0 )n − π(δη0 )

∥∥∥
TV,[0,η0]

→ 0 we deduce that (pn(dx)n⩾0 converges

to π(δη0 )(dx) in total variation, which implies in particular, wn → w(0).

Proof of Proposition 2, case A. This is a consequence of Lemma 4 since convergence in total

variation of the sequence (pn(dx))n towards p(δη)(dx) implies convergence of the fitness sequence

(wn)n towards w(δη).

10



Proof of Proposition 2, case B. Observe that the atom of pn(dx) at η0 has mass :

pn({η0}) =
n−1∑
k=0

(1− β)k
Wn−k

Wn
ηk0βq({η0}) +

(1− β)n

Wn
ηn0 p0({η0}).

Let γ > 0 be arbitrary, and set Kn := Card
{
0 ⩽ k ⩽ n : wk ⩽ (1− γ)w

(δη0 )

k

}
. Applying Corol-

lary 2, we have w
(δη0 )

k ⩾ wk for k = 0, . . . , n− 1, which implies W
(δη0 )
n ⩾ Wn. Combining these

two elements, we get the lower bound :

1 ⩾ pn({η0}) ⩾
((1− β)η0)

n

Wn
p0({η0}) ⩾

1

(1− γ)Kn

((1− β)η0)
n

W
(δη0 )
n

p0({η0}),

hence

lim inf(1− γ)Kn ⩾ p0({η0}) lim
n

(1− β)η0)
n

W
(δη0 )
n

> 0

which ensures that the sequence (Kn)n = (Kn(γ))n remains bounded. This is valid for every

γ > 0, therefore the limit w(δη0 ) of (w
(δη0 )
n )n satisfies w(δη0 ) ⩽ lim inf wn. Since we already knew

lim supwn ⩽ lim supw
(δη0 )
n = w(δη0 ), we deduce that limwn exists and is equal to w(δη0 ).

Definition 2. Let p(dx) be a probability measure on [0, 1] and ρ ∈ [0, 1], let us call ”rabot” at ρ of

p(dx) the probability measure Rρ(p) given by :

Rρ(p)(dx) = p(dx)1x<ρ + p([ρ, 1])δρ.

Let us now single out another corollary of Lemma 6. Choose η′0 < η0 and define a sequence

p′n(dx) by using for initial distribution the rabot at ρ of p0(dx), and for mutation measure the

rabot at ρ of q(dx), precisely:

p′0(dx) = Rη′0
(p0)(dx)

p′n+1(dx) = βRη′0
(q)(dx) + (1− β)

xp′n(dx)

w′
n

Corollary 4. It holds that

pn ⩽η′0− p′n, for n ⩾ 0.

Proof. We prove the lemma by induction. It holds for n = 0, since p0 ⩽η′0− Rη′0
(p0) (indeed,

both measures coincide on [0, η′0)). Then assume that pn ⩽η′0− p′n, observe that p′n is supported

on [0, η′0], apply Lemma 6 to get pn+1 ⩽η′0− θ1(p
′
n), where θ1(p

′
n) is the probability measure

obtained by one step of Kingman’s recursion using p′n as starting measure. But θ1(p
′
n) coincides

with p′n+1 on [0, η′0) (in fact, we have Rη′0
(θ1(p

′
n)) = p′n+1), hence pn+1 ⩽η′0− p′n+1.

Proof of Proposition 2, case C. The assumption limn((1 − β)η0)
n/W

(δη0 )
n > 0 implies w(δη0 ) =

(1− β)η0. Using Corollaries 2 and 4 now, we have:

w′
n ⩽ wn ⩽ w

(δη0 )
n .

11



Since Rη′0
(p0) has an atom at η′0, the sequence (p′n) now falls in one of the two cases A and B

of Proposition 2 already discussed, hence the sequence (w′
n)n converges. Furthermore, its limit

w′ = w′(η′0) satisfies (1− β)η′0 ⩽ w′ by Lemma 1. Therefore:

(1− β)η′0 ⩽ lim inf wn ⩽ lim supwn ⩽ (1− β)η0,

and η′0 being arbitrary we conclude that limwn = (1− β)η0 = w(δη0 ), as expected.

