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Effective statistics of pairs of fractional powers of complex grid points

Rafael Sayous

Using a standard definition of fractional powers on the universal cover exp : S → C∗, where S is the
standard infinite helicoid embedded in R3, we study the statistics of pairs at various scalings from the
countable family {nα : n ∈ exp−1(3)} for every complex grid 3 and every real parameter α ∈ ]0, 1[. We
prove the convergence of the empirical pair correlation measures towards a rotation-invariant measure
with explicit density. In particular, with the scaling factor N 7→ N 1−α , we prove that there exists an exotic
pair correlation function which exhibits a level repulsion phenomenon. For other scaling factors, we prove
that either the pair correlations are Poissonian or there is a total loss of mass. We give an error term for
this convergence.

1. Introduction

Let G be a locally compact metric additive group. In order to comprehensively understand the distribution
of a countable family (ui )i∈I in G, an essential aspect involves analysing the statistics of the spacings
between selected pairs of these points, seen at various scalings. The approach consisting in taking all pairs
into account is the study of pair correlations. More precisely, let φ : [0,+∞[ → GG be a scaling function
and h : I → [0,+∞] be a height function (i.e., a nonnegative function that every set {i ∈ I : h(i)≤ N } is
finite). Our focus lies on the asymptotic of the multisets FN = {φ(N )(ui −u j )}h(i),h( j)≤N ,i ̸= j as N → ∞.

These problems initially occurred in physics, especially in quantum chaos, which has lead to a purely
mathematical point of view of pair correlations. See for instance [Rudnick and Sarnak 1998; Aichinger
et al. 2018; Larcher and Stockinger 2020a] for questions directly linked to quantum physics. Determining
the behaviour of pair correlations for a deterministic numerical sequence may present an intriguing
challenge; see [Rudnick and Sarnak 1998; Boca and Zaharescu 2005; Larcher and Stockinger 2020b;
Lutsko and Technau 2022; Lutsko 2022; Parkkonen and Paulin 2022; 2024]. For instance, when α > 0 is
small enough, the sequence ({nα})n∈N, where { · } denotes the fractional part function, exhibits a behaviour
commonly called Poisson pair correlations, as proven by C. Lutsko, A. Sourmelidis and N. Technau
[Lutsko et al. 2024], as well as in the special case α =

1
2 , as shown by D. El-Baz, J. Marklof and

I. Vinogradov [El-Baz et al. 2015].
In our setting, the metric group G will then be (C,+). Recall that a complex Z-lattice is a discrete

additive subgroup of C generating C as a real vector space, and that a complex subset 3 is called a Z-grid
if there exist a (unique) Z-lattice 3⃗ and a complex number z ∈ C such that 3= z + 3⃗. The spaces LatC
of complex Z-lattices, and GridC of complex Z-grids, are endowed with the Chabauty topology (since
lattices and grids are closed subsets of C). In this introduction, all grids and lattices are assumed to be
unimodular (i.e., of covolume 1 such as the lattice Z[i]). In what follows, we fix a real number α ∈ ]0, 1[

MSC2020: 11J83, 11K38, 11P21, 28A33.
Keywords: pair correlations, level repulsion, fractional power, lattices, convergence of measures.

© 2025 MSP (Mathematical Sciences Publishers).

http://msp.org
http://msp.org/cnt
https://doi.org/10.2140/cnt.2025.14-1


14 RAFAEL SAYOUS

and a unimodular Z-grid 3 ∈ GridC. We have chosen to widen our focus, working with grids instead
of lattices only, since grids have become trendy in number theoretical issues; see for instance [Elkies
and McMullen 2004; Shapira 2013; Aka et al. 2016; Lim et al. 2019; Moshchevitin et al. 2024]. Let
γ ∈ ]0, 1[, which we use as a parameter for the scaling in this introduction. To conduct a much more
involved study than [Sayous 2023] on the pair correlation statistics of the real sequence (nα)n∈N, we
will define a sequence of measures for the pair correlations of the “α powers” of grid points in 3. In
this introduction, we present the case α = 1/b, where b ∈ N − {0}. In this particular case, the study we
conduct can be simplified and translated to the statistics of scaled differences N γ (v− u), where u, v are
b-th roots of grid points with norm less than N. Such a scaling factor N γ is a usual choice; see [Weiss
2023; Nair and Pollicott 2007]. In other words, we study the sequence of empirical pair correlation
measures given by

RN =
α

N 2(2−α−γ )

∑
n,m∈3, n ̸=m
0<|n|,|m|≤N

∑
u,v∈C∗

ub
=m, vb

=n

1N γ (v−u),

where, for all complex numbers z ∈ C, we denote by 1z the Dirac mass at z. We denote by LebC the
Lebesgue measure on C, and we define the nonnegative measurable function ρ = ρα,γ,3⃗ by

ρ : z 7→


0 if γ > 1 −α,

π

α2(2−α)
if γ < 1 −α,

α
2

1−α

(1−α)
|z|−

4−2α
1−α

∑
p∈3⃗

|p|≤|z|/α
|p|

2
1−α if γ = 1 −α.

We use the notation D(z0, r) = {z ∈ C : |z − z0| < r} for open disks. For all Radon measures µN , for
N ∈ N, and µ on C, the sequence (µN )N∈N is said to vaguely converge towards µ if, for every continuous
function f : C → C with compact support, we have the convergence µN ( f )→ µ( f ). In this case, we
write µN

∗
⇀µ.

Theorem 1.1. We have the following vague convergence, as N → ∞:

RN
∗
⇀ρ LebC .

This result will be proven effective in the following sense: let f ∈ C1
c (C), choose A > 1 such that

supp f ⊂ D(0, A) and assume that γ = 1 −α. Then, we have a rate for this convergence, given by the
estimate, as N → ∞,

RN ( f )=

∫
C

f (z)ρ(z) dz + Oα,3

(
A4(∥ f ∥∞ + ∥d f ∥∞)

N

)
.

Theorem 1.1 indicates that ρ describes the pair correlations of α = 1/b powers of grid points. This is
essentially a particular case of Theorem 2.1, the main result of the present paper which holds for every
real number α ∈ ]0, 1[ and for which we give an error term in Remark 4.2. The proof of Theorem 1.1
using Theorem 2.1 and some counting lemma is done at the very end of Section 4.

In other words, the pair correlations for the b-th roots of grid points have a constant density if γ < 1−α

(we say that these pair correlations exhibit a Poisson behaviour), have an exotic density if γ = 1 −α and
there is a total loss of mass if γ > 1−α. This phase transition phenomenon frequently appears in the study
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Figure 1. The graph of the function ρ restricted to the disk D(0, 1) in the case α =
1
3 ,

γ = 1 −α =
2
3 and 3= Z[i].

of pair correlations; see for instance [Parkkonen and Paulin 2022; 2024; Sayous 2023]. We must insist here
that we are not looking for any pseudorandom behaviour: the set3 is a typical example of a well-distributed
set (when seen from afar), and we are interested in the way the function z 7→ zα (which is transcendental if
α /∈ Q) modifies this set at the level of pair correlations, since of course this function does not preserve gaps.

The study of pair correlation in a noncompact setting has already been fruitful in various fields. On
G = R, the lengths of closed geodesics in negative curvature have Poisson pair correlation or converge to
an exponential probability measure (depending on the scaling factor) [Pollicott and Sharp 2006; Parkkonen
and Paulin 2023]. Still on G = R, for real points α, β satisfying some diophantine condition, the image
of Z2 by the quadratic form (x, y) 7→ (x −α)2 +(y −β)2 also exhibits a Poisson pair correlation [Marklof
2003] (see also [Marklof 2002] for a related result in higher dimension). On the group G = (K ,+), where
K is a p-adic field with integer ring denoted by O , the pair correlations of squares of integers {z2

: z ∈ O}

has also been studied in [Zaharescu 2003] and has a behaviour which can arguably be called Poisson.
In Section 2, we first define a more general setting for pair correlations than the one of Theorem 1.1,

using the universal cover C of C∗ and dividing it into levels: this novel technical step will allow us to
retrieve some algebraic properties of integer powers for fractional ones, giving us technically handy
geometric interpretations of the studied pairs throughout the paper. Then, we state Theorem 2.1, which is
the main theorem in this paper and of which Theorem 1.1 is a special case, as well as a version using
separated levels, namely Theorem 2.8, and we end this section by proving the main lemmas we will use
for the proof of the latter theorem. In Section 3, we prove Theorem 2.8, using a linear approximation,
an approximation of Riemann sums after appropriate changes of variable defined locally (depending
on the levels introduced in Section 2), an averaging argument over levels (which is necessary to avoid
discrepancy as illustrated in Figure 2), and various counting results. In Section 4, we give an upper bound
on the number of pairs which were counted out by separating the grid points into levels in Section 2,
allowing us to straightforwardly derive Theorem 2.1 from Theorem 2.8. The change of variable step is
inspired by the unfolding technique, illustrated in [Marklof 2002, §2.1]. But this paper cannot be reduced
to the unfolding technique, in particular for obtaining the error terms.
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Figure 2. The complex points N 19/42(n23/42
− m23/42) of only “one level” (with the

notation of Section 2.1, these are the points N 19/42(n[23/42,0]
−m[23/42,0])) inside the disk

D
(
0, 3

2

)
for lattices points m, n ∈ Z[i] with 0< |m|, |n| ≤ N = 20.

One may consider generalising Theorem 1.1 to any discrete set of constant density instead of a complex
grid, and we expect the error term given after Theorem 1.1 (or the more precise version given in Remark 4.2
for Theorem 2.1) to be particularly more complicated to compute.

2. The main statement and technical lemmas

Throughout this paper, we fix α ∈ ]0, 1[ as well as 3 a Z-grid in C (not necessarily unimodular). We
denote by 3⃗ its underlying Z-lattice. We set

S = {(reiω, ω) : r > 0, ω ∈ R} ⊂ C × R.

