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Variations of Hodge structures

If n is a non-negative integer, an (integral) variation of Hodge
structures of weight n on an analytic manifold S is the data V = (VZ,F•),
where VZ is an integral local system, namely a locally trivial sheaf in free
Z-modules over S, and

F• : V = F0 ⊃ ... ⊃ Fn ⊃ Fn+1 = 0

is a filtration of the vector bundle V := VZ ⊗Z OS by holomorphic
sub-bundles, satisfying the following properties:

1. For every pair (p, q) of non-negative integers such that p+ q = n:

Fp ⊕ u(Fq+1) = V,
where u is the complex conjugation on V induced by the local
system VZ;

2. The connection ∇ on V whose local system of flat sections is
VC := VZ ⊗Z C satisfies that for every p:

∇(Fp) ⊂ Fp−1 ⊗OS Ω1
S .

In particular, for every pair (p, q) of non-negative integers such that
p+ q = n, we can define an R-analytic vector sub-bundle of V by
Hp,q := Fp ∩ u(Fq), and we get the (R-analytic) Hodge decomposition of
the vector bundle V:

V =
⊕

p,q≥0,
p+q=n

Hp,q.

Thomas Mordant Griffiths heights of pencils of hypersurfaces and GIT



Variations of Hodge structures
If n is a non-negative integer, an (integral) variation of Hodge

structures of weight n on an analytic manifold S is the data V = (VZ,F•),
where VZ is an integral local system, namely a locally trivial sheaf in free
Z-modules over S, and

F• : V = F0 ⊃ ... ⊃ Fn ⊃ Fn+1 = 0

is a filtration of the vector bundle V := VZ ⊗Z OS by holomorphic
sub-bundles, satisfying the following properties:

1. For every pair (p, q) of non-negative integers such that p+ q = n:

Fp ⊕ u(Fq+1) = V,
where u is the complex conjugation on V induced by the local
system VZ;

2. The connection ∇ on V whose local system of flat sections is
VC := VZ ⊗Z C satisfies that for every p:

∇(Fp) ⊂ Fp−1 ⊗OS Ω1
S .

In particular, for every pair (p, q) of non-negative integers such that
p+ q = n, we can define an R-analytic vector sub-bundle of V by
Hp,q := Fp ∩ u(Fq), and we get the (R-analytic) Hodge decomposition of
the vector bundle V:

V =
⊕

p,q≥0,
p+q=n

Hp,q.

Thomas Mordant Griffiths heights of pencils of hypersurfaces and GIT



Variations of Hodge structures
If n is a non-negative integer, an (integral) variation of Hodge

structures of weight n on an analytic manifold S is the data V = (VZ,F•),
where VZ is an integral local system, namely a locally trivial sheaf in free
Z-modules over S, and

F• : V = F0 ⊃ ... ⊃ Fn ⊃ Fn+1 = 0

is a filtration of the vector bundle V := VZ ⊗Z OS by holomorphic
sub-bundles, satisfying the following properties:

1. For every pair (p, q) of non-negative integers such that p+ q = n:

Fp ⊕ u(Fq+1) = V,
where u is the complex conjugation on V induced by the local
system VZ;

2. The connection ∇ on V whose local system of flat sections is
VC := VZ ⊗Z C satisfies that for every p:

∇(Fp) ⊂ Fp−1 ⊗OS Ω1
S .

In particular, for every pair (p, q) of non-negative integers such that
p+ q = n, we can define an R-analytic vector sub-bundle of V by
Hp,q := Fp ∩ u(Fq), and we get the (R-analytic) Hodge decomposition of
the vector bundle V:

V =
⊕

p,q≥0,
p+q=n

Hp,q.

Thomas Mordant Griffiths heights of pencils of hypersurfaces and GIT



Variations of Hodge structures
If n is a non-negative integer, an (integral) variation of Hodge

structures of weight n on an analytic manifold S is the data V = (VZ,F•),
where VZ is an integral local system, namely a locally trivial sheaf in free
Z-modules over S, and

F• : V = F0 ⊃ ... ⊃ Fn ⊃ Fn+1 = 0

is a filtration of the vector bundle V := VZ ⊗Z OS by holomorphic
sub-bundles, satisfying the following properties:

1. For every pair (p, q) of non-negative integers such that p+ q = n:

Fp ⊕ u(Fq+1) = V,
where u is the complex conjugation on V induced by the local
system VZ;

2. The connection ∇ on V whose local system of flat sections is
VC := VZ ⊗Z C satisfies that for every p:

∇(Fp) ⊂ Fp−1 ⊗OS Ω1
S .

In particular, for every pair (p, q) of non-negative integers such that
p+ q = n, we can define an R-analytic vector sub-bundle of V by
Hp,q := Fp ∩ u(Fq), and we get the (R-analytic) Hodge decomposition of
the vector bundle V:

V =
⊕

p,q≥0,
p+q=n

Hp,q.

