
Cauchy-Kovalevska Theorem, Characteristics and Holmgren Theorem
CRETIER Romain

The proofs in these notes are not original and are in the ideas taken from the references.
They are just written and organized in the way I understand them.

There may be errors in these notes, hence if you have any questions or remarks about
these notes, I will be happy to discuss with you by mail or in person.

Good reading !
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1. INTRODUCTION

We consider Ω an open subset of Rn or Cn, with coordinates (x1, . . . , xn) = (x′, xn).
Let f be an analytic function on Ω, u0, . . . , um−1 be analytic functions on Ω ∩ {xn = 0}
and P (x,Dx) be a diffenrential operator of degree m with analytic coefficients in Ω. First,
we want to discuss about the existence and unicity of a solution u to the following Cauchy
problem: {

P (x,Dx)u = f(x)
Dj
xnu|xn=0

= uj(x
′)

In order to do that, we will start by the first order, and after we will show that we can
reduce a problem of order m to a problem of order 1.

2. CAUCHY-KOVALEVSKA THEOREM AND ORDER 1

In this section, we consider Ω ⊂ Cn a bounded open subset, and we denote (z1, . . . , zn)
the coordinates in Cn.
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Definition 2.1. We denote by H(Ω̄,Cm) the space of continuous functions in Ω̄ which are
holomorphic in the set Ω and valued in Cm. We can equip this space with the maximum
norm

|f |Ω = sup
z∈Ω

∥f(z)∥

Proposition 2.2. H(Ω̄,Cm) equipped with this norm is a Banach space.

Proof. Let (uj)j be a Cauchy sequence in H(Ω,Cm) ⊂ C0(Ω,Cm). Then it converges
uniformly on Ω̄ to u a continuous function in Ω̄. For any function φ with compact support,
0 ≤ k ≤ n, we have in Ω :

0 = ⟨∂uj
∂z̄k

, φ⟩ = −⟨uj,
∂φ

∂z̄k
⟩ −→
j→∞

−⟨u, ∂φ
∂z̄k

⟩ = ⟨ ∂u
∂z̄k

, φ⟩

Hence ∂u
∂z̄k

= 0 in the distribution sense and u is holomorphic in Ω. □

Proposition 2.3. Let Ω1 be an bounded open subset such that Ω̄ ⊂ Ω1 and let d :=
d(Ω, ∂Ω1) denote the distance from Ω to the boundary of Ω1. The partial differentiation
∂
∂zj

for 1 ≤ j ≤ n defines a bounded linear operator H(Ω̄1,Cm) → H(Ω̄,Cm) with norm∥∥∥∥ ∂

∂zj

∥∥∥∥ ≤ d−1

Proof. Let f be any element of H(Ω̄1,Cm), z ∈ Ω̄. By Cauchy’s inequalities, we have∣∣∣∣ ∂f∂zj
∣∣∣∣ ≤ 1

d
sup

|z′j−zj |<d
|f(z1, . . . , zj−1, z

′
j, zj+1, . . . , zn)| ≤

|f |Ω1

d

Hence ∣∣∣∣ ∂f∂zj
∣∣∣∣
Ω

≤ |f |Ω1

d

□

Notation 2.4. Let E and F be two Banach spaces. We denote B(E,F ) the space of
bounded linear operators from E to F .

Proposition 2.5. Let M ∈ H(Ω̄,Mm(C)). Then f ∈ H(Ω̄,Cm) 7→ Mf ∈ H(Ω̄,Cm) is a
bounded linear operator with norm

∥M∥Ω = sup
z∈Ω

∥M(z)∥

Proof. For any f ∈ H(Ω̄,Cm), we have

|Mf |Ω = sup
z∈Ω

∥M(z)f(z)∥ ≤ sup
z∈Ω

∥M(z)∥|f |Ω

□

Let T > 0.

Proposition 2.6. Let t ∈ ]−T, T [ 7→ M(·, t) ∈ H(Ω̄,Mm(C)) be a continuous func-
tion. Then t 7→ (f 7→M(·, t)f) is a continuous function in ] − T, T [ valued in
B(H(Ω̄,Cm), H(Ω̄,Cm)). For each t, the operator norm of f 7→ M(·, t)f is not larger
than ∥M(·, t)∥Ω.
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Proof. For t ∈]− T, T [, it is clear that this function is valued in B(H(Ω̄,Cm), H(Ω̄,Cm))
and furthermore

|M(·, t)f |Ω ≤ ∥M(·, t)∥Ω|f |Ω
The continuity follows directly from the continuity of the function t 7→M(·, t). □

We look at the Cauchy problem given by the two equations

∂u

∂t
=

n∑
j=1

Aj(z, t)
∂u

∂zj
+ A0(z, t)u(z, t) + f(z, t) (2.7)

where for any j, t 7→ Aj(·, t) is a continous function for |t| < T valued in H(Ω̄,Mm(C)),
t 7→ f(·, t) a continuous function for |t| < T valued in H(Ω̄,Cm), and

u(z, 0) = u0(z) (2.8)

where u0 ∈ H(Ω̄,Cm).

Proposition 2.9. For n+ 1 functions Aj as in the equation ( 2.7), set

A(t) :=
n∑
j=1

Aj(·, t)
∂

∂zj
+ A0(·, t)

Then A is a continuous function for |t| < T valued in B(H(Ω̄1,Cm), H(Ω̄,Cm)). For each
t, the norm of A(t) is not larger than

1

d

n∑
j=1

∥Aj(·, t)∥Ω + ∥A0(·, t)∥Ω

Proof. For any function f ∈ H(Ω̄1,Cm), we have

|A(t)f |Ω =

∣∣∣∣∣
n∑
j=1

Aj(·, t)
∂f

∂zj
+ A0(·, t)f

∣∣∣∣∣
Ω

≤
n∑
j=1

∣∣∣∣Aj(·, t) ∂f∂zj
∣∣∣∣
Ω

+ |A0(·, t)f |Ω

≤
n∑
j=1

∥Aj(·, t)∥Ω
∣∣∣∣ ∂f∂zj

∣∣∣∣
Ω

+ ∥A0(·, t)∥Ω|f |Ω

≤ 1

d

n∑
j=1

∥Aj(·, t)∥Ω|f |Ω1 + ∥A0(·, t)∥Ω|f |Ω1

Hence A is valued in B(H(Ω̄1,Cm), H(Ω̄,Cm)) with the ineaquality of norms we want.
The continuity follows easily from the continuity of the functions t 7→ Aj(·, t). □

We will prove the following important statement :

Theorem 2.10 (Cauchy-Kovalevska). Let Ω0 be a nonempty connected open subset of Cn

such that Ω̄0 ⊂ Ω1. Then there exists 0 < δ0 ≤ T such that there exists a unique C1

function t ∈] − δ0, δ0[7→ u(·, t) ∈ H(Ω̄0,Cm) satisfying the equations ( 2.7) and ( 2.8) for
any z ∈ Ω0 and |t| < δ0.
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Remark 2.11. Even if we are interesting in a ’real’ version of the Cauchy-Kovalevska
theorem, it has sense to consider holomorphic functions regarding the ’spatial’ variables,
because what we need in this theorem is analycity, which is equivalent to be holomorphic
in the complex case. If we take f a real-analytic function in an interval |t| < T , it is easy to
see f as a complex-analytic function in the disk D(0, T ) and so holomorphic in this disk.