A standard way in complex analysis to define a power function is to use the Riemann surface S. On the
universal cover exp : C → C∗ of C∗, we set 3S = exp−1(3), which consists of infinitely many copies
of the grid 3 (minus the origin if 3 contains 0): for every t ∈ R, the map exp restricts to a bijection
3S ∩{z : t ≤ Im(z) < t +2π} →3. We use the identification z 7→ (exp(z), Im(z)) between the universal
cover C and the helicoid S. The set 3S is then identified with {(n, ω) : n ∈ 3, ω ∈ arg(n)} ⊂ S. We
define the α power function on this surface by

Powα : S → S, (reiω, ω) 7→ (rαeiαω, αω),



EFFECTIVE STATISTICS OF PAIRS OF FRACTIONAL POWERS OF COMPLEX GRID POINTS 17

which corresponds to the multiplication by α on the universal cover C. We are then interested in pair corre-
lations of the countable set Powα(3S). Let πC (resp. πR) denote the projection on the complex (resp. real)
coordinate of C × R. To focus on the complex part of such three-dimensional vector differences, we
flatten them and we study the statistical distribution of the complex differences πC(Powα(n)− Powα(m))
for all m, n ∈3S such that |πR(n −m)|< 2π . This condition is introduced for the points m and n to be on
the same “copy” of C∗ in its universal cover C. This is not a constraint since we multiply all differences
Powα(n)−Powα(m) by a scaling factor going to infinity and evaluate the related measures on a compactly
supported function: after rescaling, pairs of points failing to satisfy this condition uniformly give rise to
differences in C × R escaping all compact subsets. Let φ,ψ : N → ]0,+∞[ be two functions converging
to +∞, which we respectively call the scaling factor and the renormalization factor. Throughout this
paper, we fix λ ∈ [0,+∞] and we assume the following convergence and formula:

φ(N )
N 1−α

→ λ ∈ [0,+∞] as N → ∞, (1)

ψ(N )=

(
N 2−α

φ(N )

)2

for all N ∈ N. (2)

Compared to the case of the Introduction, taking into account all directions of noncompactness in S ⊂C×R,
the need for two new integer parameters N ′ and N ′′ emerges. We are interested in the multi-index sequence
of empirical pair correlation measures whose formula is given for all N , N ′, N ′′

∈ N − {0} by

Rα,3
N ,N ′,N ′′ =

1
(N ′ + N ′′)ψ(N )

∑
m,n∈3S, n ̸=m
|πR(n−m)|<2π

0<|πC(m)|,|πC(n)|≤N
−2πN ′

≤πR(m),πR(n)<2πN ′′

1φ(N )(πC(Powα(n)−Powα(m)))

=
1

(N ′ + N ′′)ψ(N )

∑
m,n∈3, n ̸=m
0<|m|,|n|≤N

∑
r∈exp−1(m), s∈exp−1(n)

|Im(r)−Im(s)|<2π
−2πN ′

≤Im(r),Im(s)<2πN ′′

1φ(N )(exp(αs)−exp(αr)). (3)

Let covol3⃗ be the covolume of 3⃗, i.e., the area of any fundamental parallelogram of 3⃗. Set ρα,3⃗,λ as the
nonnegative measurable function of formula

ρα,3⃗,λ : z 7→


0 if λ= +∞,

π

α2(2−α) covol2
3⃗

if λ= 0,

α
2

1−α

(1−α) covol3⃗

(
|z|
λ

)−
4−2α
1−α

∑
p∈3⃗

|p|≤|z|/(αλ)
|p|

2
1−α if λ ∈ ]0,+∞[.

The next two results will be proven at the end of Section 4.

Theorem 2.1. We have the vague convergence, as min{N , N ′
+ N ′′

} → ∞,

Rα,3
N ,N ′,N ′′

∗
⇀ρα,3⃗,λ LebC .

For an error term in this convergence, see Remark 4.2. In the case α ∈ ]0, 1[∩Q, we write its irreducible
form α = a/b and obtain the following result.
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Theorem 2.2. We have the vague convergence, as N → ∞,

R
a
b ,3

N ,0,b
∗
⇀ρ a

b ,3
LebC .

Remark 2.3. Theorem 2.2 is not an immediate consequence of Theorem 2.1 since N ′
+ N ′′

= 0 + b does
not go to infinity.

2.1. Separation into levels. We use the notation R+ = [0,+∞[. For every real number β, every integer k
and every nonzero complex number z, we begin by defining the level-k β power of z as

z[β,k]
= |z|βeiβωk , where ωk is the representative in [2πk, 2π(k + 1)[ of arg(z).

In other words, for every z ∈ C − R+, we set z[β,k]
= eβ(log(z)+i2πk), where the map log : C − R+ 7→ C is

the branch of the logarithm with branch cut R+ and satisfying log(−1)= iπ , and we extend this definition
to C∗ in an “upper” continuous way, namely when Im(z)≥ 0. For the particular case k = 0, we use the
notation zβ = z[β,0]. This nonstandard choice of branch cut is handy for the following formula: for all
z, z′

∈ C∗ and all k ∈ Z,
z[β,k]

z′[β,k]
=

(
z
z′

)β
or

(
z
z′

)[β,−1]

,

depending on the sign of the difference ω − ω′ of the argument representatives ω of z and ω′ of z′,
both taken in [0, 2π [. In comparison, taking the principal branch of the logarithm to define these power
functions would have required to separate into three cases, whether the difference ω− ω′ belongs to
]− 2π,−π ], ]−π, π] or ]π, 2π ]. With the formula zβ = eβ log(z), we obtain the linear approximation, as
z → 0 with the restriction Im(z)≥ 0,

(1 + z)α = 1 +αz + Oα(|z|2). (4)

Note that the image of C∗ by the level-k β power function z 7→ z[β,k] is the semiopen angular sector
{z ∈ C∗

: arg(z) ∈ [2πkβ, 2π(k + 1)β[ mod 2π}, in other words the sector of angle 2βπ centred at the
argument 2π

(
k +

1
2

)
β mod 2π .

We define the multi-index sequence of level-separated empirical pair correlation measures by

Rα,3,lvl
N ,N ′,N ′′ =

1
(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
n,m∈3, n ̸=m
0<|n|,|m|≤N

1φ(N )(n[α,k]−m[α,k]). (5)

In comparison to the definition Rα,3
N ,N ′,N ′′ from the beginning of Section 2, in the measure Rα,3,lvl

N ,N ′,N ′′ we
do not take into account pairs of points illustrated with dotted arrows in Figure 3. Recall that the scaling
and renormalization factors φ and ψ satisfy the convergence (1) and the formula (2).

Theorem 2.4. We have the following vague convergence of positive measures, as min{N , N ′
+ N ′′

} → ∞,

Rα,3,lvl
N ,N ′,N ′′

∗
⇀ρα,3⃗,λ LebC .

A qualitative illustration of this convergence is shown by comparing Figure 4 to Figure 1, in the
exotic case λ = 1. Since the modulus function | · | from C to R+ is continuous and proper and since
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Figure 3. On the left, the helicoidal Riemann surface S. On the right, an illustration
of the points (dots) r ∈ exp−1(3) ⊂ C. The (dotted and plain) two-headed arrows corre-
spond to pairs of grid points appearing in the definition of the empirical pair correlation
measure Rα,3

N ,N ′,N ′′ . The distinction between dotted and plain two-headed arrows will be
explained before Theorem 2.4.
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Figure 4. The empirical distribution obtained for the measure R
1/3,Z[i],lvl
N ,N ′,N ′′ with N = 70

and N ′
+ N ′′

= 3 in the case λ = 1, using a smoothing process of the library SciPy of
Python.

the function ρα,3⃗,λ is invariant under rotation, the hypotheses of Theorem 2.4 also imply the vague
convergence, as the minimum min{N , N ′

+ N ′′
} → ∞,

1
(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
n,m∈3, n ̸=m
0<|n|,|m|≤N

1φ(N )|n[α,k]−m[α,k]|

∗
⇀ 2πrρα,3⃗,λ(r) dr.
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Figure 5. The empirical radial distribution of R
1/3,Z[i],lvl
N ,N ′,N ′′ for N ′

+ N ′′
= 3 and different

values of N (N = 10 in pink, N = 30 in orange, N = 50 in green, and N = 80 in blue)
using the scaling factor N 7→ N 2/3 (and renormalization factor N 7→ N 2), and the limit
density r 7→ ρ1/3,Z[i],1(r) (in red).

As an illustration of the latter convergence, a radial profile is drawn on Figure 5, in the exotic case λ= 1.
We denote by diam3⃗ the minimal diameter over all fundamental parallelograms of 3⃗ and by sys3⃗ the

systole (or Minkowski’s first minimum) of the Z-lattice 3⃗, that is to say

sys3⃗ = min{|p| : p ∈ 3⃗, p ̸= 0}> 0.

We mention that the diameter diam3⃗ is comparable to the quantity covol3⃗ /sys3⃗ thanks to the second
theorem of Minkowski.

Remark 2.5. In the exotic case λ ∈ ]0,+∞[, one can notice that we have ρα,3⃗,λ = 0 on the open disk
C(0, αλ sys3⃗). This property is called a level repulsion phenomenon. The fact that the radius αλ sys3⃗ of
this level repulsion disk converges to +∞ as λ→ +∞ can be interpreted as a continuity result between
the cases λ ∈ ]0,+∞[ and λ= +∞. Such a continuity observation may also be made between the cases
λ ∈ ]0,+∞[ and λ= 0, since the Gauss counting argument (more precisely, its version for β = 2/(1−α)

stated in Lemma 2.10) indicates that, for all λ ∈ ]0,+∞[,

ρα,3⃗,λ(z) |z|→∞
−−−→

π

α2(2 −α) covol2
3⃗

.

Remark 2.6. Notice that ρα,3⃗,λ is rotation-invariant and, if λ ∈ ]0,+∞[, the points of discontinuity of
ρα,3⃗,λ constitute the union of circles

⋃
p∈3⃗−{0}

C(0, αλ|p|). By comparison, extending the definition
of Rα,3,lvl

N ,N ′,N ′′ to the simplistic case α = 1, choosing the scaling factor N 7→ 1 (hence λ = 1) and the
renormalization factor N 7→ N 2, a standard Gauss argument and a Riemann sum approximation grants
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the vague convergence, as N → ∞,

R1,3,lvl
N ,N ′,N ′′ =

1
N 2

∑
n,m∈3, n ̸=m
0<|n|,|m|≤N

1n−m
∗
⇀

π

covol3⃗

∑
p∈3⃗−{0}

1p.

In particular, the limit measure is not rotation-invariant: we lose some symmetry in this extreme case
α = 1.

Remark 2.7. Upon an appropriate rescaling in terms of α, a continuity statement can be made between
the cases α ∈ ]0, 1[ and α = 0. We impose the scaling factor φ(N )= N 1−α (hence λ= 1) for this remark.
Up to rotation, we can assume that the grid 3 contains no nonzero point on the branch cut R+ of the log
function involved in the definition of α-powers with levels. For all k ∈ Z, all n,m nonzero grid points
in 3 and all integers N ∈ N, notice that we have the convergence, as α → 0+,

1
α

N 1−α(n[α,k]
− m[α,k])−→ N (log(n)− log(m)). (6)

We set

R
3,log
N =

1
N 2

∑
n,m∈3, n ̸=m
0<|n|,|m|≤N

1N (log(n)−log(m)),

which is (up to the choice of a branch cut for the logarithm function) the empirical pair correlation
measure studied in [Parkkonen and Paulin 2024, §3] for logarithm of grid points. Using Theorem 2.4 and
the fact that z 7→ z/α is continuous and proper for the top convergence arrow, the convergence (6) for the
left-hand convergence arrow, and the dominated convergence theorem for the right-hand convergence
arrow, we obtain the following diagram of vague convergence:(

z 7→
z
α

)
∗

Rα,3,lvl
N ,N ′,N ′′

∗
⇀

min(N ,N ′+N ′′)→∞

(
z 7→

z
α

)
∗

ρα,3⃗,λ LebC = α2ρα,3⃗,λ(αz) dz

α

↓
0+

⇀

∗
α

↓
0+

⇀

∗

R
3,log
N

|z|4

covol3⃗

∑
p∈3⃗

|p|≤|z|
|p|

2 dz.