Thomas Mordant Griffiths heights of pencils of hypersurfaces and GIT



Variations of Hodge structures
If n is a non-negative integer, an (integral) variation of Hodge

structures of weight n on an analytic manifold S is the data V = (VZ,F•),
where VZ is an integral local system, namely a locally trivial sheaf in free
Z-modules over S, and

F• : V = F0 ⊃ ... ⊃ Fn ⊃ Fn+1 = 0

is a filtration of the vector bundle V := VZ ⊗Z OS by holomorphic
sub-bundles, satisfying the following properties:

1. For every pair (p, q) of non-negative integers such that p+ q = n:

Fp ⊕ u(Fq+1) = V,
where u is the complex conjugation on V induced by the local
system VZ;

2. The connection ∇ on V whose local system of flat sections is
VC := VZ ⊗Z C satisfies that for every p:

∇(Fp) ⊂ Fp−1 ⊗OS Ω1
S .

In particular, for every pair (p, q) of non-negative integers such that
p+ q = n, we can define an R-analytic vector sub-bundle of V by
Hp,q := Fp ∩ u(Fq), and we get the (R-analytic) Hodge decomposition of
the vector bundle V:

V =
⊕

p,q≥0,
p+q=n

Hp,q.

Thomas Mordant Griffiths heights of pencils of hypersurfaces and GIT



Griffiths line bundle and Griffiths height

To such a variation of Hodge structures, or more generally to a vector
bundle V endowed with a filtration by vector sub-bundles F•≥0, can be
attached its Griffiths line bundle:

GKS(V,F•) :=

n⊗
i=1

detF i ≃
n⊗

r=0

(detFr/Fr+1)⊗r.

If S is a connected smooth projective complex curve C, one can define
the Griffiths height htGK(V,F•) as the degree of this line bundle over C.

Let V be a variation of Hodge structures of weight n. A polarization is
a bilinear form Q on VZ which is symmetric (resp. antisymmetric) if n is
even (resp. odd), such that, denoting also by Q the induced form on V, for
every p, the orthogonal of Fp is Fn−p+1, and for every (p, q) with p+ q = n,
and for every non-zero v in Hp,q, Q(ip−qv, u(v)) is a positive real number.

Theorem (Griffiths, 1970): The Griffiths height of a polarized variation of
Hodge structures is non-negative, and vanishes if and only if for every p,
the sub-bundle Fp of V is flat relatively to the connection ∇.
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Logarithmic connections and residues

Let C be a complex smooth projective curve, ∆ a finite subset of C,
and C̊ its complement in C. We define a line bundle on C by:

Ω1
C(log∆) := Ω1

C ⊗OC OC(∆).

For every x in ∆, there is a canonical isomorphism of vector spaces:

resx : Ω1
C(log∆)x

∼−→ C.

If z is a local coordinate at x, it maps dz
z

to 1.
If V is a vector bundle on C, a logarithmic connection on V is a

C-linear morphism of sheaves:

∇ : V −→ V ⊗OC Ω1
C(log∆),

which satisfies Leibniz’ rule. For every x in ∆, the residue of ∇ at x is the
endomorphism of Vx defined by:

Resx(∇) := (IdVx ⊗ resx) ◦ ∇x : Vx −→ Vx ⊗C Ω1
C(log∆)x −→ Vx.

Fact: If Tx is the local monodromy of the vector bundle with connection
(V,∇)|C̊ on a neigborhood of x where V is trivialized, the following equality
holds, up to conjugation:

Tx = e−2iπResx(∇).
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Deligne extensions of a vector bundle with connection

Let (V,∇) be a vector bundle with connection on C̊, and for every x in
∆, Tx the local monodromy of (V,∇) at x and (αx,j)j its eigenvalues.

Theorem (Deligne): For every choice of logarithms (log(αx,j))x,j, there is
a unique (up to isomorphism) vector bundle with logarithmic connection
(V,∇) on C, whose restriction to C̊ is isomorphic to (V,∇), such that for
every x in ∆, the eigenvalues of the residue Resx(∇) are (− 1

2iπ
log(αx,j))j.

Example: if for every x, Tx is unipotent, namely Tx − Id is nilpotent,
then it is natural to choose log(αx,j) := 0 for every x, j, so that the residues
are nilpotent. This defines the canonical Deligne extension.

In general, there are two natural choices: taking the only logarithms
whose imaginary parts are in [0, 2π[ (resp. ]− 2π, 0]). The real parts of the
eigenvalues of the residues are then in ]− 1, 0] (resp. [0, 1[). This defines the
upper (resp. lower) Deligne extension (V+,∇+) (resp. (V−,∇−)).

Observe that if for every x, the monodromy Tx is quasi-unipotent with
order a multiple of r ≥ 1, namely if T r

x − Id is nilpotent, then the
eigenvalues of the residues of the upper (resp. lower) Deligne extension can
be written as − k

r
(resp. k

r
) where k is an integer such that 0 ≤ k < r.
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Peters’ construction; the heights htGK,+(V),htGK,−(V)

Let V = (VZ,F•) be a variation of Hodge structures on C̊.

