

Abstract

We are interested in the asymptotic *distance to nearest neighbour* (or *gap*) statistic of Gaussian fractions $\frac{p}{a}$, with $p, q \in \mathbb{Z}[i]$ and $0 < |q| \leq N$, as $N \to \infty$. We use the homogeneous dynamical approach of J. Marklof [Mar13] in order to derive the existence of a probability measure describing this asymptotic gap statistic.

Introduction

The Gaussian fractions with height at most N > 0 are defined as the points of the square torus in

$$\mathcal{G}_N = \left\{ egin{smallmatrix} p & ext{mod} \mathbb{Z}[i] : p, q \in \mathbb{Z}[i], 0 < |q| \leq N
ight\} \subset \mathbb{C}/\mathbb{Z}[i].$$

Figure 1: The set \mathcal{G}_{20} with colours of points depending on their height. The cardinality of \mathcal{G}_N can be estimated by Mertens' formula, as $N \rightarrow \infty$,

card $\mathcal{G}_N \sim c N^4$ where $c = \frac{\pi}{2 \zeta_{\mathbb{Q}(i)}(2)}$.

Let dx be the Haar probability measure on the square torus $\mathbb{C}/\mathbb{Z}[i]$ and let Δ_r denote the Dirac mass at any point r. Then the Gaussian fractions equidistribute.

Theorem (S. Cosentino, 1999). We have the vague convergence, as $N \to \infty$,

$$\frac{1}{\operatorname{card} \mathcal{G}_N} \sum_{r \in \mathcal{G}_N} \Delta_r \stackrel{*}{\rightharpoonup} dx.$$

This means that, as $N \to \infty$, the set \mathcal{G}_N becomes denser and denser in a uniform way in $\mathbb{C}/\mathbb{Z}[i]$.

Nevertheless, the Gaussian fractions do not look as uniformly distributed in the square torus as the evenly spaced Riemann fractions $\mathcal{R}_N = \{ \frac{p}{N} \mod \mathbb{Z}[i] : p \in \mathbb{Z}[i] \}$. An explanation lays in the asymptotic study of gaps in the sequence $(\mathcal{G}_N)_{N \in \mathbb{N}^*}$.

Let us define the probability measures

$$\mu_N = \frac{1}{\operatorname{card} \mathcal{G}_N} \sum_{r \in \mathcal{G}_N} \Delta_{N^2 d(r, \mathcal{G}_N \smallsetminus \{r\})}$$

That is, μ_N is the uniform probability measure on the multiset of scaled gaps

$$\{\{N^2 d(r, \mathcal{G}_N \smallsetminus \{r\}) : r \in \mathcal{G}_N\}\}.$$

The scaling factor N^2 here has been chosen with comparison to the average area a_N of any partition of \mathcal{G}_N (e.g. its Voronoï cells) since $\sqrt{a_N} = \frac{1}{\sqrt{\operatorname{card} \mathcal{G}_N}} \sim \frac{1}{\sqrt{c N^2}}$.

Theorem (R. Sayous, 2024). *There exists a probability mea*sure μ on \mathbb{R} such that, as $N \to \infty$,

 $\mu_N \rightharpoonup \mu$.

Moreover, μ has support $[1, +\infty)$ and has a density with respect to the Lebesgue measure.

Figure 2: A numerical approximation of the density of μ , using points of \mathcal{G}_{50} .

In comparison, all scaled gaps in the Riemann fractions \mathcal{R}_N are equal to $N d(\frac{p}{N}, \mathcal{R}_N \setminus \{\frac{p}{N}\}) = 1.$

An integral formula and a tail estimate

For $z \in \mathbb{C}$ and $r, R \ge 0$, let $A(z_0, r, R) = \{z \in \mathbb{C} : r \le |z - z_0| \le R\}$ denotes the closed annulus in \mathbb{C} centred at z with radii r and R. We have the following integral formula for the cumulative distribution function of μ .

Theorem (R. Sayous, 2024). For every
$$\delta > 0$$
, we have

$$\mu([0, \delta]) = 2 \int_{s=0}^{+\infty} dx \Big(\bigcup_{\substack{p,q \in \mathbb{Z}[i] \\ p \neq 0}} A\Big(\frac{q}{p}, \frac{e^s}{\delta}, \frac{e^{\frac{s}{2}}}{|p|}\Big) \mod \mathbb{Z}[i] \Big) e^{-2s} ds$$

From this integral formula and a series of geometric arguments, we can derive the tail estimate, as $\delta \to +\infty$,

$$\mu(]\delta, +\infty[) = \frac{1}{\delta^4} + O\left(\frac{1}{\delta^5}\right).$$

Figure 3: At the top, the empirical tail distribution $\delta \rightarrow \mu_N([\delta, +\infty)]$ (in blue) with N = 30 and the graph of $\delta \mapsto \frac{1}{54}$ (in red). At the bottom, a logarithmic version of the top graph: we illustrate the tail estimate of μ by comparing the functions $\ell \mapsto \ln(\mu_N(]e^{\ell}, +\infty[))$ and $\ell \mapsto -4\ell$.