For such an open subset Ω0, let d0 be the distance between Ω0 and the boundary ∂Ω1.
We can without loss of generality assume that

Ω1 = {z ∈ Cn|d(z,Ω0) < d0}
We introduce the one-parameter family of connected open sets

Ωs := {z ∈ Cn|d(z,Ω0) < sd0} , 0 ≤ s ≤ 1

Definition 2.12. Let (Es)0≤s≤1 be a one-parameter family of Banach spaces. We say that
it is a scale of Banach spaces if for all 0 ≤ s′ < s ≤ 1, Es ⊂ Es′ and the norm in Es is not
smaller than the norm on Es induced by Es′ .

We set Es := H(Ω̄s,Cm) for 0 ≤ s ≤ 1.

Proposition 2.13. (Es)0≤s≤1 is a scale of Banach spaces.

Proof. If s′ < s, we have a natural injection f ∈ Es ↪→ f|Ω̄s′
∈ H(Ω̄s′ ,Cm) given by

Ω̄s′ ⊂ Ωs. Furthermore :

|f |Ωs = sup
z∈Ωs

|f(z)| ≤ sup
z∈Ωs′

|f(z)| = |f |Ωs′

□

By applying Proposition 2.9, replacing Ω1 by Ωs and Ω by Ωs′ , we have that if s′ < s,
then A is a continuous function valued in B(Es, Es′). We can notice that d(Ωs′ ,Cn\Ωs) =
(s− s′)d0. Hence, for t such that |t| < T , the norm of A(t) ∈ B(Es, Es′) as operator is not
greater than C(t)

s−s′ where

C(t) :=
1

d0

n∑
j=1

∥Aj(·, t)∥Ω1 + ∥A0(·, t)∥Ω1

As C is bounded on any closed subinterval of ]−T, T [, if we decrease T , we can assume C
is bounded by a constant and therefore for each t, the operator norm of A(t) : Es → Es′ is
not greater than C

s−s′ where C > 0 a constant that doesn’t depend on s, s′ nor t. Moreover,
we can assume that (Ce)−1 ≤ T and f is continous in [−T, T ] valued in E1. We can now
state the following result :

Theorem 2.14 (Abstract version of the Cauchy-Kovalevska theorem). Under the preceding
hypotheses, given u0 ∈ E1 any continous function f ∈ C0([−T, T ], E1) :

(1) There is a function u in the interval |t| < (Ce)−1, valued in E0, which for any
0 ≤ s ≤ 1 is a C1 function in the interval |t| < (Ce)−1(1 − s) valued in Es and
which satisfies ( 2.7) and ( 2.8) when |t| < (Ce)−1.

(2) If, for some 0 < T ′ ≤ T and 0 < s ≤ 1, there are two C1 functions in the interval
|t| < T ′ valued in Es and satisfying ( 2.7) and ( 2.8) in this interval, then they must
be equal.
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Proof. (1) Existence of the solution :
Let (vk)k∈N be the sequence of continuous functions in [−T, T ] valued in Es for

any 0 ≤ s < 1 defined as follows:

v0(t) = u0 +

∫ t

0

f(t′)dt′

vk+1(t) = v0(t) +

∫ t

0

A(t′)vk(t
′)dt′

If vk is a continuous function in the interval |t| < T valued in Es, then, for any
s′ < s, t 7→ A(t)vk(t) is a continous function in the same interval valued in Es′ ,
and so it is also the case of vk+1. For any 0 ≤ s < 1, we can take a sequence
s < sk−1 < · · · < s0 < 1 such that for each 0 ≤ j ≤ k − 1, vj is valued in Esj and
so vk is valued in Es. We set

w0 := v0 , wk := vk − vk−1 =

∫ t

0

A(t′)wk−1(t
′)dt′

Each wk is a continuous function in the interval |t| < T valued in Es. We denote
Ns the norm in Es. We want to show, by induction on k, that :

Ns(wk(t)) ≤M(t)

(
Ce|t|
1− s

)k

, |t| < T (2.15)

where

M(t) = N1(u0) +

∣∣∣∣∫ t

0

N1(f(t
′))dt′

∣∣∣∣
M is a nondecreasing function of |t| on [0, T ] and [−T, 0] by the positivity of the
norm N1.

When k = 0, we have

Ns(w0(t)) = Ns(v0(t)) ≤ Ns(u0)+

∣∣∣∣∫ t

0

Ns(f(t
′))dt′

∣∣∣∣ ≤ N1(u0)+

∣∣∣∣∫ t

0

N1(f(t
′))dt′

∣∣∣∣ =M(t)

Suppose now that it holds up to k and let us prove it for k+1. If 0 ≤ s′ < s < 1,

Ns′(wk+1(t)) ≤
∣∣∣∣∫ t

0

∥A(t′)∥Ns(wk(t
′))dt′

∣∣∣∣
≤ C

s− s′

∣∣∣∣∫ t

0

Ns(wk(t
′))dt′

∣∣∣∣
≤ C

s− s′

∣∣∣∣∣
∫ t

0

M(t′)

(
Ce|t′|
1− s

)k

dt′

∣∣∣∣∣
≤ C

s− s′
M(t)

(
Ce

1− s

)k |t|k+1

k + 1

If we take s = s′ + 1−s′
k+1

⇐⇒ 1− s = k
k+1

(1− s′), then

Ns′(wk+1(t)) ≤M(t)

(
Ce|t|
1− s′

)k+1
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f is continuous in [−T, T ], hence there exists M a constant such that for any t,
M(t) ≤M .