2.4 Proof of Proposition 1

Proof of Proposition 1, first item, local convergence in total variation on [0, η0), and w ⩾ (1− β)η0.

Let ξ < η0. We want to compare:

pn(dx) =
n−1∑
k=0

(1− β)k

wn−1 . . . wn−k
xkβq(dx) +

(1− β)n

wn−1 . . . w0
xnp0(dx) =:

n−1∑
k=0

qn,k(dx) + p0,n(dx)

π(dx) :=
∑
k⩾0

(1− β

w

)k
xkβq(dx) =:

∑
k⩾0

q∞,k(dx)

in the sense we wish to establish the convergence in total variation of pn(dx) towards µ(dx) on

[0, ξ]. We point out that π(dx) is a sub-probability measure by Fatou lemma. First,

∥qn,k(dx)−q∞,k(dx)∥TV,[0,ξ] =

∣∣∣∣ (1− β)k

wn−1 . . . wn−k
−
(1− β

w

)k∣∣∣∣ ∫ ξ

0
xkβq(dx) =

∣∣∣∣ wk

wn−1 . . . wn−k
− 1

∣∣∣∣ q∞,k([0, ξ]),

hence, for any k0:

k0−1∑
k=0

∥qn,k(dx)− q∞,k(dx)∥TV,[0,ξ] ⩽
k0−1∑
k=0

q∞,k([0, ξ])

∣∣∣∣ wk

wn−1 . . . wn−k
− 1

∣∣∣∣
⩽ max

0⩽k<k0

∣∣∣∣ wk

wn−1 . . . wn−k
− 1

∣∣∣∣ (11)

since
∑∞

k=0 q∞,k([0, ξ]) ⩽ 1, and k0 being fixed, the last term goes to 0 as n → ∞, using our

assumption that wn → w.

Second,

∑
k⩾k0

q∞,k([0, ξ]) =

∫ ξ

0

∑
k⩾k0

(
1− β

w

)k

xkβq(dx)

⩽

(
(1− β)ξ

w

)k0∑
k⩾0

q∞,k([0, ξ])

⩽

(
(1− β)ξ

w

)k0

(12)

using that π(dx) is a subprobability measure at the last line; also we point out that (1−β)ξ
w is

such that (1−β)ξ
w < (1−β)η0

w ⩽ 1 by assumption.
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Third, choosing δ > 0 small enough such that (1−β)ξ
(1−δ)w < 1, and then n0 large enough such

that wn ⩾ (1− δ)w for n ⩾ n0, we find, for n such that n ⩾ k0 + n0:

n−1∑
k=k0

qn,k([0, ξ]) =

∫ ξ

0

n−1∑
k=k0

(1− β)k

wn−1 . . . wn−k
xkβq(dx)

⩽

(
(1− β)ξ

(1− δ)w

)k0 n−k0−1∑
k=0

qn−k0,k([0, ξ])

⩽

(
(1− β)ξ

(1− δ)w

)k0

(13)

Fourth, the term implying p0 is dealt with similarly, and we find, for n ⩾ k0 + n0:

p0,n([0, ξ]) =

∫ ξ

0

(1− β)n

wn−1 . . . w0
xnp0(dx)

⩽

(
(1− β)ξ

(1− δ)w

)k0 ∫ ξ

0

(1− β)n−k0

wn−k0−1 . . . w0
xn−k0p0(dx)

=

(
(1− β)ξ

(1− δ)w

)k0

p0,n−k0([0, ξ])

⩽

(
(1− β)ξ

(1− δ)w

)k0

(14)

The sum of the four terms in (11),(12), (13) and (14) now give an upper bound for ∥pn−π∥TV,[0,ξ].

We choose the parameters in this order : we choose k0 large enough such that the expression in

(13),(14) (hence (12)) is small and then n large enough, such that n ⩾ n0+k0 and (11) is small.

Proof of Proposition 1, first item, weak convergence on [0, η0], case w ⩾ (1− β)η0. This is abstract

non-sense : the set of probability measures on [0, η0] is compact for the topology of weak conver-

gence; now take any subsequence of (pn(dx))n⩾0; it admits a converging subsubsequence, which

should agree with the limit in total variation on [0, η0), that is with
βq(dx)
1− x

y0

, and be supported on

[0, η0]: the only possibility left is then given by (8) on [0, η0]. The set of accumulation points

of (pn(dx))n⩾0 therefore consists in the singleton given by (8): in other words, the sequence

(pn)n⩾0 has weak limit given by (8) on [0, η0].