Fact (Griffiths, Schmid): The sub-bundles Fp of V on C̊ can be extended
into sub-bundles Fp± of the Deligne extension V±.

Therefore we can extend the filtration F• of V into a filtration F•
± of

the Deligne extension V±, and define the upper and lower Griffiths-Kato
heights:

htGK,±(V) := htGK(V±,F
•
±).

Theorem (Peters, 1984): If the variation of Hodge structures V is polarized,
then the height htGK,+(V) is non-negative, and it vanishes if and only if the
Fp are flat for the connection ∇ and if the local monodromy is unipotent.
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The height htGK,stab(V)

Fact (Borel, Schmid): For every x in ∆, the local monodromy Tx at x of
the vector bundle with connection (V,∇) defined by the variation of Hodge
structures V is quasi-unipotent.

For every x in ∆, let rx ≥ 1 be an integer such that T rx
x − Id is

nilpotent.
Let C′ be a connected smooth projective complex curve and

σ : C′ → C a finite morphism such that for every x′ in C′ with image x in
∆, the morphism σ has an expression in local coordinates of the form:

σ : t′ 7→ t′sx′ ,

where sx′ ≥ 1 is a multiple of rx. In particular, the local monodromy of
(σ∗V, σ∗∇) at every point of σ−1(∆) is unipotent. We define the stable
Griffiths-Kato height of V:

htGK,stab(V) :=
1

deg(σ)
htGK,+(σ

∗V).

It does not depend on the choice of C′ and σ.
The three heights satisfy the following inequalities:

htGK,−(V) ≤ htGK,stab(V) ≤ htGK,+(V),

and equalities hold if the local monodromy of (V,∇) at every point of ∆ is
unipotent.
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Example: ordinary double points and Picard-Lefschetz theorem I

Let H be a smooth N -dimensional analytic manifold, Σ a finite subset
of H, and f : H −→ C a morphism which is smooth outside Σ.

We further assume that the singularities Σ of the singular fibers of f
are ordinary double points, namely that for every P in Σ, the Hessian of f
at P is an invertible matrix.
One also says that f admits a non-degenerate critical point at every point
P in Σ.

Let ∆ be the image of Σ by f , and C̊ be its complement subset.

Theorem (Picard-Lefschetz): For every x in ∆, if N is even, the local
monodromy at x of the variation of Hodge structures HN−1(HC̊/C̊) is
unipotent; and if N is odd, its only eigenvalues are 1 and −1 and the
multiplicity of −1 is the cardinal |Σx|.
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Example: ordinary double points and Picard-Lefschetz theorem II

Theorem (Eriksson, Freixas, Mourougane): If N is odd, the eigenvalue −1
“only appears in F (N−1)/2/F (N−1)/2+1”.

Consequently, if N is even:

htGK,+(HN−1(HC̊/C̊)) = htGK,stab(HN−1(HC̊/C̊)) = htGK,−(HN−1(HC̊/C̊))

and if N is odd:

htGK,+(HN−1(HC̊/C̊)) = htGK,−(HN−1(HC̊/C̊)) +
N − 1

2
|Σ|,

htGK,stab(HN−1(HC̊/C̊)) = htGK,−(HN−1(HC̊/C̊)) +
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Explicit computations of Griffiths heights in significant geometric
situations ?

Surprisingly, despite these definitions being four decades old, besides
the positivity results of Griffiths and Peters, basically nothing was known
concerning the Griffiths heights of variations of Hodge structures in weight
≥ 2.

A strong incentive to get a better understanding of these numbers has
been the introduction by Kato of Kato’s heights of motives, which are their
arithmetic counterparts, when functions fields of complex curves are
replaced by number fields.

The goal of my PhD thesis was to compute the Griffiths heights in
various significant geometric situations, concerning the middle-dimensional
cohomology of pencils of projective varieties:
▶ pencils of projective hypersurfaces;
▶ Lefschetz pencils;
▶ pencils of projective surfaces with b1 = 0.
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II. Griffiths heights of pencils of projective hypersurfaces
and alternating sums of Griffiths heights
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Pencils of projective hypersurfaces

Let E be a vector bundle of rank N + 1 over a connected projective
smooth complex curve C, and

π : P(E) := ProjS•E∨ −→ C

the associated projective bundle. Moreover let OE(−1) be the tautological
vector sub-bundle of rank one of π∗E, and OE(1) its dual.

A horizontal hypersurface in the projective bundle P(E) is an effective
Cartier divisor H in P(E) such that the restriction π|H : H → C is a flat
morphism. Then its fibers Hx := π−1

|H (x), x ∈ C are hypersurfaces in the
projective spaces P(Ex) ≃ PN (C). Their degree d does not depend on
x ∈ C, and defines the relative degree of the horizontal hypersurface.