Ns(wk(t)) ≤M

(
Ce|t|
1− s

)k

Hence
∑+∞

k=0wk converges uniformly in Es in every compact of the interval |t| <
1−s
Ce

. We denote u its limit. By definition of (wk)k, the sequence (vk)k converges
uniformly in Es in every compact in |t| < 1−s

Ce
such that

u(t) = u0 +

∫ t

0

f(t′)dt′ +

∫ t

0

A(t′)u(t′)dt′ (2.16)

For 0 < ϵ < 1 − s, u is a continuous function in |t| < 1−s−ϵ
Ce

valued in Es+ϵ,
and hence t 7→ A(t)u(t) is a continuous function in |t| < 1−s−ϵ

Ce
valued in Es. The

equality ( 2.16) makes u a C1 function in |t| < 1−s−ϵ
Ce

valued in Es. By taking
ϵ → 0+, u is a C1 function in |t| < 1−s

Ce
valued in Es. Furthermore, we have

ut = f(t) + A(t)u(t) and u(0) = u0.
(2) Uniqueness :

If u1 and u2 are two functions satisfying ( 2.7) and ( 2.8), then h := u1 − u2
is such that ht = A(t)h(t) and h(0) = 0 and conversely. Hence it is sufficient to
prove our point for a such function h. We have h−1(0) a nonempty closed subset of
]− T ′, T ′[. Let t0 such that h(t0) = 0. We have

h(t) =

∫ t

t0

A(t′)h(t′)dt′

Let 0 ≤ s′ < s. We want to prove that, for M(t) := sup
[t0,t]

Ns(h(t
′)), we have

Ns′(h(t)) ≤M(t)

(
Ce|t− t0|
s− s′

)k

It is trivial for k = 0. If we assume that it is true for some k, then by taking
ϵ = s−s′

k+1
and seeing A(t) : Es → Es′+ϵ, we have

Ns′(h(t)) ≤
∣∣∣∣∫ t

t0

C

s− s′ − ϵ
Ns′+ϵ(h(t

′))dt′
∣∣∣∣

≤ C

s− s′ − ϵ

∣∣∣∣∣
∫ t

t0

M(t′)

(
Ce|t′ − t0|
s− s′ − ϵ

)k

dt′

∣∣∣∣∣
≤ M(t)

C|t− t0|k+1

(k + 1)(s− s′ − ϵ)

(
Ce

s− s′ − ϵ

)k

Hence our inequality is true by remarking
(
1 + 1

k

)k ≤ e.
If |t − t0| < s−s′

Ce
, then Ns′(h(t)) = 0 by taking k → +∞ and so Ns(h(t)) = 0

(s′ < s). We can conclude that h−1(0) is a nonempty closed open subset of a
connected space, and hence h(t) = 0 for each |t| < T ′.

□

Remark 2.17. We can formulate a holomorphic version of Theorem 2.14:
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Theorem 2.18. Under almost the same hypotheses, assuming this time that t is a complex
variable varying in the disk D̄(0, T ), that if s′ < s, then A is a holomorphic function of
t on the open disk valued in B(Es, Es′), and that f is an element of H(D̄(0, T ), E1), the
following is true :

(1) There is a function u in the diskD(0, (Ce)−1), valued in E0, which for any 0 ≤ s <
1 is a holomorphic function in D

(
0, 1−s

Ce

)
valued in Es, and which satisfies ( 2.7)

and ( 2.8) in the disk D(0, (Ce)−1).
(2) If, for some 0 < T ′ ≤ T and 0 < s ≤ 1, there are two holomorphic functions in

D(0, T ′) valued in Es and satisfying ( 2.7) and ( 2.8), they must be equal.

The proof is essentially the same as the real version.

Example 2.19 (Lewy’s example). Consider in R× C with variables (t, z) the operator

L =
∂

∂z̄
− iz

∂

∂t
We can apply the Cauchy-Kovalevska theorem to this operator i.e. if we consider f a
real-analytic function near 0, there exists a solution u that is real-analytic near 0 satisfying
L(u) = f . But there exists f a smooth non-analytic function such that L(u) = f has no
solution near 0 [3], even if u is taken as a distribution.

The same fact occurs for the Mizohata operator :

M =
∂

∂x
+ ix

∂

∂y

near any point (0, y), with 2 real variables x, y.

3. REDUCTION FROM HIGHER ORDERS PROBLEM TO FIRST ORDER PROBLEM

In the precedent section, we have proved the Cauchy-Kovalevska theorem for first-order
linear PDEs or systems. We will prove in this section that extend the result to higher orders
for some convenient systems. We deal here with a system of order m > 1 given by

Dm
t u =

∑
α0 + |α| ≤ m

α0 < m

cα0,α(x, t)D
α0
t D

α
xu+ f(x, t) (3.1)

with Cauchy conditions

Dk
t u|t=0 = vk(x) , 0 ≤ k ≤ m− 1 (3.2)

where our variables (x, t) are taken in some open subset Ω of Rn+1, or Cn+1, or Cn × R,
and f ∈ C∞(Ω,CN), vk ∈ C∞(px(Ω),CN) and cα0,α ∈ MN(C

∞(Ω)) (we will discuss of
analycity later).

Remark 3.3. We can see in this kind of systems that the variable t has a privileged role
assigned by the restriction α0 < m in the summation. In fact, there is some systems that
can’t be put into the form ( 3.1).

Set
u0 := u uj := Dxju un+1 := Dtu U = (u0, . . . , un+1)

Observe that
Dm−1
t u0 = Dm−2

t un+1 Dm−1
t uj = Dm−2

t Dxjun+1
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and that we can rewrite ( 3.1) as

Dm−1
t un+1 =

n+1∑
j=0

∑
α0 + |α| ≤ m− 1

α0 < m− 1

cα0,α,j(x, t)D
α0
t D

α
xuj + f(x, t)

Combining all of this, we can write

Dm−1
t U =

∑
α0 + |α| ≤ m− 1
α0 ≤ m− 2

Cα0,α(x, t)D
α0
t D

α
xU + F (3.4)

with F = (0, . . . , 0, f).
Now, we have to transform the Cauchy conditions ( 3.2) in a convenient way for our

new system. It is easy to see that

Dk
t u0|t=0 = vk Dk

t uj |t=0 = Dxjv
k Dk

t un+1|t=0 = vk+1

for every 0 ≤ k ≤ m− 2, 1 ≤ j ≤ n. Hence we can rewrite ( 3.2) as

Dk
t U|t=0 = V k , 0 ≤ k ≤ m− 2 (3.5)

with V k := (vk, Dx1v
k, . . . , Dxnv

k, vk+1).

Proposition 3.6. The existence and unicity of a solution u to a system given by ( 3.1) and
( 3.2) is equivalent to the existence and unicity of a solution U to a system given by ( 3.4)
and ( 3.5).