The bottom convergence arrow missing to this diagram has been proven in [Parkkonen and Paulin 2024,
Theorem 3.1].

In order to state an effective version of Theorem 2.4, we will use the space C1
c (C) of continuously

differentiable functions of two real variables f : C → C, with the standard notation ∥ f ∥∞ = supz∈C | f (z)|
and ∥d f ∥∞ = supz∈C ∥d f (z)∥, where ∥ · ∥ is the operator norm on the space of R-linear applications
from C to C. We use Landau’s notation: for two sets of parameters P and P ′ with P ′

⊂ P, for functions
F,G : N 7→ C depending on (at least) the parameters in P ′, we write F(N )= OP ′(G(N )) if there exists
some constant cP ′ > 0, depending only on P ′, and some integer N0, depending on all the parameters
in P, such that, for all N ≥ N0, we have the inequality |F(N )| ≤ cP ′ |G(N )|. In our study, each time
we will use Landau’s notation, a test function f ∈ C1

c (C) will have been fixed, a bound A on the size
of its support will have been taken (i.e., supp f ⊂ D(0, A)) and our sets of parameters will always be
P = {α,3, φ,ψ, A} and P ′

= {α}, {3} or {α,3} (hence using the notation Oα, O3 or Oα,3). It is
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important to keep in mind that the rank N0 may only depend on the parameters in P. In particular, it
does not depend on the parameters N ′, N ′′, ∥ f ∥∞, ∥d f ∥∞, nor on any other index temporarily fixed in
the proof of a lemma or a theorem.

For all f ∈ C1
c (C) and A > 1, if λ= +∞ we set ErrThm2.8(α,3, f, A)= 0, and otherwise we define

ErrThm2.8(α,3, f, A)

=


Oα,3

(
A4(∥ f ∥∞ + ∥d f ∥∞)

(
φ(N )
N 1−α

+
1

Nαφ(N )
+

1
N ′ + N ′′

))
if λ= 0,

Oα,3

(
(∥ f ∥∞ + ∥d f ∥∞)

(
λ+

1
λ

)10−8α
1−α

(
A

8−6α
1−α

∣∣∣∣ φ(N )λN 1−α
− 1

∣∣∣∣ + A4

N
+

A2

N ′ + N ′′

))
if λ ∈ ]0,+∞[.

Theorem 2.8. Let f ∈ C1
c (C) and choose A > 1 such that supp f ⊂ D(0, A).

• If λ= +∞, then there exists an integer N0 which depends on α, 3 and A such that for all N ≥ N0 and
all N ′, N ′′

∈ N we have Rα,3,lvl
N ,N ′,N ′′( f )= 0.

• If λ ∈ [0,+∞[, as N → ∞, we have

Rα,3,lvl
N ,N ′,N ′′( f )=

∫
C

f (z)ρα,3⃗,λ(z) dz + ErrThm2.8(α,3, f, A).

Remarks 2.9. • By a standard approximation argument of a function in C0
c (C) by functions in C1

c (C),
Theorem 2.4 is an immediate consequence of Theorem 2.8.

• For a version of the error term in Theorem 2.8 with explicit dependence on parameters of the grid 3
(but not on the power parameter α), see [Sayous ≥ 2025].

• In the case α = a/b ∈ Q, for all integers N ∈ N and k ∈ Z − {0}, we have the periodicity formula
R

a/b,3,lvl
N ,0,kb = R

a/b,3,lvl
N ,0,b . This implies that we have, as N → ∞,

R
a
b ,3,lvl
N ,0,b

∗
⇀ρα,3⃗,λ LebC .

2.2. Counting lemmas. Set sys3 = min{|m| : m ∈3,m ̸= 0}> 0. This quantity is not commonly used for
studying grids, except when the grid is a lattice, in which case sys3 is the usual systole. It will be useful
for many computations throughout this paper. The next lemma is a well-known result which will be useful
in order to explicitly compute the limit function ρα,3⃗,λ as well as to bound error terms for Theorem 2.8.

Lemma 2.10. For every real number β ≥ 0, there exists a constant Cβ,3 > 0 such that, for all x ≥ 1,∣∣∣∣ ∑
m∈3

0<|m|≤x

|m|
β

−
2π

covol3⃗

xβ+2

β + 2

∣∣∣∣ ≤ Cβ,3xβ+1.

For every real number β >−2, we have the (less explicit) estimate, as x → ∞,∑
m∈3

0<|m|≤x

|m|
β

=
2π

covol3⃗

xβ+2

β + 2
+ Oβ,3(xβ+1

+ 1).

In the case β = −2, we have the following estimate, as x → +∞:∑
m∈3

0<|m|≤x

1
|m|2

∼
2π

covol3⃗
log(x).
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For every real number β <−2, we have the convergence∑
m∈3−{0}

|m|
β <∞.

Proof. We recall Abel’s summation formula: for every real sequence (ak)k≥1, all real numbers 1 ≤ x0 ≤ x
and all functions f : [x0,+∞[ → R of class C1 on ]x0,+∞[, we have the equality∑

x0≤k≤x

ak f (k)=

( ∑
1≤k≤x

ak

)
f (x)−

( ∑
1≤k<x0

ak

)
f (x0)−

∫ x

x0

( ∑
1≤k≤t

ak

)
f ′(t) dt. (7)

Let x ≥ 1 and F be a closed fundamental parallelogram of 3⃗ containing 0 with minimal diameter.
For the case β = 0, we follow the standard Gauss counting argument. Set Ax = {m ∈3 : 0< |m| ≤ x}

and Bx =
⋃

m∈Ax
(m + F ), so that we have the equality LebC(Bx)= Card(Ax) covol3⃗. The definition of

diam3⃗ yields the inclusions

D(0, x − diam3⃗)⊂ Bx ⊂ D(0, x + diam3⃗), (8)

where the closed disk D(0, x − diam3⃗) is empty if x < diam3⃗. Computing the Lebesgue measure of
these disks gives

π

covol3⃗
max{0, x − diam3⃗}

2
≤ Card(Ax)≤

π

covol3⃗
(x + diam3⃗)

2, (9)

which is even valid in the case 0 ≤ x < 1 and implies the lemma in the case β = 0.
Assume β >0. Consider the sequence (ak =Card{m ∈3 : k−1< |m|≤ k})k≥1. We have the inequalities∑

1≤k≤x

ak(k − 1)β ≤

∑
m∈3

0<|m|≤x

|m|
β

≤

∑
1≤k≤⌈x⌉

akkβ .

Let ⌊·⌋ denote the lower integral part on R. Applying Abel’s formula (7) to f : t 7→ tβ then f : t 7→ (t −1)β

with x0 = 1, together with the case β = 0 to estimate
∑

1≤k≤x ak = Card(A⌊x⌋), proves the lemma in the
case β > 0.

Assume β ∈ ]−2, 0[. Then we have the inequalities∑
2≤k≤x

akkβ ≤

∑
m∈3

1<|m|≤x

|m|
β

≤

∑
2≤k≤⌈x⌉

ak(k − 1)β . (10)

Applying Abel’s formula (7) to f : t 7→ tβ then f : t 7→ (t −1)β with x0 = 2, proves the estimate, as x →∞,∑
m∈3

1<|m|≤x

|m|
β

=
2π

covol3⃗

xβ+2

β + 2
+ Oβ

(1 + diam2
3⃗

covol3⃗
xβ+1

)
.

Combining this with the inequality ∑
m∈3

0<|m|≤1

|m|
β

≤ sysβ3
π(1 + diam2

3⃗
)

covol3⃗

coming from (9), the lemma is proven in the case β ∈ ]−2, 0[.



24 RAFAEL SAYOUS

The case β = −2 directly comes from the inequalities (10) and the same application of Abel’s formula,
since then the only diverging term is equivalent to, as x → ∞,

−

∫ x

2

π

covol3⃗
t2 f ′(t) dt ∼

2π
covol3⃗

log(x)

in both cases where f is given by t 7→ 1/t2 or by t 7→ 1/(t − 1)2.
For the case β <−2, using the case β = 0 from (9), we can directly compute∑

m∈3
0<|m|≤x

|m|
β

=

∑
m∈3

0<|m|≤3diam3⃗

|m|
β

+

∑
m∈3

3diam3⃗<|m|≤x

|m|
β

≤ Oβ,3(1)+
1

covol3⃗

∫
C−D(0,2diam3⃗)

(|z| − diam3⃗)
β dz = Oβ,3(1),

which gives an upper bound independent of x for the sum. □

Another helpful tool is given in the next lemma: it will allow us to count grid points that are near a
given straight line.

Lemma 2.11. Let g : R+ → R+ be a nonnegative piecewise continuous function and set Lg = {x + iy :

x ≥ 0, y ∈ R and |y| ≤ g(x)}. Then, for all N ∈ N, we have the inequality

Card(3∩ D(0, N )∩ Lg)≤ 4
N∑

x=1

(1 + diam3⃗)(max[x−1,x] g + diam3⃗)

covol3⃗
.

Proof. Fix N ∈ N − {0}. For every x ∈ {1, . . . , N }, let mx denote the real number max[x−1,x] g and
consider the rectangle Rx = [x − 1, x] + i[−mx ,mx ]. We have the inequality

Card(3∩ D(0, N )∩ Lg)≤

N∑
x=1

Card(3∩ Rx).

For each x , let us denote by R̃x the diam3⃗-neighbourhood of Rx for the infinity norm defined by
∥z∥∞ = max{|Re(z)|, |Im(z)|} (so that R̃x is a rectangle, see Figure 6). Using Gauss counting argument,
the inequality between the Euclidean norm and the infinity norm then yields the inequality, for all
x ∈ {1, . . . , N },

Card(3∩ Rx) covol3⃗ ≤ vol(R̃x)= (1 + 2diam3⃗)(2mx + 2diam3⃗).