The intersection-theoretic height of H is defined by the rational
number:

htint(H/C) :=

∫
P(E)

c1(OE(1))
N ∩ [H] + dNµ(E)

= (−1)N (N + 1)−N

∫
P(E)

c1(ωP(E)/C)
N ∩ [H].

It depends only on H as a subscheme of the projective bundle
P := P(E), and not on the actual choice of a vector bundle E such that
P ≃ P(E).
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PPH Theorem

Let C be a connected smooth projective complex curve with generic point
η, E a vector bundle of rank N + 1 on C, and H ⊂ P(E) an horizontal
hypersurface of relative degree d, smooth over C, such that π|H : H → C has
a finite set Σ of critical points, all of which are non-degenerate. Then:

|Σ| = (N + 1)(d− 1)N htint(H/C)

and for ε ∈ {+,−, stab}, we have:

htGK,ε(HN−1(Hη/Cη)) = Fε(d,N) htint(H/C),

where, when N is odd:

Fstab(d,N) :=
N + 1

24d2

[
(d− 1)N (d2N − d2 − 2dN − 2) + 2(d2 − 1)

]
,

F±(d,N) := Fstab(d,N)± (N + 1)(N − 1)(d− 1)N

4
,

and when N is even:

F±(d,N) = Fstab(d,N) :=
N + 1

24d2

[
(d− 1)N (d2N + 2d2 − 2dN − 2)− 2(d2 − 1)

]
.
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“Sanity checks”

One finds:

Fstab(3, 3) =
4

24.32
[
23(32.3− 32 − 2.3.3− 2) + 2(32 − 1)

]
= 0.

When d = N = 3, the PPH theorem then gives:

htGK,stab(H2(Hη/Cη)) = 0.

In fact, for a cubic surface, we have: h2,0 = h0,2 = 0 (and h1,1 = 7) and the
sub-bundles Fp of the VHS H2(Hη/Cη) are flat.

We have htint(H/C) ≥ 0 if d ≥ 2, and Fstab(d,N) ≥ 0 and
F+(d,N) ≥ 0 as predicted by Peters’ theorem.

But F−(d,N) can be negative!
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Indirect strategy of proof!

Computation inspired by:
▶ Hirzebruch’s computation of the Hodge numbers of projective

hypersurfaces, using the weak Lefschetz theorem and the
Hirzebruch-Riemann-Roch theorem.

▶ Eriksson, Freixas and Mourougane’s work on the BCOV invariants
attached to families of Calabi-Yau manifolds, introduced in the article:
Bershadsky, Cecotti, Ooguri, Vafa: Kodaira-Spencer Theory of Gravity
and Exact Results for Quantum String Amplitude, Comm. Math. Phys.
1994.

Their work leads to consider, when the smooth fibers of the morphism g are
Calabi-Yau manifolds, the alternating sum:

2n∑
k=0

(−1)k−1 htGK,−(Hk(Yη/Cη)) =
∑

0≤p≤n

(−1)p−1p deg detR•g∗ω
p
Y/C .

In this case, it is the degree of the BCOV line bundle, whose metric
properties are studied by Eriksson, Freixas and Mourougane.

This alternating sum remains relevant for the study of pencils
g : Y → C of arbitrary projective varieties!
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Vector bundle of relative logarithmic differential forms

Let Y be a n-dimensional smooth projective analytic manifold. A
divisor with normal crossings is a 1-codimensional analytic subspace D of Y
which is, locally near every point, given by the equation (ym1

1 ...y
mk
k = 0),

where (y1, ..., yn) is a local coordinate system and where m1, ...,mk are
integers.

We will call it a divisor with strict normal crossings if it can be written
as a finite union

⋃
i Di where the Di are smooth. We will call it reduced if

the mi can be taken to be equal to 1.

If D is a divisor with normal crossings, we define the vector bundle of
logarithmic differential forms Ω1

Y (logD): on a neighborhood of a point
where D is defined by the equation (ym1

1 ...y
mk
k = 0), this bundle is

generated by the family:(
dy1
y1

, ...,
dyk
yk

, dyk+1, ..., dyn

)
.

If g is a morphism from Y to a smooth curve C, which is smooth over
the complement of a finite subset ∆, and such that Y∆ := g−1(∆) is a
divisor with normal crossings, we define a vector bundle of rank n− 1 on Y
by:

ω1
Y/C := Ω1

Y (log Y∆)/g∗Ω1
C(log∆).
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Main theorem. I

Let C be a connected smooth projective complex curve with generic
point η and Y a N-dimensional connected smooth projective manifold, and
let g : Y → C be a surjective morphism.

We assume that there exists a finite subset ∆ ⊂ C such that g is smooth
over C \∆ and that Y∆ is a divisor with strict normal crossings in Y .