Proof. (1) We take a system given by ( 3.1) and ( 3.2). If we assume that any system
given by ( 3.4) and ( 3.5) admits a solution U , then it is the case for the system
given by F = (0, . . . , 0, f) and V k = (vk, Dx1v

k, . . . , Dxnv
k, vk+1). We take U =

(u0, . . . , un+1) a solution to this system, hence u = u0 is a solution to the system
given by ( 3.1) and ( 3.2).

(2) Conversely, we take a system given by ( 3.4) and ( 3.5) (we don’t assume that the
first components of F are zero). We set

U ′ := U −
m−2∑
k=0

tk

k!
V k

For any 0 ≤ k ≤ m− 2, we have

Dk
t U

′
|t=0 = 0

and

Dα0
t D

α
xU

′ = Dα0
t D

α
xU −

m−2∑
k=α0

tk−α0

(k − α0)!
Dα
xV

k

Hence U is a solution for F and V k if and only if U ′ is a solution for F −∑
Cα0,α(x, t)

∑m−2
k=α0

tk−α0

(k−α0)!
Dα
xV

k and 0. Hence we can assume that for any k,
V k = 0. We write F = (F0, . . . , Fn+1) and we take, for any 0 ≤ j ≤ n, wj be
some functions we will precise after such that

Dk
twj |t=0 = 0
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and we set Ũ := U − (w0, . . . , wn, 0). Hence Dk
t Ũ |t=0 = Dk

t U |t=0 = 0 and

Dm−1
t Ũ = Dm−1

t U − (Dm−1
t w0, . . . , D

m−1
t wn, 0)

=
∑

Cα0,α(x, t)D
α0
t D

α
xU + F − (Dm−1

t w0, . . . , D
m−1
t wn, 0)

=
∑

Cα0,α(x, y)D
α0
t D

α
x Ũ +

∑
Cα0,α(x, t)(D

α0
t D

α
xw0, . . . , D

α0
t D

α
xwn, 0)

−(Dm−1
t w0, . . . , D

m−1
t wn, 0) + F

=
∑

Cα0,α(x, y)D
α0
t D

α
x Ũ + (0, . . . , 0, Fn+1)

for a good choice of the wk. We obtain the transform of the problem ( 3.1)-( 3.2)
with f = Fn+1 and vk = 0 for all k. If we take u a solution to this problem, then
the associated U is a solution for our basis problem.

(3) We assume that U1 and U2 are two solutions to ( 3.4)-( 3.5) given F and V k. Wet
set U := U1 − U2. Hence

Dm−1
t U = Dm−1

t U1 −Dm−1
t U2

=
∑

Cα0,α(x, t)D
α0
t D

α
xU1 + F −

∑
Cα0,α(x, t)D

α0
t D

α
xU2 − F

=
∑

Cα0,α(x, t)D
α0
t D

α
xU

and Dk
t U |t=0 = 0 for all k. In this case, if we write U = (u0, . . . , un+1), then we

have a solution u0 to the associated problem ( 3.1)-( 3.2) with f = 0 and vk = 0.
We suppose that we have the unicity to the problem ( 3.1)-( 3.2). Necessarily, we
have u0 = 0. In this case :

Dm−2
t un+1 = Dm−1

t u0 = 0

and so un+1 is polynomial in the variable t of order ≤ m− 3. Moreover

Dk
t un+1 |t=0 = Dk+1

t u0 |t=0 = vk+1 = 0 , 1 ≤ k ≤ m− 2

Thus un+1 = 0 and in the same way, Dm−1
t uj = Dm−2

t Dxjun+1 = 0 and for all
k ≤ m− 2, we have

Dk
t uj |t=0 = Dxjv

k = 0

that implies uj = 0. Hence U = (u0, . . . , un+1) = 0.
(4) Conversely, we assume u a solution to ( 3.1)-( 3.2) with f = 0 and vk = 0. Then

it is easy to verify that U given by u = u0 is a solution to ( 3.4)-( 3.5) with F = 0
and V k = 0. By unicity, we have U = 0 and so u = 0.

□

Remark 3.7. We have now proved that existence and unicity of a solution for a system
of order m is equivalent to the existence and unicity of a solution for a system of order
m−1, and so for any system of order m with analytic coefficients ( 3.1)-( 3.2) has a unique
solution by the Cauchy-Kovalevska theorem.

4. REMINDERS ON CHARACTERISTICS AND LINK WITH CAUCHY-KOVALEVSKA
THEOREM

We consider a differential operator

P (x, t,Dx, Dt) =
∑

α0+|α|≤m

aα0,α(x, t)D
α0
t D

α
x ∈ D≤m

Ω
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of order m with analytic coefficients in an open subset Ω ⊂ Rn+1 (or Cn+1).

Definition 4.1. Let Ω be a open subset of Kn (K = R or C). We can associate to any
differential operator P (y,Dy) ∈ D≤m

Ω , with analytic coefficients, a polynomial

P (y, η) =
∑
|α|≤m

aα(y)η
α ∈ OΩ [η1, . . . , ηn]

called the total symbol of P (we denote it with the same letter as the differential operator).
From the total symbol, we can define the principal symbol

Pm(y, η) :=
∑
|α|=m

aα(y)η
α

Definition 4.2. For y ∈ Ω, we denote

CP (y) := {η ∈ Kn|Pm(y, η) = 0}
the characteristic cone of P at the point y ∈ Ω. Every covector η ∈ CP (y) different from
zero is said to be characteristic with respect to P at the point y. We denote

CP := ⊔y∈Ω {y} × CP (y) = {(y, η) ∈ T ∗Ω|Pm(y, η) = 0}
the characteristic variety.

Let Σ ⊂ Ω be a C1 hypersurface. Σ is said to be characteristic at the point y ∈ Ω with
respect to P if any normal covector η to Σ at y is characteristic with respect to P at y i.e.
N∗
yΣ ⊂ CP (y). Σ is said to be characteristic with respect to P if it is at every point i.e.

N∗Σ ⊂ CP .

If we assume that for all (x, t) ∈ Ω, 0 ̸= Pm(x, t, ξ, τ) = am,0(x, t), i.e. the covector
(0, 1) is not characteristic with respect to P at any point of Ω, we can change any equation
of the form P (x, t,Dx, Dt)u = g in an equation of the form ( 3.1) with cα0,α = −aα0,α

am,0
and

f = g
am,0

.

Definition 4.3. A differential operator P (y,Dy) in Ω is said to be elliptic at yo ∈ Ω if
CP (y0) = {0}.

Example 4.4. We consider the Laplace operator ∆ = ∂2x1 + · · · + ∂2xn on Rn. Hence its
principal symbol is p(x, ξ) = |ξ|2. We can easily see that ∆ is everywhere elliptic.