Summing over x ∈ {1, . . . , N } proves the lemma. □

2.3. Symmetry lemma. By the change of variable p = n −m, we can rewrite the definition (5) as follows

Rα,3,lvl
N ,N ′,N ′′ =

1
(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
p∈3⃗−{0}

∑
m∈3

0<|m+p|,|m|≤N

1φ(N )((m+p)[α,k]−m[α,k]). (11)

For any number z ∈ C∗, recall the notation zα = z[α,0] for its level-0 α power. Let θ : C∗
→ R denote the

projection of the argument function onto [0, 2π [. For all nonzero complex numbers z, z′, the definition of
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g

R

−g

1 R2 Rx

R
~
x

RN

N0 1 1−x x

diam→
Λ

Figure 6. Counting grid points close to the real line, proof of Lemma 2.11.

their level-k α power yields the formula

z[α,k]

z′[α,k]
=

(
z
z′

)[α,l]

,

where l = ⌊(θ(z)−θ(z′))/(2π)⌋ = 0 or−1 depending on the sign of θ(z)−θ(z′), independently of k. Set

I +

N = {(m, p) ∈3× (3⃗− {0}) : 0< |m|, |m + p| ≤ N and θ(m + p) > θ(m)},

I −

N = {(m, p) ∈3× (3⃗− {0}) : 0< |m|, |m + p| ≤ N and θ(m + p) < θ(m)}.

In other words, putting aside the case θ(m + p)= θ(m) for now, the set I +

N (resp. I −

N ) contains the indices
(m, p) in (11) satisfying the formula, for all k ∈ Z,

(m + p)[α,k]

m[α,k]
=

(
1 +

p
m

)α (
resp.

(m + p)[α,k]

m[α,k]
=

(
1 +

p
m

)[α,−1])
.

Let Rα,3,+
N ,N ′,N ′′ (resp. Rα,3,−

N ,N ′,N ′′) denote the part of Rα,3,lvl
N ,N ′,N ′′ with indices in I +

N (resp. in I −

N ) in (11). One
can notice a one-to-one correspondence between I +

N and I −

N given by the map (m, p) 7→ (m + p,−p).
This yields the formula

Rα,3,−
N ,N ′,N ′′ = (z 7→ −z)∗R

α,3,+
N ,N ′,N ′′ . (12)

The next lemma indicates that the contribution of the indices (m, p) which do not belong to I +

N nor
I −

N is negligible. Combined with the formula (12), we will be able to derive the vague convergence of
Rα,3,lvl

N ,N ′,N ′′ from the one of Rα,3,+
N ,N ′,N ′′ .
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Lemma 2.12. Let f ∈ C1
c (C) and choose A > 1 such that supp f ⊂ D(0, A). We have the estimate, as

N → ∞,

Rα,3,lvl
N ,N ′,N ′′( f )= Rα,3,+

N ,N ′,N ′′( f )+ Rα,3,−
N ,N ′,N ′′( f )+ Oα,3

(
N∥ f ∥∞

ψ(N )

((
AN 1−α

φ(N )

)
+ 1

)2)
.

Proof. The difference Rα,3,lvl
N ,N ′,N ′′( f )− (Rα,3,+

N ,N ′,N ′′( f )+ Rα,3,−
N ,N ′,N ′′( f )) is

1
(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
p∈3⃗−{0}

∑
m∈3

0<|m+p|,|m|≤N
θ(m+p)=θ(m)

f (φ(N )((m + p)[α,k]
− m[α,k])). (13)

Fix k ∈ Z. Our goal is then to count pairs of points (m, p) ∈ 3 × (3⃗ − {0}) satisfying the in-
equalities 0 < |m|, |m + p| ≤ N, the equality of arguments θ(m + p) = θ(m) and the inequality
|φ(N )((m+p)[α,k]

−m[α,k])|≤ A. We denote by I =

N ,A the set of such indices (m, p) (which indeed does not
depend on k thanks to the formula z[α,k]

=ei2πkαzα). Let (m, p)∈ I =

N ,A. We denote byω=θ(m)=θ(m+p)
their common argument in [0, 2π [. The function z 7→ z[α,k] is regular when we restrict it to the segment
[m,m + p]: the complex-valued function g : t 7→ (m + pt)[α,k]

= (|m|+ t |p|)αeiα(ω+2πk) is differentiable
and its derivative is given by g′

: t 7→ αeiα(ω+2πk)
|p|/(|m| + t |p|)1−α. It is minimal in modulus when

t = 1, for which we have |g′(1)| = α|p|/|m + p|
1−α. The mean value inequality then grants us

A
φ(N )

≥ |(m + p)[α,k]
− m[α,k]

| = |g(1)− g(0)| ≥
α|p|

|m + p|1−α
.

From this, we derive the main inequality that we will use to count such pairs of points, namely

|p| ≤
AN 1−α

αφ(N )
. (14)

As N → ∞, (9) indicates that there are only Oα((1/ covol3⃗)(AN 1−α/(αφ(N ))+diam3⃗)
2) points p ∈ 3⃗

satisfying the inequality (14). Let us fix such a point p. Then, for the points 0, m and m + p to be aligned,
the nonzero grid point m + p has to be chosen on the ray from 0 to p. Since moreover it has to be in the
closed disk D(0, N ), there are at most N/sys3⃗ ways to choose the point m + p. This counting argument
yields, as N → ∞,

Card(I =

N ,A)= Oα

(
N

sys3⃗ covol3⃗

((
AN 1−α

αφ(N )

)
+ diam3⃗

)2)
= Oα,3

(
N

((
AN 1−α

αφ(N )

)
+ 1

)2)
. (15)

The triangle inequality applied to (13) gives the estimate stated in the lemma. □

Remark 2.13. Since the renormalization factor is given by ψ(N )= (N 2−α/φ(N ))2, in the case λ= 0 of
Theorem 2.8, the estimate of Lemma 2.12 becomes

Rα,3,lvl
N ,N ′,N ′′( f )= Rα,3,+

N ,N ′,N ′′( f )+ Rα,3,−
N ,N ′,N ′′( f )+ Oα,3

(
A2

∥ f ∥∞

N

)
.
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2.4. Linear approximation. Thanks to Lemma 2.12 and the symmetry formula (12), for every f ∈ C1
c (C),

we can focus on the asymptotic behaviour of the sequence (Rα,3,+
N ,N ′,N ′′( f ))N ,N ′,N ′′∈N, whose formula can

be rewritten

Rα,3,+
N ,N ′,N ′′( f )=

1
(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
(m,p)∈I +

N

f
(
φ(N )m[α,k]

((
1 +

p
m

)α
− 1

))
. (16)

Define another sequence of positive measures by

µ+

N ,N ′,N ′′ =
1

(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
(m,p)∈I +

N

1φ(N )αp/m[1−α,k] .

The next result is a linear approximation lemma.

Lemma 2.14. Let f ∈ C1
c (C) and choose A > 1 such that supp f ⊂ D(0, A). We assume that

φ(N )
N 1−α

N→∞
−−−→ λ ∈ [0,+∞[.

Then we have, as N → ∞,

Rα,3,+
N ,N ′,N ′′( f )−µ+

N ,N ′,N ′′( f )= Oα,3

(
∥d f ∥∞

(
A4

Nαφ(N )
+

A2φ(N )
N 2−α

)
+ ∥ f ∥∞

(
A3

Nαφ(N )
+
φ(N )2

N 3−2α

))
.

Proof. Fix k ∈ Z. For all (m, p) ∈ I +

N , we want to bound from above the quantity∣∣∣∣ f
(
φ(N )m[α,k]

((
1 +

p
m

)α
− 1

))
− f

(
φ(N )

αp
m[1−α,k]

)∣∣∣∣. (17)

By the hypothesis supp f ⊂ D(0, A), in order for the latter quantity not to be equal to 0, the index (m, p)
has to satisfy (at least) one of the two inequalities

|p| ≤
A|m|

1−α

αφ(N )
or

∣∣∣∣(1 +
p
m

)α
− 1

∣∣∣∣ ≤
A

|m|αφ(N )
. (18)

Let I +

N ,A be the subset of I +

N consisting of such indices. Let (m, p) ∈ I +

N ,A. Note that the inverse of the
map z 7→ zα is Lipschitz continuous on a small neighbourhood of 1 = 1α in the image of z 7→ zα. This
neighbourhood may be taken to be D(1, 1)∩ {z ∈ C : Im(z)≥ 0} ∩ (z 7→ zα)(C∗), which is convex and
where (z 7→ zα)−1 has its derivative’s norm lesser than 21/α−1/α. Then, as a consequence of (18), since

A
|m|αφ(N )

≤
A

sysα3 φ(N )
→ 0 as N → ∞,

we have the estimate, as N → ∞, ∣∣∣∣ p
m

∣∣∣∣ = Oα

(
A

|m|αφ(N )

)
. (19)

(Recall that, thanks to the definition of Oα, the latter estimate is uniform over any temporarily fixed
variable, in particular over (m, p) ∈ I +

N ,A). One may notice that (19) implies that m + p and m are not
independent grid points: they have to be close together since p has to satisfy |p| = Oα(A|m|

1−α/φ(N )).
With the consequential estimate |p| = Oα(AN 1−α/φ(N )), we use the Gauss counting argument from (9)
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(summing over 3⃗ with x = Oα(AN 1−α/φ(N ))) to deduce a result that we will use twice in the remaining
part of the proof: as N → ∞, we have the estimate (uniformly for every grid point m ∈3),

Card{p ∈ 3⃗− {0} : (m, p) ∈ I +

N ,A} = Oα,3

((
AN 1−α

φ(N )
+ 1

)2)
. (20)

Recall the linear approximation (4) as z → 0 with the restriction Im(z)≥ 0. In order to apply it to most
fractions z = p/m, we have to take out the indices (m, p) for which Im(p/m) < 0 holds. For that matter,
we first notice that for all (m, p) ∈ I +

N ,A, the inequality Im(p/m) < 0 holds if, and only if, we have
θ(m + p)− θ(m) ∈ ]π, 2π [ (since Im(p/m) = Im((m + p)/m)). We denote by I bad

N ,A the set of these
indices. Then, by use of (19), for all indices (m, p) ∈ I bad

N ,A, we have the estimate, as N → ∞,∣∣∣∣ p
m

∣∣∣∣ =

∣∣∣∣m + p
m

− 1
∣∣∣∣ =

∣∣∣∣∣∣∣∣1 +
p
m

∣∣∣∣ei(θ(m+p)−θ(m))
− 1

∣∣∣∣ = |ei(θ(m+p)−θ(m))
− 1| + Oα

(
A

|m|αφ(N )

)
= |ei θ(m+p)−θ(m)

2 − e−i θ(m+p)−θ(m)
2 | + Oα

(
A

|m|αφ(N )

)
= 2 sin

(
θ(m + p)− θ(m)

2

)
+ Oα

(
A

|m|αφ(N )

)
. (21)

Using this, we claim that the quantity θ(m + p)− θ(m), which belongs to ]π, 2π [ since (m, p) ∈ I bad
N ,A,

has to be close to 2π . Since the image of θ is [0, 2π [, this will imply that θ(m + p) has to be close to 2π ,
while θ(p) has to be close to 0. In other words, both grid points m + p and m have to be close to the real
positive ray R+ − {0}. Using the concavity of the sinus function on

[
0, π2

]
, we can derive the following

estimate from (21) (and using again (19)), as N → ∞:

2
π
(2π − (θ(m + p)− θ(m)))≤ 2 sin

(
θ(m + p)− θ(m)

2

)
=

∣∣∣∣ p
m

∣∣∣∣ + Oα

(
A

|m|αφ(N )

)
.