Then we have:

2(N−1)∑
n=0

(−1)n−1htGK,−(Hn(Yη/Cη)) =

∫
Y

ρN−1(ω
1∨
Y/C)

Td([Tg])

Td(ω1∨
Y/C)

where [Tg] := [TY/C]− g∗[TC/C] ∈ K0(Y ), and where Td is the Todd genus
and ρN−1 is the characteristic class:

ρN−1 := cN−2 −
N − 1

2
cN−1 +

1

12
c1cN−1.
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“Ingredients” for the proof of the main theorem

▶ Steenbrink’s theory: identification of the lower Deligne extension of
Hn(Yη/Cη) (resp. of grpFH

p+q(Yη/Cη)) with Rng∗(ω
•
Y/C) (resp.

Rqg∗(ω
p
Y/C)), where ωp

Y/C := Λpω1
Y/C , and ω•

Y/C denotes the
logarithmic variant of the relative de Rham complex; establishes the
equality:

2n∑
k=0

(−1)k−1 htGK,−(Hk(Yη/Cη)) =
∑

0≤p≤n

(−1)p−1p deg detR•g∗ω
p
Y/C ;

▶ the Grothendieck-Riemann-Roch theorem:

degC detR•g∗F =

∫
Y

ch(F)Td([Tg]);

▶ an equality of characteristic classes:

N−1∑
p=0

(−1)p−1p ch(ΛpE∨)Td(E) = ρN−1(E) mod CH≥N+1

for every vector bundle E of rank N − 1 (already in [BCOV]).

Thomas Mordant Griffiths heights of pencils of hypersurfaces and GIT



“Ingredients” for the proof of the main theorem
▶ Steenbrink’s theory:

identification of the lower Deligne extension of
Hn(Yη/Cη) (resp. of grpFH

p+q(Yη/Cη)) with Rng∗(ω
•
Y/C) (resp.

Rqg∗(ω
p
Y/C)), where ωp

Y/C := Λpω1
Y/C , and ω•

Y/C denotes the
logarithmic variant of the relative de Rham complex; establishes the
equality:

2n∑
k=0

(−1)k−1 htGK,−(Hk(Yη/Cη)) =
∑

0≤p≤n

(−1)p−1p deg detR•g∗ω
p
Y/C ;

▶ the Grothendieck-Riemann-Roch theorem:

degC detR•g∗F =

∫
Y

ch(F)Td([Tg]);

▶ an equality of characteristic classes:

N−1∑
p=0

(−1)p−1p ch(ΛpE∨)Td(E) = ρN−1(E) mod CH≥N+1

for every vector bundle E of rank N − 1 (already in [BCOV]).

Thomas Mordant Griffiths heights of pencils of hypersurfaces and GIT



“Ingredients” for the proof of the main theorem
▶ Steenbrink’s theory: identification of the lower Deligne extension of

Hn(Yη/Cη) (resp. of grpFH
p+q(Yη/Cη)) with Rng∗(ω

•
Y/C) (resp.

Rqg∗(ω
p
Y/C)), where ωp

Y/C := Λpω1
Y/C , and ω•

Y/C denotes the
logarithmic variant of the relative de Rham complex;

establishes the
equality:

2n∑
k=0

(−1)k−1 htGK,−(Hk(Yη/Cη)) =
∑

0≤p≤n

(−1)p−1p deg detR•g∗ω
p
Y/C ;

▶ the Grothendieck-Riemann-Roch theorem:

degC detR•g∗F =

∫
Y

ch(F)Td([Tg]);

▶ an equality of characteristic classes:

N−1∑
p=0

(−1)p−1p ch(ΛpE∨)Td(E) = ρN−1(E) mod CH≥N+1

for every vector bundle E of rank N − 1 (already in [BCOV]).

Thomas Mordant Griffiths heights of pencils of hypersurfaces and GIT



“Ingredients” for the proof of the main theorem
▶ Steenbrink’s theory: identification of the lower Deligne extension of

Hn(Yη/Cη) (resp. of grpFH
p+q(Yη/Cη)) with Rng∗(ω

•
Y/C) (resp.

Rqg∗(ω
p
Y/C)), where ωp

Y/C := Λpω1
Y/C , and ω•

Y/C denotes the
logarithmic variant of the relative de Rham complex; establishes the
equality:

2n∑
k=0

(−1)k−1 htGK,−(Hk(Yη/Cη)) =
∑

0≤p≤n

(−1)p−1p deg detR•g∗ω
p
Y/C ;

▶ the Grothendieck-Riemann-Roch theorem:

degC detR•g∗F =

∫
Y

ch(F)Td([Tg]);

▶ an equality of characteristic classes:

N−1∑
p=0

(−1)p−1p ch(ΛpE∨)Td(E) = ρN−1(E) mod CH≥N+1

for every vector bundle E of rank N − 1 (already in [BCOV]).