Example 4.5. We consider the operator L = ∂t − a(x, t)∂x in R2 where a is smooth with
real values (our definitions hold for smooth functions). At (x0, t0) ∈ R2, we have

P (x0, t0, ξ, τ) = τ − a(x0, t0)ξ

and CL(x0, t0) = {(ξ, τ) ∈ R2|τ = a(x0, t0)ξ}. We consider x the curve of points (x(t), t)
defined by

dx

dt
= −a(x(t), t) , x(t0) = x0 (4.6)

We have T(x0,t0)x = R(−a(x0, t0), 1) and N(x0,t0)x = R(1, a(x0, t0)) = CL(x0, t0). Thus x
is characteristic with respect to L.

Conversely, let γ be a C1 curve in R2. We assume γ is characteristic with respect to L.
Let (x0, t0) be a point of γ, U0 be a neighborhood of (x0, t0) and φ a C1 function such that
U0 ∩ γ = φ−1(0). We can assume that ∇φ = (φx, φt) does not vanish in U0. The conormal
to γ in any point of U0∩γ is then spanned by (φx, φt), and so φt−a(x, t)φx ≃ 0 in U0∩γ.
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∇φ does not vanish in U0, hence φx does not vanish in a neighborhood of U0∩γ which can
be assumed to be U0. The vector field(

−φt
φx
, 1

)
= (−a(x, t), 1)

is tangent to U0 ∩ γ. Thus, the integral curve of this vector field, that is defined by ( 4.6), is
exactly U0 ∩ γ, i.e. ( 4.6) defines locally every characteristic curve with respect to L. We
can conclude in the following way: the characteristic curves of L are the integral curves of
L.

Remark 4.7. There is a way to salvage the preceeding statement for characteristic hyper-
surfaces with a notion of bicharacteristic curve [5].

To conclude, we will state a ’coordinates independent’ version of the Cauchy-
Kovalevska theorem:

Theorem 4.8. Let Ω be an open subset of Rn+1, P (y,Dy) be a linear differential operator
of order m > 0 with analytic coefficients in Ω. Let Σ ⊂ Ω be an analytic hypersurface
which is nowhere characteristic with respect to P (y,Dy) and whose exterior normal at
every point is well-defined. Let f be an analytic function in Ω, (uj)0≤j≤m−1 be m analytic
functions in Σ. There exists a neighborhood Σ ⊂ V ⊂ Ω and a unique analytic function u
in V such that

P (y,Dy)u = f in V (4.9)

∂

∂ν

j

u = uj in Σ , for every 0 ≤ j ≤ m− 1 (4.10)

where we have denoted by ∂
∂ν

the partial differentiation in the exterior normal direction to
Σ.

Proof. It suffices to prove this statement locally. Let y0 ∈ Σ. Let V (y0) be a neighborhood
of y0 sufficiently small such that we can perform a change of variables x1, . . . , xn, t in
which Σ ∩ V (y0) corresponds to t = 0 and ∂t is the partial differentiation in the exterior
normal direction. In these coordinates, P has an expression of the form

P (x, t,Dx, Dt) = a(x, t)Dm
t +

m∑
j=1

Qj(x, t,Dx)D
m−j
t

where a is an analytic function in V (y0), and the Qj are of ordrer at most j with analytic
coefficients. As we showed earlier, the fact that Σ is assumed to be nowhere characteristic
implies that a does not vanish in a neighborhood of Σ and our problem can be written :

Dm
t u+

m∑
j=1

1

a
Qj(x, t,Dx)D

m−j
t u =

f

a
,

∂

∂t

j

u = uj

Applying the Cauchy-Kovalevska theorem, we have a unique analytic solution u to ( 4.9)-
( 4.10) in V (y0). □

Remark 4.11. We have stated what we could call a ’real-analytic’ version of the Cauchy-
Kovalevska theorem. We can also state a ’holomorphic’ version in the following sense.
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Theorem 4.12 (Holomorphic version of Cauchy-Kovalevska theorem). Let Ω be an open
subset Cn and Σ be an analytic submanifold of codimension 1 of Ω. Let P (z,Dz) be a
differential operator of order m with holomorphic coefficients in Ω. We assume that Σ is
nowhere characteristic with respect to P (z,Dz) and that we have a holomorphic vector
field ∂

∂ν
in Ω, normal to Σ at each one of its points. Then there is an open neighborhood

Ω′ ⊂ Ω of Σ such that for any f ∈ O(Ω), for any u1, . . . , um−1 ∈ O(Σ), there exists a
unique u ∈ O(Ω′) such that

P (z,Dz)u = f in Ω′ (4.13)
∂

∂ν

j

u = uj in Σ (4.14)

Proof. Let z0 be any point of Σ and V (z0) be a neighborhood of z0 in Ω. If V (z0) is small
enough, then there exists φ0 a holomorphic function in V (z0) such that V (z0)∩Σ = φ−1

0 (0)
and ∇φ0 does not vanish in V (z0). Furthermore, V (z0) can be assumed to be sufficiently
small such that we have local coordinates (w1, . . . , wn) with wn = φ0(z). In V (z0) ∩ Σ,
there exists λ a holomorphic function such that

∂

∂ν
= λ(z)∇φ0(z)

Hence there exists µ ∈ O(V (z0) ∩ Σ) such that
∂

∂ν
= µ(w)∂wn

In this neighborhood V (z0), we can write

P (z, ∂z) = a(w)Dm
wn +

m∑
j=1

Qj(w,Dw1 , . . . , Dwn−1)Dm−j
wn

where a is a holomorphic function and the Qj are of order ≤ j with holomorphic coeffi-
cients. As Σ is assumed to be nowhere characteristic with respect to P , a can be assumed
to be nowhere vanishing in V (z0). We have now to solve the problem

Dm
wnu+

m∑
j=1

1

a
Qj(w,Dw1 , . . . , Dwn−1)Dm−j

wn u =
f

a
in V (z0) (4.15)

∂

∂wn

j

u =
1

µ
uj in V (z0) ∩ Σ (4.16)

□

5. HOLMGREN THEOREM

In this section, we will study a unicity result that we can call the dual form of the
Cauchy-Kovalevska theorem. For instance, let (Es)0≤s≤1 be a scale of Banach spaces and
A be a function in |t| < T such that

if s′ < s, then A is a continuous function valued in B(Es, Es′) (5.1)

∃C > 0,∀0 ≤ s′ < s ≤ 1,∀|t| < T, ∥A(t)∥ ≤ C

s− s′
(5.2)

Furthermore, we consider this additionnal hypothesis :

If s′ < s, then Es is dense in Es′ (5.3)
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We set, for each 0 ≤ s ≤ 1, Fs := E ′
1−s as dual of Banach space. First, with ( 5.3), if

we denote is,s′ : Es ↪→ Es′ the natural injection associated to our two Banach spaces, then
tis,s′ : F1−s′ → F1−s is an injective continuous linear map of norm ≤ 1. Moreover

Lemma 5.4. (Fs) is a scale of Banach spaces and ( 5.1)-( 5.2) hold for the scale (Fs) and
the continous map tA.

