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We are interested in the asymptotic distance to nearest neighbour

(or gap) statistic of Gaussian fractions p
q , with p, q P Zris and 0 ă |q| ď N ,

as N Ñ 8. We use the homogeneous dynamical approach of J. Marklof
[Mar13] in order to derive the existence of a probability measure de-
scribing this asymptotic gap statistic.

Introduction

The Gaussian fractions with height at most N ą 0 are defined
as the points of the square torus in

GN “

!p

q
mod Zris : p, q P Zris, 0 ă |q| ď N

)

Ă C{Zris.
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Figure 1: The set G20 with colours of points depending on their height.

The cardinality of GN can be estimated by Mertens’ formula, as
N Ñ 8,

cardGN „ cN4 where c “
π

2 ζQpiqp2q
.

Let dx be the Haar probability measure on the square torus
C{Zris and let ∆r denote the Dirac mass at any point r. Then
the Gaussian fractions equidistribute.

Theorem (S. Cosentino, 1999). We have the vague conver-
gence, as N Ñ 8,

1

cardGN

ÿ

rPGN

∆r
˚

á dx.

This means that, as N Ñ 8, the set GN becomes denser and
denser in a uniform way in C{Zris.

Nevertheless, the Gaussian fractions do not look as uniformly
distributed in the square torus as the evenly spaced Riemann
fractions RN “ t

p
N mod Zris : p P Zrisu. An explanation lays in

the asymptotic study of gaps in the sequence pGNqNPN˚.

Let us define the probability measures

µN “
1

cardGN

ÿ

rPGN

∆N 2 dpr,GN∖truq.

That is, µN is the uniform probability measure on the multiset of
scaled gaps

ttN2 dpr, GN ∖ truq : r P GN uu.

The scaling factor N2 here has been chosen with comparison to
the average area aN of any partition of GN (e.g. its Voronoï cells)
since ?

aN “ 1?
cardGN

„ 1?
cN 2.

Theorem (R. Sayous, 2024). There exists a probability mea-
sure µ on R such that, as N Ñ 8,

µN
˚

á µ.

Moreover, µ has support r1,`8r and has a density with re-
spect to the Lebesgue measure.
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Figure 2: A numerical approximation of the density of µ, using points of G50.

In comparison, all scaled gaps in the Riemann fractions RN are
equal to N dp

p
N , RN ∖ t

p
N uq “ 1.

An integral formula and a tail estimate

For z P C and r, R ě 0, let Apz0, r, Rq “ tz P C : r ď |z´z0| ď Ru

denotes the closed annulus in C centred at z with radii r and R.
We have the following integral formula for the cumulative distri-
bution function of µ.

Theorem (R. Sayous, 2024). For every δ ą 0, we have

µpr0, δsq “ 2

ż `8

s“0
dx

´

ď

p,q PZris
p‰0

A
´q

p
,
es

δ
,
e
s
2

|p|

¯

mod Zris
¯

e´2s ds.

From this integral formula and a series of geometric arguments,
we can derive the tail estimate, as δ Ñ `8,

µp sδ,`8r q “
1

δ4
` O

` 1

δ5
˘

.
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Figure 3: At the top, the empirical tail distribution δ Ñ µNp sδ,`8r q (in blue)
with N “ 30 and the graph of δ ÞÑ 1

δ4
(in red). At the bottom, a logarithmic

version of the top graph: we illustrate the tail estimate of µ by comparing the
functions ℓ ÞÑ lnpµNpseℓ,`8r qq and ℓ ÞÑ ´4ℓ.

Idea of the proof: a link with dynamic on
the hyperbolic space H3

Let us use the upper half-space model of the 3-dimensional
(real) hyperbolic space H3. The positive isometries of H3 are
described by the action of the group G “ PSL2pCq by homogra-
phies on the boundary at infinity B8H3 “ C Y t8u. In particular,
(a reparametrisation of) the geodesic flow from 8 to 0 is given
by the Cartan subgroup of G

A “ taptq : t ą 0u where aptq “

„

1
t 0
0 t

ȷ

.

Translations on each horizontal plane (i.e. on each horosphere
centred at 8) are given by the abelian group

H “ thpzq : z P Cu where hpzq “

„

1 z
0 1

ȷ

.

And rotations with axis s0,8r give the compact group

M “ tmpθq : θ P Ru where mpθq “

«

e´iθ
2 0

0 e
iθ
2

ff

.

Let also Γ “ PSL2pZrisq denote the Bianchi group of Qpiq. The
following theorem is a result of equidistribution of Gaussian frac-
tions set on an horosphere following the geodesic flow towards
the boundary at infinity in ΓzH3.

Theorem (J. Parkkonen, F. Paulin, 2024). There exists a
probability measure ν on MzG{Γ (explicitly computed in
[PP24, Cor. 4.2]) such that we have the vague convergence,
as N Ñ 8,

νN “
1

cardGN

ÿ

rPGN

∆Map 1
N qhp´rqΓ

˚
á ν.

The points Map 1
N qhp´rqΓ with r P GN may give us informa-

tion about the gaps in GN . In order to see that, first notice that,
modulo the four invertible elements Zrisˆ “ t˘1,˘iu, the data
of irreducible fractions p

q in GN is equivalent to the data of vec-
tors pp, qq in Zris2 with coprime coordinate p and q. Then, we
compute

mp´θq a
` 1

N

˘

hp´zq

ˆ

p
q

˙

“

˜

p
p
q ´ zq q N e

iθ
2

q
N e´iθ

2

¸

.

By taking the modulus of each coordinate, this formula allows
to code in a subset Cpδq of MzG{Γ the two conditions that the
denominator satisfies |q| ď N and that the scaled gap around z
is greater than some parameter δ ą 0. This yields the formula,
for every δ ą 0,

µNp sδ,`8r q “ νNpCpδqq.

Then it remains:

‚ to prove that the convergence νNpCpδqq Ñ νpCpδqq, by showing
that νpB Cpδqq “ 0 and that the noncompactness of Cpδq is not
an issue here,

‚ to compute νpCpδqq and checks that it is a tail distribution func-
tion of δ.

Both steps are detailed in [Say24] and extended to any quadratic
number field.

A look at the Eisenstein fractions

In the case of the Eisenstein fractions, i.e. elements of the
quadratic field Qpi

?
3q, the study conducted in [Say24] focuses

on the asymptotic gap statistics in the following sequence of
point clouds in the elliptic curve C{Zrei

2π
6 s.
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Figure 4: The Eisenstein fractions of height at most 10 (left) and 20 (right).
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