Thomas Mordant Griffiths heights of pencils of hypersurfaces and GIT



“Ingredients” for the proof of the main theorem
▶ Steenbrink’s theory: identification of the lower Deligne extension of

Hn(Yη/Cη) (resp. of grpFH
p+q(Yη/Cη)) with Rng∗(ω

•
Y/C) (resp.

Rqg∗(ω
p
Y/C)), where ωp

Y/C := Λpω1
Y/C , and ω•

Y/C denotes the
logarithmic variant of the relative de Rham complex; establishes the
equality:

2n∑
k=0

(−1)k−1 htGK,−(Hk(Yη/Cη)) =
∑

0≤p≤n

(−1)p−1p deg detR•g∗ω
p
Y/C ;

▶ the Grothendieck-Riemann-Roch theorem:

degC detR•g∗F =

∫
Y

ch(F)Td([Tg]);

▶ an equality of characteristic classes:

N−1∑
p=0

(−1)p−1p ch(ΛpE∨)Td(E) = ρN−1(E) mod CH≥N+1

for every vector bundle E of rank N − 1 (already in [BCOV]).

Thomas Mordant Griffiths heights of pencils of hypersurfaces and GIT



“Ingredients” for the proof of the main theorem
▶ Steenbrink’s theory: identification of the lower Deligne extension of

Hn(Yη/Cη) (resp. of grpFH
p+q(Yη/Cη)) with Rng∗(ω

•
Y/C) (resp.

Rqg∗(ω
p
Y/C)), where ωp

Y/C := Λpω1
Y/C , and ω•

Y/C denotes the
logarithmic variant of the relative de Rham complex; establishes the
equality:

2n∑
k=0

(−1)k−1 htGK,−(Hk(Yη/Cη)) =
∑

0≤p≤n

(−1)p−1p deg detR•g∗ω
p
Y/C ;

▶ the Grothendieck-Riemann-Roch theorem:

degC detR•g∗F =

∫
Y

ch(F)Td([Tg]);

▶ an equality of characteristic classes:

N−1∑
p=0

(−1)p−1p ch(ΛpE∨)Td(E) = ρN−1(E) mod CH≥N+1

for every vector bundle E of rank N − 1 (already in [BCOV]).

Thomas Mordant Griffiths heights of pencils of hypersurfaces and GIT



Main theorem II – Notation

With the notation of the main theorem, let us write the divisor Y∆ as
follows:

Y∆ =
∑
i∈I

miDi,

where I is a finite set, equipped with a total order ≺, and where
(mi)i ∈ (N∗)I and the Di are pairwise distinct non-singular connected
divisors of Y .

The set I can be written as the disjoint union:

I =
⋃
x∈∆

Ix,

where, for every x ∈ ∆,

Ix :=
{
i ∈ I | g(Di) = {x}

}
.

For every r ≥ 1, let Dr be the r-codimensional closed subscheme of Y
defined by:

Dr :=
⋃

J⊂I,|J|=r

⋂
i∈J

Di.

Finally let:

D̊i := Di \Di ∩D2 and D̊ij := Dij \Dij ∩D3.
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J⊂I,|J|=r

⋂
i∈J

Di.

Finally let:

D̊i := Di \Di ∩D2 and D̊ij := Dij \Dij ∩D3.
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Main theorem II – Statement

Under the hypotheses of the main theorem, the following equality holds:

2(N−1)∑
n=0

(−1)n−1htGK,−(Hn(Yη/Cη)) =
1

12

∫
Y

c1(ω
1∨
Y/C)cN−1(ω

1∨
Y/C) +

∑
x∈∆

αx,

where for every x in ∆, αx ∈ Q is defined by:

αx =
N − 1

4

∑
i∈Ix

(mi − 1)χtop(D̊i) +
1

12

∑
(i,j)∈I2x,

i≺j

(
3− mi

mj
− mj

mi

)
χtop(D̊ij)

where χtop denotes the topological Euler characteristic.
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Characteristic classes of logarithmic differentials

αx :=
N − 1

4

∑
i∈Ix

(mi − 1)χtop(D̊i) +
1

12

∑
(i,j)∈I2x,

i≺j

(
3− mi

mj
− mj

mi

)
χtop(D̊ij),

=
1

12

∑
i∈Ix

[
3(N − 1)(mi − 1)χtop(D̊i) +

∫
Di

c1(Ni)cN−2(Ω
1∨
Di

(logDi ∩D2))
]

+
1

4

∑
(i,j)∈I2x,

i≺j

χtop(D̊ij) ∈ (1/12)Z,

where, for every i, Ni denotes the normal bundle of the divisor Di in Y .