Idea of the proof: a link with dynamic on the hyperbolic space \mathbb{H}^3

Let us use the upper half-space model of the 3-dimensional (real) hyperbolic space \mathbb{H}^3 . The positive isometries of \mathbb{H}^3 are described by the action of the group $G = PSL_2(\mathbb{C})$ by homographies on the boundary at infinity $\partial_{\infty} \mathbb{H}^3 = \mathbb{C} \cup \{\infty\}$. In particular, (a reparametrisation of) the geodesic flow from ∞ to 0 is given by the Cartan subgroup of G

Translations on each horizontal plane (i.e. on each horosphere centred at ∞) are given by the abelian group

And rotations with axis $]0, \infty[$ give the compact group

Let also $\Gamma = PSL_2(\mathbb{Z}[i])$ denote the Bianchi group of $\mathbb{Q}(i)$. The following theorem is a result of equidistribution of Gaussian fractions set on an horosphere following the geodesic flow towards the boundary at infinity in $\Gamma \setminus \mathbb{H}^3$.

 \mathcal{G}_N \angle

universite

PARIS-SACLAY

Jyväskylän yliopisto

$$A = \{a(t) : t > 0\} \text{ where } a(t) = \begin{bmatrix} \frac{1}{t} & 0\\ 0 & t \end{bmatrix}$$

$$H = \{h(z) : z \in \mathbb{C}\} \text{ where } h(z) = \begin{bmatrix} 1 & z \\ 0 & 1 \end{bmatrix}$$

$$M = \{m(\theta) : \theta \in \mathbb{R}\} \text{ where } m(\theta) = \begin{bmatrix} e^{-\frac{i\theta}{2}} & 0\\ 0 & e^{\frac{i\theta}{2}} \end{bmatrix}$$

Theorem (J. Parkkonen, F. Paulin, 2024). *There exists a* probability measure ν on $M \setminus G / \Gamma$ (explicitly computed in [PP24, Cor. 4.2]) such that we have the vague convergence, as $N \to \infty$,

$$\nu_{N} = \frac{1}{\operatorname{card} \mathcal{G}_{N}} \sum_{r \in \mathcal{G}_{N}} \Delta_{Ma(\frac{1}{N})h(-r)\Gamma} \xrightarrow{*} \nu.$$
$$\mathbb{H}^{3} = \{(z, s) : z \in \mathbb{C}, s > 0\}$$

$$a(N)$$

$$s = \frac{1}{N} \xrightarrow{*} \nu \text{ after taking the quotient by } M \text{ and } \Gamma$$

$$\partial_{\infty} \mathbb{H}^{3} = \mathbb{C} \cup \{\infty\}$$

FACULTÉ **DES SCIENCES D'ORSAY**

> The points $Ma(\frac{1}{N})h(-r)\Gamma$ with $r \in \mathcal{G}_N$ may give us information about the gaps in \mathcal{G}_N . In order to see that, first notice that, modulo the four invertible elements $\mathbb{Z}[i]^{\times} = \{\pm 1, \pm i\}$, the data of irreducible fractions $\frac{p}{a}$ in \mathcal{G}_N is equivalent to the data of vectors (p,q) in $\mathbb{Z}[i]^2$ with coprime coordinate p and q. Then, we compute

> > $m(-\theta)$

for every $\delta > 0$,

Then it remains:

- an issue here,
- tion of δ .

Both steps are detailed in [Say24] and extended to any quadratic number field.

A look at the Eisenstein fractions

In the case of the Eisenstein fractions, i.e. elements of the quadratic field $\mathbb{Q}(i\sqrt{3})$, the study conducted in [Say24] focuses on the asymptotic gap statistics in the following sequence of point clouds in the elliptic curve $\mathbb{C}/\mathbb{Z}[e^{i\frac{2\pi}{6}}]$.

Figure 4: The Eisenstein fractions of height at most 10 (left) and 20 (right).

References

[Mar13]	J. Marklo quence" theory"
[PP24]	J. Parkke rays in n
[Say24]	R. Sayou auadrati

$$a\left(\frac{1}{N}\right)h(-z)\begin{pmatrix}p\\q\end{pmatrix} = \begin{pmatrix} \left(\frac{p}{q}-z\right)qNe^{\frac{i\theta}{2}}\\ \frac{q}{N}e^{-\frac{i\theta}{2}} \end{pmatrix}.$$

By taking the modulus of each coordinate, this formula allows to code in a subset $\mathcal{C}(\delta)$ of $M \setminus G / \Gamma$ the two conditions that the denominator satisfies $|q| \leq N$ and that the scaled gap around z is greater than some parameter $\delta > 0$. This yields the formula,

$$\mu_N(]\delta, +\infty[) = \nu_N(\mathcal{C}(\delta)).$$

• to prove that the convergence $\nu_N(\mathcal{C}(\delta)) \rightarrow \nu(\mathcal{C}(\delta))$, by showing that $\nu(\partial \mathcal{C}(\delta)) = 0$ and that the noncompactness of $\mathcal{C}(\delta)$ is not

• to compute $\nu(\mathcal{C}(\delta))$ and checks that it is a tail distribution func-

- lof, "Fine-Scale Statistics for the Multidimensional Farey Se-, in "Limit theorems in probability stastistics and number , Springer Proc. Math. Stat. **42** (2013).
- konen and F. Paulin, "Joint partial equidistribution of Farey negatively curved manifolds and trees", *Ergodic Theory Dystems* **44** (2024), pp. 2700–2736.
- ous, Gaps in the complex Farey sequence of an imaginary *quadratic field*, 2024, arXiv: 2407.04380.