Thus

2π − (θ(m + p)− θ(m))= Oα

(
A

|m|αφ(N )

)
, (22)

which proves the claim.
As an immediate consequence, the same estimate holds for 2π − θ(m + p) and for θ(m). We choose a

constant Cα > 0 to make the Landau’s notation explicit so that θ(m) ≤ CαA/(|m|
αφ(N )), then we set

the function gN : x 7→ x tan(CαA/(xαφ(N ))). For N large enough so that CαA/φ(N ) < π
2 , the map gN

is well-defined over [1,+∞[ and is nondecreasing. Applying Lemma 2.11 with gN gives us the estimate,
as N → ∞,

Card
{

m ∈ (3−{0})∩D(0,N ) : θ(m)≤
CαA

|m|αφ(N )

}
≤ N

4(1+diam3⃗)(N tan(CαA/(Nαφ(N )))+diam3⃗)

covol3⃗

= Oα,3

(
N

(
AN 1−α

φ(N )
+1

))
.

Multiplying this bound by the number of lattice points p described in (20) gives us the following estimate
for counting these bad indices, as N → ∞:

Card(I bad
N ,A)= Oα,3

(
N

(
AN 1−α

φ(N )
+ 1

)3)
.
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Thus, the restriction to these bad indices in the error term Rα,3,+
N ,N ′,N ′′( f )−µ+

N ,N ′,N ′′( f ) is estimated by, as
N → ∞,

Oα,3

(
∥ f ∥∞N (AN 1−α/φ(N )+ 1)3

ψ(N )

)
. (23)

We set I good
N ,A = I +

N ,A− I bad
N ,A. Using the mean value theorem, for all (m, p)∈ I good

N ,A , since Im(p/m)≥0 by
definition of I good

N ,A and using the uniform estimate (19), the quantity (17) is bounded by

∥d f ∥∞φ(N )|m|
α

∣∣∣∣(1 +
p
m

)α
− 1 −

αp
m

∣∣∣∣ = Oα

(
∥d f ∥∞φ(N )

|p|
2

|m|2−α

)
. (24)

It remains to bound from above the sum

SN ,A =

∑
(m,p)∈I good

N ,A

|p|
2

|m|2−α
.

For that matter, we use the estimates (19) (in the form |p|
2
= Oα(A2

|m|
2−2α/φ(N )2)) and (20) then we

apply again Lemma 2.10 (summing over 3, with β = −α and x = N ), which gives us an upper bound
for the sum SN ,A as follows:

SN ,A ≤

∑
m∈3

0<|m|≤N

1
|m|2−α

Oα

(
A2

|m|
2−2α

φ(N )2

)
Card{p ∈ 3⃗− {0} : (m, p) ∈ I good

N ,A }

≤

∑
m∈3

0<|m|≤N

1
|m|α

Oα

(
A2

φ(N )2

)
Oα,3

((
AN 1−α

φ(N )
+ 1

)2)

= Oα,3

(
A2(AN 1−α/φ(N )+ 1)2

φ(N )2

) ∑
m∈3

0<|m|≤N

1
|m|α

= Oα,3

(
A2 N 2−α(AN 1−α/φ(N )+ 1)2

φ(N )2

)
.

This estimate together with the one over I bad
N ,A given in (23), and the bound given in (24) gives us, as

N → ∞,

Rα,3,+
N ,N ′,N ′′( f )−µ+

N ,N ′,N ′′( f )

= Oα,3

(
A2

∥d f ∥∞N 2−α(AN 1−α/φ(N )+ 1)2

ψ(N )φ(N )
+

∥ f ∥∞N (AN 1−α/φ(N )+ 1)3

ψ(N )

)
.

Since the renormalization factor is given by the formula ψ(N )= (N 2−α/φ(N ))2, the latter estimate can
be simplified (using the inequality (a +b)k ≤ 2k(ak

+bk) for real numbers a, b> 0 and k ∈ N) and finally
rewritten, as N → ∞,

Rα,3,+
N ,N ′,N ′′( f )−µ+

N ,N ′,N ′′( f )= Oα,3

(
A2

∥d f ∥∞

(
A2

Nαφ(N )
+
φ(N )
N 2−α

)
+∥ f ∥∞

(
A3

Nαφ(N )
+
φ(N )2

N 3−2α

))
.

□
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Remark 2.15. If λ= 0, the error term in Lemma 2.14 becomes, as N → ∞,

Rα,3,+
N ,N ′,N ′′( f )−µ+

N ,N ′,N ′′( f )= Oα,3

(
∥d f ∥∞

A4

Nαφ(N )
+ ∥ f ∥∞

A3

Nαφ(N )

)
= Oα,3

(
A4(∥ f ∥∞ + ∥d f ∥∞)

Nαφ(N )

)
.

2.5. Riemann sum approximation. The last lemma is a standard Riemann sum approximation. Again,
let F be a closed fundamental parallelogram of 3⃗ containing 0 and of diameter diam3⃗.

Lemma 2.16. Let δ ∈ C∗ and F be a finite subset of 3. Then, for every function f ∈ C1(C), we have the
inequality∣∣∣∣|δ|2 covol3⃗

∑
m∈F

f (mδ)−
∫

⋃
m∈F

δ(m+F )

f (z) dz
∣∣∣∣ ≤ Card(F)|δ|3∥d f| ⋃

m∈F
δ(m+F )∥∞diam3⃗.

Proof. Notice that, for all m ∈ F , we have LebC(δ(m +F ))= covolδ3⃗ = |δ|2 covol3⃗. A direct application
of the mean value inequality for f on the convex sets δ(m + F ) and then summing over m ∈ F ends the
proof. □

We now have enough tools to prove our effective theorem.

3. Proof of Theorem 2.8

We have three different regimes for the scaling factor and the proof will be divided accordingly. Recall
that the renormalization is given by the formula ψ(N ) = (N 2−α/φ(N ))2. Let f ∈ C1

c (C) and choose
A > 1 such that supp f ⊂ D(0, A).

3.1. Regime φ(N)/N1−α → +∞. Compared to both other regimes where we get an asymptotic
bound for the speed of convergence, this one is particular as we will asymptotically prove the equality
Rα,3,lvl

N ,N ′,N ′′( f )= 0 representing a drastic loss of mass at infinity. For that reason, we will not use whole
lemmas from Section 2 but only elements of their proof. For N large enough (independently on N ′, N ′′),
we will first prove the equality Rα,3,+

N ,N ′,N ′′( f ) = 0 (hence Rα,3,−
N ,N ′,N ′′( f ) = 0 by symmetry), then we will

take care of the diagonal terms (m, p) ∈ IN , that is to say those which satisfy (m + p)/m ∈ R.
Fix k ∈ Z. Recall that the set I +

N is defined so that, for all indices (m, p) ∈ I +

N , the formula

(m + p)[α,k]
− m[α,k]

= m[α,k]

((
1 +

p
m

)α
− 1

)
holds. Our goal is to prove that, for N large enough independently on k, we have the inequality∣∣∣∣(1 +

p
m

)α
− 1

∣∣∣∣ ≥
A

|m|αφ(N )
.

Using the notation I +

N ,A from the proof of Lemma 2.14, the indices (m, p) ∈ I +

N failing to satisfy the
former inequality are in this set I +

N ,A by (18). Thus it is sufficient to prove that, for N large enough, we
have I +

N ,A = ∅. For all (m, p) ∈ I +

N ,A, we can use the estimate |p| = Oα(AN 1−α/φ(N )), that follows
from (19). Thanks to the convergence N 1−α/φ(N )→ 0 as N → ∞ and the inequality |p| ≥ sys3⃗ for all
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p ∈ 3⃗−{0}, we have indeed I +

N ,A =∅ for N large enough. For such ranks N and for all N ′, N ′′
∈ N, this

immediately gives the equality Rα,3,+
N ,N ′,N ′′( f )= 0. With the same condition on the ranks N, N ′ and N ′′,

the equality Rα,3,−
N ,N ′,N ′′( f )= 0 follows from the symmetry described in (12).

The same argument, this time using the set of indices I =

N ,A defined in the proof of Lemma 2.12 and the
estimate (14), gives the result over the diagonal terms. After summing over I +

N ,A ∪ I −

N ,A ∪ I =

N ,A, we have
finally proven the equality, for N large enough and for all N ′, N ′′

∈ N,

Rα,3,lvl
N ,N ′,N ′′( f )= 0.

3.2. Local changes of variables.

3.2.1. Riemann sums argument. In the two other regimes for the scaling factor φ, thanks to the symmetry
equation (12) and to Lemmas 2.12 and 2.14, it is sufficient to study the behaviour of the sequence
(µ+

N ,N ′,N ′′( f ))N ,N ′,N ′′∈N defined by the formula that we recall

µ+

N ,N ′,N ′′( f )=
1

(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
p∈3⃗−{0}

∑
m∈3

(m,p)∈I +

N

f
(
φ(N )αp
m[1−α,k]

)
,

where I +

N = {(m, p) ∈ 3× (3⃗− {0}) : 0 < |m|, |m + p| ≤ N and θ(m + p) > θ(m)}. In order for an
index (m, p) to contribute to this sum, it has to satisfy, as N → ∞,∣∣∣∣ p

m

∣∣∣∣ ≤
A

α|m|αφ(N )
, hence |p| ≤

AN 1−α

αφ(N )
. (25)

In order to see the measure µN ,N ′,N ′′ as a weighted Riemann sum over the lattice 3⃗, we will use the open
angular sector (illustrated in Figure 8)

C p,k = {z ∈ C∗
: arg(z) ∈ θ(p)− (1 −α)2π ]k, k + 1[ + 2πZ},

the ray L p,k = {z ∈ C∗
: arg(z)≡ −θ(p)/(1 −α)} and the family of change of variables (h p,k)p∈3⃗, k∈Z

defined by

h p,k : C p,k → C∗
− L p,k, z 7→ |z|−

1
1−α e−

iωk
1−α , with arg(z)≡ ωk ∈ θ(p)− (1 −α)2π ]k, k + 1[.