Proof. If s′ < s, it is clear that Fs = E ′
1−s ⊂ E ′

1−s′ = Fs′ . Moreover, for any f ∈ Fs, we
have

|f |Fs′
= sup

v∈E1−s′\{0}

|f(v)|
|v|E1−s′

≤ sup
v∈E1−s\{0}

|f(v)|
|v|E1−s

≤ |f |Fs

If s′ < s, then A(t) ∈ B(E1−s′ , E1−s) and hence tA(t) ∈ B(Fs, Fs′).

∥ tA(t)∥ = sup
|f |Fs≤1

| tA(t)f |Fs′

= sup
|f |Fs≤1

sup
|u|E1−s′

≤1

|⟨ tA(t)f, u⟩|

≤ sup
|f |Fs≤1

sup
|u|E1−s′

≤1

|⟨f, A(t)u⟩|

≤ sup
|u|E1−s′

≤1

|A(t)u|E1−s

≤ ∥A(t)∥

≤ C

s− s′

□

The important consequence of this lemma is that we can apply the theorem 2.14 in this
new context.

Lemma 5.5. Under the preceding hypotheses, let v be a C1 function in |t| < T , valued in
Fs for some s < 1 and satisfying the equation

dv

dt
= tA(t)v

If v(0) = 0, then v ≡ 0.

Proof. Applying the uniqueness part of the theorem ( 2.14) concludes. □

Lemma 5.6. We assume the following fact:

0 ≤ s′ < s ≤ 1 =⇒ A ∈ C∞(]− T, T [, B(Es, Es′)) (5.7)

Then tA satisfies the analogous property :

0 ≤ s′ < s ≤ 1 =⇒ tA ∈ C∞(]− T, T [, B(F1−s′ , F1−s)) (5.8)

Proof. For any f ∈ F1−s′ and u ∈ Es, we have〈
lim
t→t0

tA(t)− tA(t0)

t− t0
f, u

〉
= lim

t→t0

1

t− t0
⟨f, (A(t)− A(t0))u⟩

= ⟨f, A′(t0)u⟩
We can deduce of this equality that tA is C∞ as A. □
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Remark 5.9. The lemma is in fact the same replacing C∞ by Cm or analytic.

We suppose that ( 5.8) holds. If v is a distribution in |t| < T , valued in F1, then tAv is
a distribution in the same interval valued in Fs for any s < 1. We interest in distributions
which can be written in the form:

v = ∂kt g

where g is a continuous function valued in F1 and vanishing for t < 0. We have for any
smooth function φ with compact support:

⟨ tA(t)∂kt g, φ⟩ = ⟨∂kt g, A(t)φ⟩
= (−1)k⟨g, ∂kt (Aφ)⟩

= (−1)k

〈
g,

k∑
j=0

(
k

j

)
∂jtA∂

k−j
t φ

〉

= (−1)k
k∑
j=0

(
k

j

)〈
tA(j)g, ∂k−jt φ

〉

= (−1)k
k∑
j=0

(
k

j

)
(−1)k−j

〈
∂k−jt ( tA(j)g), φ

〉
i.e.

tA(t)∂kt g =
k∑
j=0

(−1)j
(
k

j

)
∂k−jt ( tA(j)g)

Lemma 5.10. Under the preceding hypotheses and given v a distribution as preceeds, if
∂tv − tAv is a C∞ function in |t| < T , valued in F1, then v is a C∞ function in the same
interval valued in Fs for any s < 1.

Proof. We set, for 0 ≤ j ≤ k, gj := (−1)j
(
k
j

)
( tA(k−j)g) that are continuous function

valued in Fs for any s < 1 by ( 5.8).

f := ∂tv − tA(t)v = ∂k+1
t v −

k∑
j=0

∂jt gj

We can write
gj = ∂k−j+1

t hj , f = ∂k+1
t f1

with hj and f1 vanishing for t < 0. Furthermore, f1 is a C∞ function valued in F1.
If g is a Cµ function valued in every FS (s < 1), then h :=

∑k
j=0 hj is a Cµ+1 such

function. We have

∂k+1
t (g − h− f1) = ∂k+1

t g −
k∑
j=0

∂k+1
t hj − ∂k+1

t f1 = ∂k+1
t g −

k∑
j=0

∂jt gj − f = 0

Hence g − h − f1 is a polynomial of t of degree at most k. But for t < 0, we have
(g − h − f1)(0) = 0. It follows that g = h + f1 is a Cµ+1 function valued in every Fs
(s < 1). □

Corollary 5.11. Under the same hypotheses as in the Lemma 5.10, if ∂tv = tAv in
]− T, T [, then v ≡ 0 in the same interval.
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Proof. ∂tv− tAv = 0 is a C∞ function. By Lemma 5.10, v is a C∞ function valued in Fs
for any s < 1. Moreover, v vanishes when t < 0, then v(0) = 0. By Lemma 5.5, we have
v ≡ 0. □

We consider now r0, d0 > 0, and we set for every 0 ≤ s ≤ 1 :

Ωs :=
{
z ∈ Cn||zj| < r0 + sd0

}
and

Es := H(Ω̄s,Cm)

Lemma 5.12. (Es)0≤s≤1 is a scale of Banach spaces satisfying ( 5.3).

Proof. We already know that this kind of construction makes (Es) a scale of Banach spaces.
We have to show that if s′ < s, then H(Ω̄s) is dense in H(Ω̄s′). Let h be an element of
H(Ω̄s′) and, for each 0 < δ < 1, set

hδ : z 7→ h((1− δ)z)

h is uniformly continuous in Ω̄s′ , hence hδ converges to h uniformly on Ω̄s′ , when δ con-
verges to 0+. hδ can be extended to (1+ δ)Ω̄s′ as a continuous function that is holomorphic
in the interior of the polydisk and

∀z ∈ Ω̄s′ , hδ((1 + δ)z) = h((1− δ2)z)

Let Pδ,n (n ∈ N) be the polynomial Taylor expansion of degree n of hδ at the point 0. Pδ,n
converges uniformly to hδ on every compact of (1 + δ)Ωs′ . Hence it is the case on Ω̄s′ . By
a diagonal argument, we obtain a sequence of polynomials (and so of elements of H(Ω̄))
converging to h ∈ H(Ω̄s′). □

