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Abstract

We are interested in the asymptotic distance to nearest neighbour
(or gap) statistic of Gaussian fractions £, with p, g € Z[i] and 0 < |¢| < N,
as N — oo. We use the homogeneous dynamical approach of J. Marklof
[ ] in order to derive the existence of a probability measure de-
scribing this asymptotic gap statistic.

Introduction

The Gaussian fractions with height at most N > 0 are defined
as the points of the square torus in

Gy = {g mod Z[i] : p.q e Z[i], 0 < |g| < N} = C/2[i].
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Figure 1: The set Gy, with colours of points depending on their height.

The cardinality of Gy can be estimated by Mertens’ formula, as

N — o0,
T

2 () (2)

Let dz be the Haar probability measure on the square torus
C/Z|i] and let A, denote the Dirac mass at any point ». Then
the Gaussian fractions equidistribute.

card G ~ ¢ N* where ¢ =

Theorem (S. Cosentino, 1999). We have the vague conver-
gence, as N — oo,

1 .
A, — dx.
card G Tezg]N 4

This means that, as N — oo, the set G5 becomes denser and
denser in a uniform way in C/Z|1].

Nevertheless, the Gaussian fractions do not look as uniformly
distributed in the square torus as the evenly spaced Riemann
fractions Ry = {& mod Z[i] : p € Z[i]}. An explanation lays in
the asymptotic study of gaps in the sequence (Gy) yen:-
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Let us define the probability measures

1

HN = card G TEZQ]N AN d(r,Gnqr})

That is, 1 Is the uniform probability measure on the multiset of
scaled gaps

{{N?d(r, Gy~ {r}) s reGn }}.

The scaling factor N? here has been chosen with comparison to
the average area ay of any partition of Gy (e.g. its Voronoi cells)
1
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Theorem (R. Sayous, 2024). There exists a probability mea-
sure 1 on R such that, as N — oo,

BN — b

Moreover, 1. has support |1, +oo| and has a density with re-

spect to the Lebesgue measure.
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Figure 2: A numerical approximation of the density of 1, using points of Gx.

In comparison, all scaled gaps in the Riemann fractions R 5; are
equal to N d(%, Ry ~ {x}) = 1.

An integral formula and a tail estimate

ForzeCandr,R > 0,let A(zg,r, R) ={2€C : r < |z—2| < R}
denotes the closed annulus in C centred at z with radii » and R.
We have the following integral formula for the cumulative distri-
bution function of L.

Theorem (R. Sayous, 2024). For every 6 > 0, we have
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0,0 :2J dx Al=,—,— ) mod Z|i]| ) e “"ds.
p(lo.a) =2 ar( U A(C500) )
p,q €Z][i]
p##0

From this integral formula and a series of geometric arguments,
we can derive the tail estimate, as 6 — +o,

w( 16, +o[) ==+ 0 (ﬁ)
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Figure 3: At the top, the empirical tail distribution § — (]9, +o0[ ) (in blue)
with N = 30 and the graph of § — 5i4 (in red). At the bottom, a logarithmic
version of the top graph: we illustrate the tail estimate of ;1 by comparing the
functions ¢ — In(ux(Je’, +oo[)) and £ — —4/.

Idea of the proof: a link with dynamic on
the hyperbolic space H°

Let us use the upper half-space model of the 3-dimensional
(real) hyperbolic space H>. The positive isometries of H> are
described by the action of the group G = PSLy(C) by homogra-
phies on the boundary at infinity d,,H? = C u {co}. In particular,
(a reparametrisation of) the geodesic flow from o« to 0 is given
by the Cartan subgroup of G

i 0] |

0

Translations on each horizontal plane (i.e. on each horosphere
centred at o) are given by the abelian group

H = {h(z) : e C} where h(z) [1 Z] |

A ={a(t) : t >0} where a(t) = [

01
And rotations with axis |0, co| give the compact group
-
M — {m(0) : 0 R} where m() — 602 )
€2

Let also ' = PSLy(Z|:]) denote the Bianchi g_;roup of Q(i). The
following theorem is a result of equidistribution of Gaussian frac-

tions set on an horosphere following the geodesic flow towards
the boundary at infinity in T'\H?.

Theorem (J. Parkkonen, F. Paulin, 2024). There exists a
probability measure v on M\G/I' (explicitly computed in
[ , Cor. 4.2]) such that we have the vague convergence,
as N — oo,

1 .
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H° ={(z,s) : 2 € C, s >0}

s=1
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The points Ma(s)h(—r)I" with 7 € Gy may give us informa-
tion about the gaps in G. In order to see that, first notice that,
modulo the four invertible elements Z[i|* = {+£1, +i}, the data
of irreducible fractions g iIn G is equivalent to the data of vec-

tors (p,q) in Z[i]* with coprime coordinate p and ¢. Then, we
compute

By taking the modulus of each coordinate, this formula allows
to code in a subset C(§) of M\G/I' the two conditions that the
denominator satisfies |¢| < N and that the scaled gap around =
IS greater than some parameter 6 > 0. This yields the formula,
for every 6 > 0,

N (10, +oo[) = vn(C(9)).

Then it remains:

e 0 prove that the convergence vy (C(6)) — v(C(9)), by showing
that »(0C(d)) = 0 and that the noncompactness of C(¢) is not
an issue here,

e to compute v(C(9)) and checks that it is a tail distribution func-
tion of ¢.

Both steps are detailed in | ] and extended to any quadratic

number field.

A look at the Eisenstein fractions

In the case of the Eisenstein fractions, i.e. elements of the
quadratic field Q(iv/3), the study conducted in [ ] focuses
on the asymptotic gap statistics in the following sequence of

point clouds in the elliptic curve C/Z[ei%ﬁ].

Figure 4: The Eisenstein fractions of height at most 10 (left) and 20 (right).
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