In other words, these changes of variables are restrictions to C p,k of the maps

h p,k : z 7→ exp
(
−

1
1 −α

(log(zei(−θ(p)+2π(k+1)(1−α)))+ i(θ(p)− 2π(k + 1)(1 −α)))

)
, (26)

where log is the nonstandard branch of the logarithm on C − R+ defined in the beginning of Section 2.1.
Let p ∈ 3⃗− {0} and k ∈ Z. The map h p,k is biholomorphic and computing its derivative, using the
formula (26), gives us

h′

p,k : z 7→ −
1

1 −α

h p,k(z)
z

,

whose modulus is

z 7→
1

1 −α
|z|−

2−α
1−α .
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We set
ωp,k =

∑
m∈3,m /∈R+

(m,p)∈I +

N

1φ(N )αp/m[1−α,k]

allowing us to decompose the measure µ+

N ,N ′,N ′′ into sums where k and p are fixed, then apply a different
change of variables on each part. The condition m /∈ R+ is introduced so that the points φ(N )αp/m[1−α,k]

all belong to C p,k and not only to its closure. In order to add or remove this condition at will, notice the
inequality

Card(3∩ D(0, N )∩ R+)≤
N

sys3⃗
+ 1. (27)

For all m ∈3 such that (m, p)∈ I +

N and m /∈ R+, the change of variable h p,k is designed for the following
computation:

h p,k

(
φ(N )αp
m[1−α,k]

)
=

(
φ(N )α|p|

|m|1−α

)−
1

1−α

h p,k(ei(θ(p)−(1−α)(θ(m)+2πk)))

=

(
φ(N )α|p|

|m|1−α

)−
1

1−α

e−
1

1−α
i(θ(p)−(1−α)(θ(m)+2πk))

= (φ(N )αp)−
1

1−α m,

where we recall the notation z−1/(1−α)
= z[−1/(1−α),0]. Consequently, we have the formula

(h p,k)∗ωp,k =

∑
m∈3,m /∈R+

(m,p)∈I +

N

1mδN ,p , where δN ,p = (φ(N )αp)−
1

1−α . (28)

Using (27), the condition m /∈ R+ in the latter formula can be removed up to an extra error term of order
Oα(∥ f ∥∞N/(ψ(N ) sys3⃗)); thus we forget about it until (35).

In order to compare every measure (h p,k)∗ωp,k with a weighted Riemann sum, we have to establish
which part of C is occupied by the indices m in its definition. Recall that I +

N denotes the subset of
3× (3⃗− {0}) with conditions 0< |m|, |m + p| ≤ N and θ(m + p) > θ(m). Putting aside the condition
|m + p| ≤ N for the moment, we claim that such indices m approximately occupy a half-disk (depending
on p), namely half of the closed disk D(0, N ). Let Bp denote the complex band [−1, 0]p + R+. More
precisely, we claim that, modulo the complex subset Bp ∩ D(0, N ), the set

DN ,p = {z ∈ C∗
− {−p} : |z| ≤ N and θ(z + p) > θ(z)}

is the half-disk centred at the origin, of radius N and with the argument condition

θ(z) ∈ ]θ(p)−π, θ(p)[ + 2πZ.

The claim follows from a straightforward study of (the sign of) the function z 7→ θ(z + p)− θ(z), which
is continuous on C − (R+ ∪ (−p + R+)), which can be computed explicitly on the circle C(0, |p|) and
whose zeros belong to the line Rp. See Figure 7 for a summary of this study. A quantitative comparison
between DN ,p and the associated half-disk will be stated in (32).

In order to remove the condition |m + p| ≤ N in I +

N and to compute the associated error term, first
notice that failing this condition implies that N − |p|< |m| ≤ N. Using Lemma 2.10 twice (summing
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DN p,

DN p, Bp
p

i i

0 1 0 1

p'

Bp'

DN p',

DN p',

Figure 7. An illustration of a set DN ,p with θ(p)≥ π , and DN ,p′ with θ(p′) < π .

over 3 with β = 0, first with x = N then with x = N − |p|), we obtain, as N → ∞ with N ≥ |p|,

Card(3∩ DN ,p − {m ∈3 : (m, p) ∈ I +

N })=
π(N 2

− (N − |p|)2)

covol3⃗
+ O

(1 + diam2
3⃗

covol3⃗
N

)
= O3((|p| + 1)N ).

Thanks to the inequality |p| ≤ AN 1−α/(αφ(N )) from (25), the condition N ≥ |p| in the latter estimate is
satisfied for N large enough, uniformly on such indices p. Using Lemma 2.10 (summing over 3⃗ with
β = 0 and x = AN 1−α/(αφ(N ))), we can replace the condition (m, p) ∈ I +

N by m ∈ 3∩ DN ,p in the
definition of µN ,N ′,N ′′( f ) up to the error term, as N → ∞,

mu+

N ,N ′,N ′′( f )−
1

(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
p∈3⃗−{0}

∑
m∈3∩DN ,p

f
(
φ(N )αp
m[1−α,k]

)

= Oα,3

(
∥ f ∥∞(AN 1−α/φ(N )+ 1)(AN 1−α/φ(N ))2 N

ψ(N )

)
. (29)

This invites us to define the measures

ω̃p,k =

∑
m∈3,m /∈R+

m∈3∩DN ,p

1φ(N )αp/m[1−α,k],

µ̃+

N ,N ′,N ′′ =
1

(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
p∈3⃗−{0}

ω̃p,k .

Using (27) and (29), we obtain an error term, as N → ∞,

µ̃+

N ,N ′,N ′′( f )−µ+

N ,N ′,N ′′( f )= Oα,3

(
∥ f ∥∞(AN 1−α/φ(N )+ 1)(AN 1−α/φ(N ))2 N

ψ(N )
+

∥ f ∥∞N
ψ(N )

)
. (30)
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Let F be a fundamental domain of 3⃗ containing 0 and of diameter diam3⃗. An approximation of DN ,p is
given by D̃N ,p =

⋃
m∈3∩DN ,p

(m + F ). We apply Lemma 2.16 (on the C1 function f p,k = f ◦ h−1
p,k , with

δ = δN ,p and F =3∩ DN ,p), then we use Lemma 2.10 (summing over 3 with β = 0 and x = N since
we have the inclusion DN ,p ⊂ D(0, N )). This grants us the estimate, as N → ∞,

∣∣∣∣(h p,k)∗ω̃p,k( f p,k)−

∫
δN ,p D̃N ,p

f p,k(z) dz

|δN ,p|
2 covol3⃗

∣∣∣∣ ≤
diam3⃗

covol3⃗
∥d f p,k |δN ,p D̃N ,p

∥∞ |δN ,p|Card(3∩ DN ,p)

= Oα,3

(
∥d f p,k |δN ,p D̃N ,p

∥∞N 2

(φ(N )|p|)
1

1−α

)
. (31)

The set D̃N ,p is “approximately” DN ,p, and is “approximately” a half-disk as we shall now see. Let us
use the notation, for all z0 ∈ C, r > 0, ω ∈ R,

H(z0, r, ω)= {z ∈ C : |z − z0| ≤ r and arg(z − z0) ∈ ]ω−π,ω[ + 2πZ},

which is a half-disk centred at z0, of radius r > 0, with an argument (relative to its centre) determined
by ω (more precisely by its image in R/2πZ). We want to compare the complex subset D̃N ,p with the
half-disk H(0, N , θ(p)). Let u be the complex number satisfying arg(u)= arg(p)+ π

2 and |u| = diam3⃗.
Let B̃p,N denote the diam3⃗-neighbourhood of the band Bp ∩ D(0, N ). Using the triangle inequality,
modulo the set B̃p,N , we have the inclusions

D̃N ,p ⊂ H(u, N + 2diam3⃗, θ(p)) and H(−2u, N − 3diam3⃗, θ(p))⊂ D̃N ,p.

(We don’t necessarily have H(−u, N − 2diam3⃗, θ(p))⊂ D̃N ,p ∪ B̃p,N in the case where 3 contains 0,
since 0 never belongs to 3∩ DN ,p which is the set of indices we defined D̃N ,p with). Thus, the symmetric
difference that is of interest here satisfies, modulo B̃p,N ,

D̃N ,p1H(0, N , θ(p))= (D̃N ,p ∪ H(0, N , θ(p)))− (D̃N ,p ∩ H(0, N , θ(p)))

⊂ H(u, N + 2diam3⃗, θ(p))− H(−2u, N − 3diam3⃗, θ(p)).

Since the set B̃p,N has Lebesgue measure bounded by O((|p| + diam3⃗)N ), the latter inclusion modulo
B̃p,N gives the estimate, as N → ∞ (with N ≥ 3diam3⃗ and independently on p ∈ 3⃗− {0}),

LebC(D̃N ,p1H(0, N , θ(p)))≤
π
2 ((N + 2diam3⃗)

2
− (N − 3diam3⃗)

2)+ O((|p| + diam3⃗)N )

= O(diam3⃗N )+ O((|p| + diam3⃗)N )= O3((|p| + 1)N ). (32)

Let

RN =
N + diam3⃗

(φ(N )α|p|)
1

1−α

.
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From the estimates (31) and (32), we derive, as N → ∞,∣∣∣∣(h p,k)∗ω̃p,k( f p,k)−

∫
δN ,p H(0,N ,θ(p)) f p,k(z) dz

|δN ,p|
2 covol3⃗

∣∣∣∣
= Oα,3

(
∥d f p,k |δN ,p D̃N ,p

∥∞N 2

(φ(N )|p|)
1

1−α

)
+

|
∫
δN ,p D̃N ,p

f p,k(z) dz −
∫
δN ,p H(0,N ,θ(p)) f p,k(z) dz|

covol3⃗ |δN ,p|
2

= Oα,3

(
∥d f p,k |δN ,p D̃N ,p

∥∞N 2

(φ(N )|p|)
1

1−α

)
+

∥ f p,k |δN ,p(D̃N ,p∪H(0,N ,θ(p)))∥∞ LebC(δN ,p D̃N ,p1δN ,p H(0, N , θ(p)))

covol3⃗ |δN ,p|
2

= Oα,3

(
∥d f p,k |D(0,RN )∥∞N 2

(φ(N )|p|)
1

1−α

+ ∥ f p,k |D(0,RN )∥∞(|p| + 1)N
)
. (33)

We set

HC p,k = h−1
p,k(δN ,p H(0, N , θ(p))− L p,k)= h−1

p,k

(
H(0, |δN ,p|N ,−

α

1 −α
θ(p))− L p,k

)
,

where we used the equality

arg(δN ,p)+ θ(p)≡ −
1

1 −α
θ(p)+ θ(p)= −

α

1 −α
θ(p)

for the right-hand equality. We will geometrically describe HC p,k in Section 3.2.2, and see that this set is
the intersection of an angular sector (which turns out to be half of C p,k) and the complementary set

C − D(0, |δN ,p N |
−(1−α))= C − D

(
0,
α|p|φ(N )

N 1−α

)
.