Proof of Proposition 1, second item, convergence in total variation on [0, η0], and w > (1− β)η0.

The proof is similar, even easier, and consists in replacing ξ by the larger quantity η0 in those

bounds involving ξ; precisely, (11) is unaffected, then choosing δ such that (1−β)η0
(1−δ)w < 1 (and n0

13



as before), we get the following substitutes for (12) (13) (14):∥∥∥∥∥∥
∑
k⩾k0

q∞,k(dx)

∥∥∥∥∥∥
TV,[0,η0]

⩽

(
(1− β)η0

w

)k0

∥∥∥∥∥∥
n−1∑
k=k0

qn,k(dx)

∥∥∥∥∥∥
TV,[0,η0]

⩽

(
(1− β)η0
(1− δ)w

)k0

∥∥p0,n(dx)∥∥TV,[0,η0]
⩽

(
(1− β)η0
(1− δ)w

)k0

,

3 Miscellaneous

We first look at a monotonicity property satisfied by (p
(δ0)
n (dx))n⩾0; if the size-bias of δ0(dx) is

not formally defined, it is reasonable to define it to be δ0(dx) which leads to define p
(δ0)
1 = βq+

(1− β)p0, while the rest of the terms of the sequence (p
(δ0)
n (dx))n⩾0 are defined unambiguously.

With this definition, one can then state the:

Proposition 3. The sequence (p
(δ0)
n (dx))n⩾0 is non-decreasing for the stochastic order, in partic-

ular the sequence (w
(δ0)
n ) is non-decreasing.

This contrasts with the facts that (p
(δ1)
n (dx))n⩾0 is non-increasing for the stochastic order,

and the sequence (w
(δ1)
n ) is non-increasing. A key tool will be the following (standard) lemma

on preservation of stochastic order.

Lemma 7. Let r1 ≼ r2 ≼ . . . ≼ rk be an ordered sequence of probability measures on the set of

real numbers (for the stochastic order ≼), and α1, . . . , αk and α′
1, . . . , α

′
k be two finite sequences

of non-negative real numbers summing to 1, such that

j∑
i=1

αi ⩽
j∑

i=1

α′
i, for each 0 ⩽ j ⩽ k − 1. (15)

Then
∑k

i=1 αiri and
∑k

i=1 α
′
iri are two probability measures satisfying:

∑k
i=1 αiri ≽

∑k
i=1 α

′
iri.

Intuitively, the first ponderation by the sequence (αi)i gives more weight to the largest

elements among (ri)i, hence results in a stochastically larger probability measure.

Proof of Lemma 7. A moment of thought reveals that the result follows from the following claim:

”Let α1, . . . , αk and α′
1, . . . , α

′
k be two finite sequences of non-negative real numbers such

that
∑j

i=1 αi ⩽
∑j

i=1 α
′
i for each j ∈ {1, . . . , k}, and let β1 ⩾ . . . ⩾ βk ⩾ 0 be a finite sequence

of of non-negative real numbers. It then holds:

k∑
i=1

αiβi ⩽
k∑

i=1

α′
iβi.”
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The claim is proven by induction on k. Indeed to prove
∑k

i=1 αiβi ⩽
∑k

i=1 α
′
iβi, it is enough

to have
∑k−1

i=1 αi(βi − βk) ⩽
∑k−1

i=1 α′
i(βi − βk), but this is a consequence of the claim at ”step”

k − 1.

Proof of Proposition 3. We prove that (wn)
(δ0)
n is non-decreasing. First we observe that w0 =

0 ⩽ β
∫
q(dx) = w1, which initialises the induction. Next we assume that w0 ⩽ w1 ⩽ . . . ⩽ wn

and prove that this implies w0 ⩽ w1 ⩽ . . . ⩽ wn+1 (strong induction). For this we use the

expanded form (7) of pn (the last term of which vanishes because p0 = δ0) to define a set of

non-negative real numbers (α
(n)
k )0⩽k⩽n−1 as follows :

pn(dx) =
n−1∑
k=0

(1− β)k

wn−1 . . . wn−k
xkβq(dx) =:

n−1∑
k=0

α
(n)
k

xkq(dx)∫
xkq(dx)