We interest to distributions of the form

u =
∑

α0+|α|≤k

∂α0
t D

α
xfα0,α(x, t)

where the fα0,α are continuous functions, valued in Cn, and whose support has a x-
projection contained in a compact K of Ω0 ∩ Rn. We may choose the fα0,α vanishing
when x /∈ K ′ with K ′ a compact neighborhood of K in Ω0 ∩ Rn. We set

gα0(x, t) :=
∑

|α|≤k−α0

Dα
xfα0,α(x, t)

Lemma 5.13. The distribution gα0 can be seen as a continuous function of t valued in
H(Ω̄0,Cm)′ by

Gα0(t) : h 7→
∑

|α|≤k−α0

(−1)|α|
∫
K′
fα0,α(x, t)D

α
xh(x)dx (5.14)
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Proof. We denote d := d(K ′, ∂Ω0). For any h ∈ H(Ω̄0,Cm), we have

|⟨Gα0(t)−Gα0(t
′), h⟩| ≤

∑
|α|≤k−α0

∫
K′

|fα0,α(x, t)− fα0,α(x, t
′)||Dα

xh(x)|dx

≤
∑

|α|≤k−α0

∫
K′

|fα0,α(x, t)− fα0,α(x, t
′)|dx sup

x∈K′
|Dα

xh(x)|

≤
∑

|α|≤k−α0

α!d−|α|
∫
K′

|fα0,α(x, t)− fα0,α(x, t
′)||h|Ω0dx

Moreover

|⟨Gα0(t), h1 − h2⟩| ≤
∑

|α|≤k−α0

∫
K′

|fα0,α(x, t)||Dα
xh1(x)−Dα

xh2(x)|dx

≤
∑

|α|≤k−α0

∫
K′

|fα0,α(x, t)|dx sup
x∈K′

|Dα
x (h1 − h2)(x)|

≤
∑

|α|≤k−α0

α!d−|α|
∫
K′

|fα0,α(x, t)||h1 − h2|Ω0dx

which implies that Gα0(t) is continuous on H(Ω̄0,Cm). □

We write
v =

∑
α0≤k

∂α0
t Gα0

If the Gα0 vanish for t ≤ 0, we may write Gα0 = ∂k−α0
t Hα0 where the Hα0 are continuous

functions valued in H(Ω̄0,Cm)′ and vanish for t < 0. If we set

g :=
k∑

α0=0

Hα0

then we obtain the same type of distribution than before. We can evaluate v on test functions
of the form φ(t)h where h ∈ H(Ω̄0,Cm) and φ ∈ C∞

c (]−T, T [ ,C).

⟨v, φh⟩ =
∑
α0≤k

⟨∂α0
t Gα0 , φh⟩

=
∑
α0≤k

(−1)α0⟨Gα0 , h∂
α0
t φ⟩

=
∑
α0≤k

(−1)α0⟨gα0 , h∂
α0
t φ⟩

= ⟨u, hφ⟩

Hence, if v = 0, then u vanishes on products of the form hφ where φ is a smooth function
with compact support and h is a restriction to Ω0 ∩ Rn of an element of H(Ω̄0,Cm). In
particular, it is the case when h is a polynomial. The linear combinations of such products
are denses in C∞(Rn×]− T, T [). Hence u = 0 and the correspondence u 7→ v is injective.
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We consider a differential operator

A(t) =
n∑
j=1

Aj(z, t)∂zj + A0(z, t)

where Aj ∈ Mm(O(Ω)) with Ω an open neighborhood Ω0×] − T, T [⊂ Ω ⊂ Cn+1. The
distribution A(t)v is associated to a distribution A(t)u where

A(t) =
n∑
j=1

Aj(x, t)∂xj + A0(x, t)

If φ ∈ C∞
c (]− T, T [) and h ∈ E0, then

⟨A(t)v, hφ(t)⟩ = ⟨A(t)u, hφ(t)⟩

= ⟨
n∑
j=1

Aj∂xju+ A0u, hφ(t)⟩

=
n∑
j=1

⟨∂xju, tAj(hφ)⟩+ ⟨u, tA0(hφ)⟩

=
n∑
j=1

−⟨u, φ∂xj( tAjh)⟩+ ⟨u, φ tA0h⟩

= ⟨v, φB(t)h⟩

with

B(t) := −
∑

tAj∂zj +
tA0 −

∑ ∂ tAj
∂zj

Hence B(t) ∈ B(Es, Es′) is the transpose of A(t).
First, we see that B satisfies ( 5.7) for our scale of Banach spaces Es. By Lemma 5.6,

A satisfies ( 5.8). With our definition of the Ωs, we can apply 2.9 to B and so B satisfies
( 5.2). Hence the hypotheses needed to apply our preceeding results are fulfilled and we
are in conidtion to state our first version of Holmgren’s theorem :

Theorem 5.15. Let u be a distribution in (Ω0 ∩ Rn)×]− T, T [ vanishing when x /∈ K for
a certain compact subset K ⊂ Ω0 ∩ Rn. Suppose that

du

dt
= A(t)u

and that u vanishes for t < 0. Then u = 0 in (Ω0 ∩ Rn)×]− T, T [.

Proof. We may decrease T if needed. Then we can write

u =
∑

α0+|α|≤k

∂α0
t D

α
xfα0,α(x, t)

and associate to u a distribution v of t valued in E ′
0 such that vt = A(t)v with A associated

to A and vanishing for t < 0. Hence with the same notations, B satifies ( 5.7) and ( 5.2), A
satisfies ( 5.8). The hypotheses of Lemma 5.10 are fulfilled, then we can apply its corollary
to v. Hence v = 0 and it follows that u = 0 by injectivity. □
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Remark 5.16. This version of Holmgren’s theorem can be named the abstract version
of this theorem in the same way that the Cauchy-Kovalevska theorem. In the following,
we will show the classical version of Holmgren’s theorem, and use it and the notion of
characteristics to state a geometric version of it.

Let Ω ⊂ Rn be an open subset. We consider the following partial differential equation

∂u

∂t
=

n∑
j=1

Aj(x, t)
∂u

∂xj
+ A0(x, t)u (5.17)

where Aj ∈Mm(O(Ω×]− T, T [).

Theorem 5.18. There is an open neighborhood Ω × {0} ⊂ U ⊂ Ω×] − T, T [ such that
every distribution u in Ω×] − T, T [, satisfying ( 5.17) and vanishing for t < 0, must also
vanish in U .