Recall the formula f p,k = f ◦ h−1
p,kand that the modulus of h′

p,k is

z 7→
1

1 −α
|z|−

2−α
1−α .

Hence the Jacobian of h p,k is

z 7→
1

(1 −α)2
|z|−

4−2α
1−α .

We define

ν+

p,k( f )=
1

(1 −α)2|δN ,p|
2 covol3⃗

∫
HC p,k

f (z)|z|−
4−2α
1−α dz (34)

and

ν+

N ,N ′,N ′′ =
1

(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
p∈3⃗−{0}

ν+

p,k .

Thanks to the inclusion supp f ⊂ D(0, A) and the formula |h−1
p,k | : z 7→ |z|−(1−α), we have the inequalities,

for all N ∈ N,

∥ f p,k |D(0,RN )∥∞ ≤ ∥ f ∥∞ and ∥d f p,k |D(0,RN )∥∞ ≤ (1 −α)A(1−α)(2−α)
∥d f ∥∞ ≤ A2

∥d f ∥∞.
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Let εα be the function 1+| log | if α =
1
2 , and the constant function 1 otherwise. Combining (33) and (27)

(to remove the condition m /∈ R+ in the definition of ω̃p,k), applying the change of variable formula, and
using Lemma 2.10 (summing over 3⃗ with β = 0 and x = AN 1−α/(αφ(N )) thanks to (25)), we compute
the estimate, as N → ∞,

µ̃+

N ,N ′,N ′′( f )+ Oα

(
∥ f ∥∞N
ψ(N ) sys3⃗

)
− ν+

N ,N ′,N ′′( f )

=

∑
p∈3⃗−{0}

|p|≤AN 1−α/(αφ(N ))

Oα,3

(
∥ f p,k |D(0,RN )∥∞(|p| + 1)N

ψ(N )
+

∥d f p,k |D(0,RN )∥∞N 2

ψ(N )(φ(N )|p|)
1

1−α

)

= Oα,3

(
∥ f ∥∞(AN 1−α/φ(N )+ 1)N (AN 1−α/φ(N ))2

ψ(N )
+

A2
∥d f ∥∞N 2

ψ(N )φ(N )
1

1−α

∑
p∈3⃗−{0}

|p|≤AN 1−α/(αφ(N ))

|p|
−

1
1−α

)
.

Together with (30), we finally obtain the estimate, as N → ∞,

µ+

N ,N ′,N ′′( f )− ν+

N ,N ′,N ′′( f )

= Oα,3

(
∥ f ∥∞N
ψ(N )

(
1 +

(
AN 1−α

φ(N )

)2)
+ ∥ f ∥∞

(
1 +

AN 1−α

φ(N )

)(
AN 1−α

φ(N )

)2 N
ψ(N )

+
A2

∥d f ∥∞N 2

ψ(N )φ(N )
1

1−α

∑
p∈3⃗−{0}

|p|≤AN 1−α/(αφ(N ))

|p|
−

1
1−α

)
. (35)

3.2.2. Geometric description by symmetry. Set νN ,N ′,N ′′ = ν+

N ,N ′,N ′′ + (z 7→ −z)∗ν+

N ,N ′,N ′′ . Using the
symmetry argument (12), we will be able to compare Rα,3,lvl

N ,N ′,N ′′ to νN ,N ′,N ′′ . This section aims at describing
the measure νN ,N ′,N ′′ .

Lemma 3.1. For all k ∈ Z and all p ∈ 3⃗−{0}, up to a complex subset of Lebesgue measure 0, we have
the disjoint union

HC p,k ∪ (−HC−p,k)= C p,k ∩

(
C − D

(
0,
α|p|φ(N )

N 1−α

))
.

Proof. To prove this, fix k and p as such. We begin by noticing that HC p,k and −HC−p,k are indeed
subsets of C p,k (by the definition of HC p,k , and thanks to the inclusion −HC−p,k ⊂ −C−p,k = C p,k).
Furthermore, they are subsets of C− D(0, α|p|φ(N )/N 1−α) since the changes of variable h−1

p,k and h−1
−p,k

have the same modulus z 7→ |z|−(1−α). More precisely, the definition of h p,k grants the formula, for all
z ∈ C − L p,k ,

h−1
p,k(z)= |z|−(1−α)e−i(1−α)ωk , where arg(z)≡ ωk ∈ −

θ(p)
1 −α

+ 2π ]k, k + 1[,

or, in other words, for all r > 0 and ω ∈ R − (−θ(p)+ 2πZ),

h−1
p,k(rei(− αθ(p)

1−α
+ω))= r−(1−α) exp

(
θ(p)− (1 −α)

(
θ(p)+ω+ 2π

(
k −

⌊
θ(p)+ω

2π

⌋)))
. (36)

Since h−1
p,k (and similarly h−p,k) acts separately on each variable in polar coordinates, it remains to

describe HC p,k (resp. −HC−p,k) in terms of arguments, which reduces to the description of the set
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H− C− p, k

H− C− p, k

p

0 1

HCp, k

1 2− −( ) ka p1 2− −( ) ka p

0,−(( )( p N
N1 a−C a f

1 2− −(( )) kp a pq 1 2− −(( )) kp a pq
1 2− −( )a p

Figure 8. Illustration of Lemma 3.1.

h−1
p,k(S

1
− {e−iθ(p)/(1−α)

}) (resp. −h−1
−p,k(S

1
− {e−iθ(−p)/(1−α)

})). Using the formula (36) and doing
separately the cases θ(p)≤ π and θ(p) > π , we find that

h−1
p,k(S

1
− {e−

iθ(p)
1−α })

=


{

eiω
: ω ∈ θ(p)− 2π(1 −α)

(]
k, k +

θ(p)
2π

[
∪

]
k +

1
2

+
θ(p)
2π

, k + 1
[)}

if θ(p)≤ π,{
eiω

: ω ∈ θ(p)− 2π(1 −α)
]
k −

1
2

+
θ(p)
2π

, k +
θ(p)
2π

[}
if θ(p) > π,

which is half of the circle arc S1
∩C p,k . Similarly, up to a finite number of points (namely the three points

in exp(αθ(p)− 2πk(1 − α)+ {−1, 0, 1})), the complex subset −h−1
−p,k(S

1
− {e−θ(−p)/(1−α)

}) can be
proven equal to half of a circle arc, namely the complement of h−1

p,k(S
1
−{e−iθ(p)/(1−α)

}) in S1
∩C p,k . □

Thanks to the union described in Lemma 3.1, we derive the formula

νN ,N ′,N ′′ =
1

(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
p∈3⃗−{0}

νp,k,

where we set νp,k = ν+

p,k + (z 7→ −z)∗ν+

−p,k , that is to say, νp,k is a measure absolutely continuous with
respect to LebC with density given by, for all z ∈ C,

gp,k(z)=
|z|−

4−2α
1−α 1C p,k∩(C−D(0,α|p|φ(N )/N 1−α))(z)(φ(N )α|p|)

2
1−α

(1 −α)2 covol3⃗
. (37)

We use the notation C p = C p,0 ∩ (C − D(0, α|p|φ(N )/N 1−α)). We now notice that the sector
C p,k ∩ (C − D(0, α|p|φ(N )/N 1−α)) is obtained by a rotation of C p as e−i2πk(1−α)C p = ei2πkαC p.



38 RAFAEL SAYOUS

We can then describe νN ,N ′,N ′′ by the formula

νN ,N ′,N ′′( f )=
(αφ(N ))

2
1−α

(1 −α)2 covol3⃗(N ′ + N ′′)ψ(N )

N ′′
−1∑

k=−N ′

∑
p∈3⃗−{0}

|p|
2

1−α

∫
ei2πkαC p

f (z)|z|−
4−2α
1−α dz,

where the sum over p ∈ 3⃗−{0} is finite since ei2πkαC p ⊂ C − supp f if |p|> AN 1−α/(αφ(N )). When
N ′, N ′′

→ ∞, we will average over k the above integrals on ei2πkαC p, which will allow us to replace them
by one integral over C − D(0, α|p|φ(N )/N 1−α). For that purpose, we separate the cases α ∈ Q ∩ ]0, 1[

and α ∈ (R − Q)∩ ]0, 1[. Since the averaging over k ∈ {−N ′, . . . , N ′′
− 1} and the one over p ∈ 3⃗−{0}

are geometrically uncorrelated, both averaging processes seem to be necessary in order to obtain a
rotation-invariant limit. Imposing a small value of N ′

+ N ′′ empirically leads to rotation discrepancy near
the origin, as shown in Figure 2 (where N ′

= 0 and N ′′
= 1).

The measure we will obtain after this averaging process is given by the formula

νN ( f )=
(αφ(N ))

2
1−α

(1 −α) covol3⃗ ψ(N )

∑
p∈3⃗−{0}

|p|
2

1−α

∫
C−D(0,α|p|φ(N )/N 1−α)

f (z)|z|−
4−2α
1−α dz. (38)

3.2.3. Averaging: the rational case. In this section, we assume that α ∈ Q ∩ ]0, 1[ and we write α = a/b,
where a and b are coprime positive natural numbers. We recall that the angle of the restricted open sectors
C p is 2π(1 −α)= 2π(b − a)/b. Thus, outside of the union of b rays from the origin (which is a set of
Lebesgue measure 0), we have the covering formula, for all k0 ∈ Z and all p ∈ 3⃗− {0},

k0+b−1∑
k=k0

1ei2πkαC p = (b − a)1C−D(0,α|p|φ(N )/N 1−α). (39)

Hence, we can rewrite νN ,N ′,N ′′( f ) by regrouping groups of b consecutive integrals, which gives

νN ,N ′,N ′′( f )=
(αφ(N ))

2
1−α (b−a)⌊(N ′

+N ′′)/b⌋

(1−α)2 covol3⃗(N ′+N ′′)ψ(N )

∑
p∈3⃗−{0}

|p|
2

1−α

∫
C−D(0,α|p|φ(N )/N 1−α)

f (z)|z|−
4−2α
1−α dz

+
(αφ(N ))

2
1−α

(1−α)2 covol3⃗(N ′+N ′′)ψ(N )

N ′′
−1∑

k=−N ′+⌊(N ′+N ′′)/b⌋

∑
p∈3⃗−{0}

|p|
2

1−α

∫
ei2πkαC p

f (z)|z|−
4−2α
1−α dz.

We recall the formula ψ(N )= (N 2−α/φ(N ))2. Using polar coordinates, we can bound from above the
latter integrals as follows, for all k ∈ Z and p ∈ 3⃗− {0}:∫

ei2πkαC p

f (z)|z|−
4−2α
1−α dz ≤ 2π∥ f ∥∞

∫
r>α|p|φ(N )/N 1−α

r−
3−α
1−α dr = (1 −α)π∥ f ∥∞

(
α|p|φ(N )

N 1−α

)−
2

1−α

.