If E =
⋃

i∈I Ei is a divisor with strict normal crossings in a smooth
manifold X, we have:

c(Ω1
X(logE)) =

∑
J⊂I

iEJ∗c(Ω
1
EJ

),

where iEJ : EJ :=
⋂

j∈J Ej ↪→ X.
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Applications: pencils of projective varieties with ordinary double points

Let C be a connected smooth projective complex curve with generic
point η, H a N -dimensional connected smooth projective complex
manifold, and:

f : H −→ C

a surjective morphism.
We assume that there exists a finite subset Σ of H such that f is smooth

on H \ Σ and admits a non-degenerate critical point at every point of Σ.
Then for ε ∈ {+,−}, the following equality holds:

2(N−1)∑
n=0

(−1)n−1htGK,ε(Hn(Hη/Cη)) =
1

12

∫
H

c1([Ω
1
H/C ]

∨)cN−1([Ω
1
H/C ]

∨)

+ uε
N |Σ|,

where (u+
N , u−

N ) :=

{(
− (7N − 9)/24, (5N − 3)/24) if N is odd(
N/24, N/24

)
if N is even.
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“Ingredients” for the formula on pencils with ordinary double points

▶ The construction of the blow-up

ν : H̃ −→ H

of Σ in H and of the composition

g := f ◦ ν : H̃ −→ C,

so that the following equality of divisors of H̃ holds:

H̃∆ = 2E +W,

where E and W are smooth divisors with normal intersection;

▶ Eriksson, Freixas and Mourougane’s computation of the elementary
exponents of a degeneration with ordinary double points, which implies
the following equality:

htGK,+(Hn(Hη/Cη))) = htGK,−(Hn(Hη/Cη))) + δn,N−1ηN
N − 1

2
|Σ|,

where ηN is 1 if N is odd and 0 if N is even;

▶ a classical computation of characteristic classes on H̃.
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PH Theorem

Let C be a connected smooth projective complex curve with generic
point η, X a (N + 1)-dimensional connected smooth projective complex
manifold, and

π : X −→ C

a smooth surjective complex morphism. Let H be a non-singular
hypersurface of X such that the restriction π|H : H −→ C is a flat morphism
and has a finite set Σ of critical points, all of which are non-degenerate.

If L denotes the line bundle OX(H) on X, then the following equality
holds:

|Σ| =
∫
X

(1− c1(L))
−1c(Ω1

X/C).

If moreover L is ample relatively to π, then for ε ∈ {+,−}, we have:

htGK,ε(HN−1(Hη/Cη))

= htGK(HN−1(X/C)) + htGK(HN+1(X/C))− htGK(HN (X/C))

+
1

12

∫
X

[
(1− c1(L))

−1c1(Ω
1
X/C)c(Ω

1
X/C)− c1(L)cN (Ω1

X/C)
]
+ vεN |Σ|,

where (v+N , v−N ) :=

{(
7(N − 1)/24,−5(N − 1)/24

)
if N is odd(

(N + 2)/24, (N + 2)/24
)

if N is even.
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Proof of the PH theorem

▶ The main theorem applied to X/C;
▶ the main theorem applied to H/C;
▶ the weak Lefschetz theorem which gives, for every n < N − 1, the

equality:
htGK(Hn(X/C)) = htGK,±(Hn(Hη/Cη)),

and Poincaré duality;
▶ a classical computation of characteristic classes.
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Applications of the PH theorem: the PPH theorem

When the Griffiths-Kato bundles GKC(Hn(X/C)), 0 ≤ n ≤ 2N are
trivial on C, the PH theorem gives the following formula:

htGK,ε(HN−1(Hη/Cη))

=
1

12

∫
X

[
(1− c1(L))

−1c1(Ω
1
X/C)c(Ω

1
X/C)− c1(L)cN (Ω1

X/C)
]
+ vεN |Σ|.

(1)

We can notably apply this formula when X is a projective bundle P(E)
where E is a vector bundle of rank N + 1 on C, π is the projection, and H
is an horizontal hypersurface of relative degree d of P(E).

The structure of the Picard group Pic(P(E)) then shows that the line
bundle L := OP(E)(H) on P(E) can be written as:

L ≃ OE(d)⊗ π∗M,

where M is a line bundle on C.
Using computations of characteristic classes, formula (1) applied in this

situation implies the PPH theorem.
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where M is a line bundle on C.
Using computations of characteristic classes, formula (1) applied in this

situation implies the PPH theorem.
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III. Pencils of projective hypersurfaces and geometric invariant
theory
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Motivation and reminders on geometric invariant theory

Let C be a connected smooth projective complex curve with generic
point η, and N and d two positive integers.