Proof. As usual in these notes, it is sufficient to prove that u is vanishing in a neighborhood
of every point (x0, 0) ∈ Ω× {0} independent of u. Without loss of generality, we can sup-
pose that x0 = 0 and Ω is a neighborhood of the origin. We set the following changement
of variables :

y := x , s := t+ |x|2

We have then
∂xj = ∂yj + 2yj∂s , ∂t = ∂s

which implies
∂u

∂s
=

∂u

∂t

=
n∑
j=1

Aj(x, t)
∂u

∂xj
+ A0(x, t)u

=
n∑
j=1

Aj(x, t)
∂u

∂yj
+

n∑
j=1

2yjAj(x, t)
∂u

∂s
+ A0(x, t)u

Then we have an equation

M(y, s)
∂u

∂s
=

n∑
j=1

Bj(y, s)
∂u

∂yj
+B0(y, s)

where M(y, s) = 1− 2
∑

j y
jBj(y, s) and Bj(y, s) = Aj(y, s− |y|2). As M(0, s) = 1, we

can suppose that if Ω is small enough and y ∈ Ω, M is invertible with an analytic inverse.
Then ( 5.17) is equivalent to the equation

∂u

∂s
=

n∑
j=1

Cj(y, s)
∂u

∂yj
+ C0(y, s)

where Cj = M−1Bj , and u vanishing for t < 0 is equivalent to u vanishing for s < |y|2.
Hence our problem is the same if we suppose u = 0 for t < |x|2 which implies

suppu ⊂ {(x, t) ∈ Ω×]− T, T [|t ≥ |x|2}
If T is small enough, then the x-projection of suppu can be assumed to be contained in a
compact subset K ⊂ Ω. Contracting Ω, it can be assumed to be contained in a polydisk Ω0
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as in Theorem 5.15, such that the Aj can be extended as holomorphic functions to an open
neighborhood of

{(z, t) ∈ Cn+1|z ∈ Ω̄0, |t| ≤ T}
Now, applying Theorem 5.3, we conclude that u = 0 in Ω×] − T, T [ (our restrictions on
this set during the proof were independent of u as wanted). □

Corollary 5.19. Let u be a C1 function satisfying ( 5.17) in Ω×]− T, T [. If for all x ∈ Ω,
u(x, 0) = 0, then u vanishes in a neighborhood of Ω× {0}.

Proof. We denote H the Heaviside’s function and consider ũ : (x, t) 7→ H(t)u(x, t). For
any test function φ, we have

⟨∂tũ, φ⟩ = −⟨Hu, ∂tφ⟩

= −
∫
Ω

∫ T

0

u(x, t)∂tφdtdx

=

∫
Ω

∫ T

0

∂tuφdt+ [uφ]T0 dx

= ⟨H∂tu, φ⟩
Hence ũ satisfies ( 5.17) and vanishes for t < 0. By applying Theorem 5.18, ũ = 0 in a
neighborhood U ⊂ Ω× {0} i.e. u = 0 in U ∩Ω×R+. We obtain the part in Ω×R− with
the same argument using 1−H . □

Remark 5.20. The last statement is what it is called the ’classical’ version of Holmgren’s
theorem. To conclude those notes, we will use the notion of characteristics to state an ’in-
variant’ version of Holmgren’s theorem, in the same way of Cauchy-Kovalevska theorem.

Theorem 5.21. Let P (y,Dy) be a differential operator of order m in an open subset
U ⊂ RN . Suppose that the coefficients of P (y,Dy) are analytic in U . Let Σ be a C1

hypersurface in U such that
U = U + ⊔ Σ ⊔ U −

and Σ is nowhere characteristic with respect to P (y,Dy).
Then there exists a neighborhood Σ ⊂ N ⊂ U such that every distribution u in U ,

satisfying P (y,Dy)u = 0 and vanishing in U −, vanishes in N .

Proof. It is sufficient to prove it in a neighborhood of every point of Σ which can be as-
sumed to be the origin in RN . Let φ be a C1 function in a neighborhood 0 ∈ V ⊂ U such
that Σ ∩ V = φ−1(0) and ∇φ does not vanish in V . We can suppose chosen coordinates
y = (y1, . . . , yN) such that

φ(y) = yN + ◦(|y|)
in V . We set y′ := (y1, . . . , yN−1) and we have δ > 0 such that

V + := V ∩ U + = {y ∈ V |φ(y) > 0} ⊂ {y ∈ V |yN > −δ|y′|}
Let ϵ > 0 and

Wϵ := {y ∈ RN ||y′| < 2ϵδ , |yN | < 4ϵ2δ2}
If ϵ is small enough, then Wϵ ⊂ V and we set

ψ(y) := yN +
1

ϵ
|y′|2
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and
Tϵ := ψ−1(0) ∩ Wϵ

(1)

|∇ψ − (0, . . . , 0, 1)| = |2
ϵ
y′| < 4δ

in Wϵ. Moreover Pm(0, (0, . . . , 0, 1)) ̸= 0, hence, assuming that δ is small enough,
Pm(y,∇ψ) does not vanish in Wϵ, and in particular Tϵ is nowhere characteristic.

(2) If y ∈ ∂Tϵ, then |y′| = 2ϵδ and |yN | = 4δ2ϵ2, which implies

yN = −1

ϵ
|y′|2 = −4ϵδ2 = −2δ|y′| < −δ|y′|

Hence if y ∈ ∂Tϵ, then yN < −δ|y′|.
(3) y 7→ (x, t) = (y′, ψ(y)) defines a diffeomorphism of Wϵ onto W a neighborhood of

the origin in RN .

φ ≥ 0

Wϵ

Σ ∩ V

yN + δ|y′| = 0Wϵ ∩ ψ−1(0)

yN

y′

Trough the last change of variables, the operator becomes

P (x, t,Dx, Dt) = a(x, t)Dm
t +

m∑
j=1

Qj(x, t,Dx)D
m−j
t

where a and the coefficients of theQj are analytic functions in a neighborhood of the origin,
and Qj is of order ≤ j. Moreover, a does not vanish in a neighborhood of the origin.

Let u be a distribution in Wϵ satisfying P (y,Dy)u = 0 and vanishing in Wϵ ∩ V − =
{y ∈ Wϵ|φ(y) < 0}. After the change of variables, we have P (x, t,Dx, Dt)u = 0 in W of
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the form
W = {(x, t) ∈ RN ||x| < r , −t0 < t < t1}

and there is 0 < r′ < r such that u(x, t) = 0 when |x| > r′ and there is 0 < t2 < t0
such that u(x, t) = 0 when −t0 < t < −t2. We know that we can transform the equation
P (x, t,Dx, Dt)u = 0 into a first order-system. We can now apply the Holmgren theorem
to conclude that u = 0 in the neighborhood W .

□