On the one hand, w0 ⩽ w1 ⩽ . . . ⩽ wn now implies: α
(n+1)
k ⩽ α

(n)
k , k = 0, . . . , n − 1, which in

particular gives
∑j

k=0 α
(n+1)
k ⩽

∑j
k=0 α

(n)
k , j = 0, . . . , n− 1. On the other hand, we claim that,

for each k ⩾ 0,
xkq(dx)∫
xkq(dx)

≼
xk+1q(dx)∫
xk+1q(dx)

(16)

Indeed for any pair of functions f , g monotone, integrable, whose product fg is again in-

tegrable, with respect to a probability measure µ on the Borel sets of R, we have the fol-

lowing standard correlation inequality :
∫
fgdµ ⩾

∫
fdµ

∫
gdµ 2, apply that formula with

µ(dx) = xkq(dx)/
∫
xkq(dx) and f(x) = 1x⩾y and g(x) = x to get∫ 1

y
xk+1q(dx)

∫ 1

0
xkq(dx) ⩾

∫ 1

y
xkq(dx)

∫ 1

0
xk+1q(dx),

which gives (16).

We are now in position to apply Lemma 7 to get pn ≼ pn+1 which in turn implies the desired

inequality wn ⩽ wn+1.

Let us point out the following monotonicity property in the decomposition of p
(δη)
n ({η})

starting from δη:

p
(δη)
n ({η}) =

(
n−1∑
k=0

(1− β)k

w
(δη)
n−1 . . . w

(δη)
n−k

ηk

)
βq({η}) + (1− β)n

w
(δη)
n−1 . . . w

(δη)
0

ηn,

the LHS is non-increasing in n, while on the RHS, the first term is non-decreasing in n and

the second term is non-increasing in n : this is a consequence of the fact that (w
(δη)
n )n is non-

increasing with limit w(δη) ⩾ (1− β)η. One may then distinguish the two cases :

• q({η}) = 0 in which case p
(δη)
n ({η}) = (1−β)n

w
(δη)
n−1...w

(δη)
0

ηn is non-increasing in n (the limit may

be null or not).

2this is an application of Fubini considering
∫
R2(f(x)− f(y))(g(x)− g(y))µ(dx)µ(dy) ⩾ 0
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• q({η}) > 0, in which case (w
(δη)
n )n converges towards w(δη) > (1 − β)η, hence the second

term on the RHS vanishes, and p
(δη)
n ({η}) → βq({η})

1−(1−β)η/w(δη) > 0.

Let us recall the definition of π0, from Theorem 2, π0 = 1−
∫ η0
0

βq(dx)
1− x

y0

, and also recall that

π0 > 0 iff
βq(dx)

1− x
η0

< 1.

We have seen that (pn(dx))n⩾0 converges in total variation on [0, η0] if π0 is null, we now give

the converse statement :

Proposition 4. The sequence (pn(dx))n⩾0 converges in total variation on [0, η0] towards the prob-

ability measure π(dx) given in Theorem 2 iff

π0 = 0 or p0({η0}) ̸= 0

The main ingredient of the proof will be the following result focusing on initial distributions

p0(dx) such that p0({η0}) ̸= 0.

Proposition 5. Let p0(dx) be such that p0({η0}) ̸= 0 and π0 ̸= 0.

• It holds
((1− β)η0)

n

Wn
p0({η0}) → π0 := 1−

∫ η0

0

βq(dx)

1− x
y0

,

for y0 as defined in Theorem 2.

• There is convergence of (pn(dx))n⩾0 towards p(dx) in total variation on [0, η0].