A smooth hypersurface Hη of degree d in PN
C(C) admits two natural

heights: the stable Griffiths-Kato height htGK,stab(HN−1(Hη/Cη)) of its
middle-dimensional cohomology, and a height htGIT ([F ]), constructed using
geometric invariant theory, attached to the point [F ] of P(

N+d
N )−1(C(C))

defined by an homogeneous form F in C(C)[X0, . . . , XN ]d defining Hη.
Let us recall some notions of geometric invariant theory. Let k be an

algebraically closed field, e and v two positive integers, and

ρ : GLe,k −→ GLv,k

an algebraic group morphism between linear groups over k.
Thanks to geometric invariant theory, we get the open subset Pv−1

k,ss of
Pv−1
k defined by the semistable points under the action of ρ|SLe,k

, and a
morphism:

q : Pv−1
k,ss −→ M(ρ) := Pv−1

k //SLe,k,

which is a good quotient of the k-scheme Pv−1
k,ss by the action of ρ|SLe,k

.
Moreover M(ρ) is projective and endowed with a natural ample Q-line

bundle L such that:
q∗L ≃ OPv−1

k
(1)|Pv−1

k,ss
.
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GIT height of a point in Pv−1
ss (k(C))

Now let C be a connected smooth projective k-curve with generic point
η and P a point in Pv−1

ss (k(C)). Using the valuative criterion of properness,
the point

q(P ) ∈ M(ρ)(k(C))

extends into a morphism of k-schemes:

q(P ) : C −→ M(ρ).

We can then define the GIT height of the point P to be the rational
number:

htGIT (P ) := degC(q(P )
∗
L).

It is compatible with base change in the following sense: if σ : C′ → C
is a finite k-morphism of connected smooth projective curves, the following
equality holds:

htGIT (Pk(C′)) = deg(σ) htGIT (P ).

If moreover the representation ρ is homogeneous, namely maps GmIde

into GmIdv, then the height htGIT is invariant under the action of
GLe(k(C)) on Pv−1(k(C)) through ρ.
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Application to pencils of projective hypersurfaces

Let us assume that the base field is k = C, fix N and d two positive
integers, define e := N + 1 and v :=

(
N+d
N

)
, and consider the homogeneous

representation:

ρ : GLe,C −→ GLv,C, g 7−→ Sd(tg−1).

We interpret Pv−1
C as the space of hypersurfaces of degree d in PN

C , and
the action of ρ as the natural action of GLN+1 on homogeneous
polynomials of degree d with N + 1 indeterminates.

For every vector bundle E of rank N + 1 on C whose generic fiber is
trivialised, for every horizontal hypersurface H of degree d in P(E) whose
generic fiber in PN

C(C) is defined by an homogeneous polynomial F which is
semistable relatively to the action of ρ|SLN+1

, the following inequality holds:

htGIT ([F ]) ≤ htint(H/C). (2)

Moreover equality holds in (2) if and only if all the fibers Hx, x ∈ C,
seen as hypersurfaces of degree d of the projective spaces P(Ex) ≃ PN

C , are
semistable relatively to the action of ρ|SLN+1

.
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Comparison of the heights htGK,stab and htGIT

The semistability of projective hypersurfaces relatively to the action of
ρ|SLN+1

is a “classical" topic: it is well-known that smooth hypersurfaces of
degree d > 2 are always stable (Jordan, Mumford).

Moreover hypersurfaces of degree d in PN whose only singularities are
ordinary double points are semistable when N ≥ 2 and d ≥ 3 (TM 2023, see
also Tian 1994 or Lee 2008 when d ≥ N + 1).

Applying the PPH theorem, one obtains that for every smooth
hypersurface Hη of degree d in PN

C(C) defined by an homogeneous form F in
C(C)[X0, . . . , XN ]d, the following equality holds:

htGK,stab(HN−1(Hη/Cη)) = Fstab(d,N) htGIT ([F ])

when N ≥ 2, d ≥ 3, and the hypersurface Hη of PN
C(C) admits for model an

horizontal hypersurface H ⊂ P(E) in the projective bundle P(E) associated
to a vector bundle E of rank N + 1 on C, satisfying the hypotheses of the
PPH theorem.
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Applying the PPH theorem, one obtains that for every smooth
hypersurface Hη of degree d in PN

C(C) defined by an homogeneous form F in
C(C)[X0, . . . , XN ]d, the following equality holds:

htGK,stab(HN−1(Hη/Cη)) = Fstab(d,N) htGIT ([F ])

when N ≥ 2, d ≥ 3, and the hypersurface Hη of PN
C(C) admits for model an

horizontal hypersurface H ⊂ P(E) in the projective bundle P(E) associated
to a vector bundle E of rank N + 1 on C, satisfying the hypotheses of the
PPH theorem.
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Conclusion: arithmetic analogues ?
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Question: Kato height of an hypersurface over a number field

We consider an homogeneous polynomial P ∈ Z[X0, ..., XN ]d, such that

Disc(P ) ̸= 0,

and we consider the smooth hypersurface

H := (P = 0) ⊂ PN
Q .

We want to compute the Kato height:

htK(HN−1(H)) ∈ R

in a “general” situation, for instance when the discriminant Disc(P ) is
square-free.

The “computations” of my PhD thesis point towards a global strategy
for the computation of Kato’s height over number fields, but there are still
various essential steps left to complete:
▶ Use of the p-adic comparison theorems,
▶ Understanding of the asymptotics of the analytic torsions associated to

families of smooth complex hypersurfaces when they acquire
singularities (for which I intend to collaborate with Gerard Freixas).
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