Proof of Proposition 5, first item. We start again from the decomposition:

pn(dx) =

(
n−1∑
k=0

(1− β)k

w
(δη)
n−1 . . . w

(δη)
n−k

xk

)
βq(dx) +

(1− β)n

w
(δη)
n−1 . . . w

(δη)
0

xnp0(dx)

Using the characterization of weak convergence (ensured by Theorem 2) given in Portmanteau

theorem, we get for the weak limit p(dx) of pn(dx) the following lower bound at η0:

lim sup
n

((1− β)η0)
n

Wn
p0({η0}) ⩽ lim sup

n
pn({η0}) ⩽ π({η0})

and the following upper bound:

π({η0}) ⩽ π((η0 − ε, η0]) ⩽ lim inf pn((η0 − ε, η0])

Now we claim there is a finite constant C independent of ε and n, to be defined later, such that:

lim inf pn((η0 − ε, η0]) ⩽ C

∫ η0

η0−ε

βq(dx)

1− x
η0

+ lim inf
((1− β)η0)

n

Wn
p0({η0})
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If this holds true, since the quantity
∫ η0
η0−ε

1
1− x

y0

βq(dx) may be rendered as small as we wish,

choosing ε small enough, we deduce that the limit of the sequence ( ((1−β)η0)n

Wn
p0({η0})n⩾0 exists

and equals π({η0}) = π0 = 1−
∫ η0
0

β
1− x

y0

q(dx), which finishes the proof.

We now check our claim. For short, let us set vn = ((1−β)η0)n

Wn
, and similarly for v

(δη0 )
n . We

start from the following bound on vn, deduced from Corollary 2 :

v
(δη0 )
n ⩽ vn ⩽

1

p0({η0})
v
(δη0 )
n (17)

then we rewrite the canonical decomposition (7) in term of the sequence (vn):

pn(dx) =

(
n−1∑
k=0

vn−k

vn

(
x

η0

)k
)
βq(dx) + vn

(
x

η0

)n

p0(dx)

then bound
vn−k

vn
by C in virtue of (17) to deduce that

lim inf pn((η0 − ε, η0]) ⩽ C

∫
[η0−ε,η0]

βq(dx)

1− x
η0

+ lim inf

(
vn

∫
[η0−ε,η0]

(
x

η0

)n

p0(dx)

)
.

Now the sequence of functions ( x
η0
)n is dominated by 1, and converges pointwise to 1η0 hence

Lebesgue dominated convergence theorem applies to give that the limit of
∫
[η0−ε,η0]

( x
η0
)np0(dx)

exists and is p0({η0}), hence the last term on the RHS is the one given in our claim.

We now state and prove Lemma 8, that is the last building block necessary to conclude our

proofs.

Lemma 8. Let (µn)n⩾0, µ be probability measures on [0, η], such that :

• for each ξ < η, (µn) converges in total variation on [0, ξ] towards µ .

• µn({η}) → µ({η}).

Then (µn)n⩾0 converges in total variation on [0, η] towards µ.

Proof of Lemma 8. Let ε > 0. Since µ is a probability measure, there exists ξ = ξε < η such

that: µ([0, ξ) ∪ {η}) > 1 − ε. Also, we deduce from the assumptions that there exists n0 such

that for n ⩾ n0, µn([0, ξ) ∪ {η}) > 1− 2ε. Then,

sup
A⊂[0,η]

|µn(A)−µ(A)| ⩽ sup
A⊂[0,η]

|µn(A∩[0, ξ])−µ(A∩[0, ξ])|+|µn({η})−µ({η})|+µn((ξ, η))+µ((ξ, η))

By the first assumption, there exists n1 such that for n ⩾ n1, the first term on the RHS is ⩽ ε,

and n2 such that for n ⩾ n2, the second term on the RHS is ⩽ ε Taking n ⩾ n0 ∨ n1 ∨ n2, the

RHS is ⩽ 4ε, which gives our claim.

Proof of Proposition 5, second item. Combine the first item of Proposition 5, Theorem 2 and

Lemma 8.
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Proof of Proposition 4. The convergence under the assumption π0 = 0 is Theorem 2, and under

the assumption p0({η0}) ̸= 0 is Proposition 5. To get the converse, let us consider cases where

π0 ̸= 0 and p0({η0}) = 0. Then we claim that q({η0}) = 0. Otherwise indeed, we would need

ηq = η0, but q({ηq}) ̸= 0 implies
∫ ηq
0 βq(dx)/(1 − x/ηq) = ∞, hence y0 > η0, which entails

π0 = 0, a contradiction. Now, from p0({η0}) = q({η0}) = 0 and (7), we have that pn({η0}) = 0,

whereas π({η0}) = π0 ̸= 0 : hence there is no convergence in total variation on [0, η0].
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