Using the inequality ∣∣∣∣⌊(N ′
+ N ′′)/b⌋

N ′ + N ′′
−

1
b

∣∣∣∣ ≤
1

N ′ + N ′′
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and Lemma 2.10 (summing over 3⃗ with β = 0 and x = AN 1−α/(αφ(N ))), we get the estimate, as
N → ∞,

νN ,N ′,N ′′( f )= νN ( f )+ Oα,3

(
A2

∥ f ∥∞1Z−bZ(N ′
+ N ′′)

N ′ + N ′′

)
. (40)

3.2.4. Averaging: the irrational case. In this section, we assume that α ∈ (R − Q)∩ ]0, 1[. As we take
successive rotations by an angle 2πα (or equivalently, an angle −2π(1 −α)) of the (restricted) angular
sector C p, there is no possibility of having a periodic covering formula such as (39). However, since the
angle of C p is also 2π(1 − α), we can still geometrically understand the error in such a covering. Let
C p,N ′,N ′′ denote the complex subset{

z ∈ C : |z| ≥
α|p|φ(N )

N 1−α
and arg(z)∩

(
θ(p)+ 2π(1 −α)

]
⌊(1 −α)(N ′

+ N ′′)⌋

1 −α
− N ′′, N ′

[)
̸= ∅

}
.

In other words, C p,N ′,N ′′ is the restriction to C − D(0, α|p|φ(N )/N 1−α) of the angular sector between
arguments θ(p)− (1 −α)N ′′

+ 2πZ and θ(p)+ (1 −α)N ′
+ 2πZ (with direct trigonometric orientation).

Then, outside of the union of 2(N ′
+ N ′′) rays from the origin (which is a set of Lebesgue measure 0),

we have the formula, for all p ∈ 3⃗− {0},
N ′′

−1∑
k=−N ′

1ei2πkαC p = ⌊(1 −α)(N ′
+ N ′′)⌋1C−D(0,α|p|φ(N )/N 1−α) + 1C p,N ′,N ′′ .

With computations analogous to the ones in Section 3.2.3, we find a similar error term, namely as N → ∞,

νN ,N ′,N ′′( f )= νN ( f )+ Oα,3

(
A2

∥ f ∥∞

N ′ + N ′′

)
. (41)

3.3. Regime φ(N)/N1−α → 0. Using the formula ψ(N )= (N 2−α/φ(N ))2 and Lemma 2.10 (summing
over 3⃗ with β = −1/(1 − α) and x = AN 1−α/(αφ(N ))), the third line in the estimate (35) can be
bounded, as N → ∞,

N 2

ψ(N )φ(N )
1

1−α

∑
p∈3⃗−{0}

|p|≤AN 1−α/(αφ(N ))

|p|
−

1
1−α =


A

1−2α
1−α Oα,3

( 1
N

)
if α < 1

2 ,

Oα,3

(
log(

√
N/φ(N ))
N

)
if α =

1
2 ,

Oα,3((N 2(1−α)φ(N )
2α−1
1−α )−1) if α > 1

2 ,

Since 1/N , log(
√

N/φ(N ))/N and even (N 2(1−α)φ(N )(2α−1)/(1−α))−1 are negligible with respect to
1/(Nαφ(N )), the estimate (35) can be rewritten by removing the first term of its right-hand side and by
combining the second and third terms, so that the estimate holds for N large enough independently on
∥d f ∥∞ (as required in our definition of Oα,3). As N → ∞, we obtain

µ+

N ,N ′,N ′′( f )= ν+

N ,N ′,N ′′( f )+ Oα,3

(
A3(∥ f ∥∞ + ∥d f ∥∞)

Nαφ(N )

)
.

Then, using the symmetry described in (12) together with Lemma 2.12 (in which the stated estimate is
also negligible when compared to 1/(Nαφ(N )), see Remark 2.13) and Lemma 2.14, (see Remark 2.15)
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we get, as N → ∞,

Rα,3,lvl
N ,N ′,N ′′( f )= νN ,N ′,N ′′( f )+ Oα,3

(
A4(∥d f ∥∞ + ∥ f ∥∞)

Nαφ(N )

)
. (42)

Thanks to the estimates (40) and (41), we can focus on the behaviour of the sequence (νN ( f ))N∈N defined
in (38), where νN is the measure of density

gN : z 7→
(αφ(N ))

2
1−α |z|−

4−2α
1−α

(1 −α) covol3⃗ ψ(N )

∑
p∈3⃗−{0}

|p|≤|z|N 1−α/(αφ(N ))

|p|
2

1−α

with respect to the Lebesgue measure of C (with gN (0) = 0 by continuity). In this regime, using
Lemma 2.10 (summing over 3⃗− {0} with β = 2/(1 − α) and x = |z|N 1−α/(αφ(N ))), we have the
pointwise convergence,

for all z ∈ C∗, gN (z) −→
N→∞

π

α2(2 −α) covol2
3⃗

= ρα,3⃗,λ(z).

More precisely, Lemma 2.10 even grants us the error term, as N → ∞, uniformly for every complex
number z ∈ C − D(0, αφ(N )/N 1−α),

gN (z)= ρα,3⃗,λ(z)+ Oα,3

(
φ(N )

|z|N 1−α

)
.

For all N ∈ N, the function gN vanishes on the open disk D(0, sys3⃗ αφ(N )/N 1−α) hence is bounded
from above on D(0, αφ(N )/N 1−α) by

(αφ(N ))
2

1−α sys
−

4−2α
1−α

3⃗

(1 −α) covol3⃗ ψ(N )

∑
p∈3⃗−{0}

|p|≤1

|p|
2

1−α =
φ(N )

2
1−α

ψ(N )
Cα,3.

Integrating these error terms over C and since
∫

D(0,A)(1/|z|) dz = 2π A, we obtain the estimate, as
N → ∞,

|νN ( f )− ρα,3⃗,λ LebC( f )|

≤ ∥ f ∥∞

∫
D(0,αφ(N )/N 1−α)

π

α2(2 −α) covol2
3⃗

dz + ∥ f ∥∞

∫
D(0,αφ(N )/N 1−α)

φ(N )
2

1−α

ψ(N )
Cα,3 dz

+ ∥ f ∥∞

∫
D(0,A)∩(C−D(0,αφ(N )/N 1−α))

Oα,3

(
φ(N )

|z|N 1−α

)
dz

= ∥ f ∥∞ Oα,3

((
φ(N )
N 1−α

)2 )
+ ∥ f ∥∞ Oα

(
Cα,3

(
φ(N )
N 1−α

)4−2α
1−α

)
+ ∥ f ∥∞ Oα,3

(
Aφ(N )
N 1−α

)
= Oα,3

(
A∥ f ∥∞φ(N )

N 1−α

)
. (43)

Combining (43), (42), (41) and (40), we have proven Theorem 2.8 in the case λ= 0.



EFFECTIVE STATISTICS OF PAIRS OF FRACTIONAL POWERS OF COMPLEX GRID POINTS 41

3.4. Regime φ(N)/N1−α → λ ∈ ]0, +∞[. By using the inequality |p| ≥ sys3⃗, the formula

ψ(N )=

(
N 2−α

φ(N )

)2

∼
N 2

λ2

and Gauss counting argument (9), in this regime, the estimate (35) grants us, as N → ∞,

µ+

N ,N ′,N ′′( f )− ν+

N ,N ′,N ′′( f )

= Oα,3

(
A2λ2

∥ f ∥∞

N
(1 + λ−2)+

A3
∥ f ∥∞(λ

−1
+ 1)

N
+

A4
∥d f ∥∞λ

2

λ
1

1−α N
(λ−1

+ 1)2 sys
−

1
1−α

3⃗

)
= Oα,3

(
A4(∥ f ∥∞ + ∥d f ∥∞)(λ+ λ−1)max {2, 1

1−α
}

N

)
. (44)

Thanks to the estimates (44), (40), (41) and to Lemmas 2.12 and 2.14, in this regime too we can focus
on the behaviour of the sequence (νN )N∈N defined in (38). Its density gN with respect to the Lebesgue
measure of C has the following the pointwise almost everywhere convergence outside of a countable
union of circles: for all z ∈ C −

⋃
p∈3⃗ C(0, αλ|p|),

gN (z)=
(αφ(N ))

2
1−α |z|−

4−2α
1−α

(1 −α) covol3⃗ ψ(N )

∑
p∈3⃗−{0}

|p|≤|z|N 1−α/(αφ(N ))

|p|
2

1−α −→
N→∞

α
2

1−α

(1 −α) covol3⃗

(
|z|
λ

)−
4−2α
1−α ∑

p∈3⃗−{0}

|p|≤|z|/(αλ)

|p|
2

1−α ,

which is the formula of the function ρα,3⃗,λ defined before Theorem 2.1. In this section, we aim at making
this convergence effective and at concluding the proof of Theorem 2.8. From now on, we assume that N
is large enough so that λ/2 ≤ φ(N )/N 1−α

≤ 2λ. First, one can notice that both functions gN and ρα,3⃗,λ
vanish on the open disk D(0, αλ sys3⃗ /2). For all z ∈ D(0, A), we have the inequality

|gN (z)−ρα,3⃗,λ(z)| ≤
α

2
1−α (αλsys3⃗ /2)

−
4−2α
1−α

(1−α)covol3⃗

∣∣∣∣(φ(N )N 1−α

)4−2α
1−α

−λ
4−2α
1−α

∣∣∣∣ ∑
p∈3⃗−{0}

|p|≤2A/(αλ)

|p|
2

1−α

+
α

2
1−α (α sys3⃗ /2)

−
4−2α
1−α

(1−α)covol3⃗

∑
p∈3⃗−{0}

|p|≤2A/(αλ)

|p|
2

1−α |1[α(φ(N )/N 1−α)|p|,+∞[(|z|)−1[αλ|p|,+∞[(|z|)|.

Integrating on each annulus {z ∈ C : |z| ∈ [αλ|p|, α(φ(N )/N 1−α)|p|]} and using Lemma 2.10 (summing
over p′

= λp ∈ λ3⃗−{0} with x = 2A/α ≥ 1 and β = 2/(1−α) then β = (4−2α)/(1−α)), thanks to the
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inclusion supp f ⊂ D(0, A) and the inequality φ(N )/N 1−α
≤ 2λ, we obtain the estimate, as N → ∞,∣∣∣∣∫

C

(gN − ρα,3⃗,λ) f d LebC

∣∣∣∣
=

∣∣∣∣∫
D(0,A)−D(0,αλ sys3⃗ /2)

(gN − ρα,3⃗,λ) f d LebC

∣∣∣∣
= A2

∥ f ∥∞ Oα

(
(λ sys3⃗)

−
4−2α
1−α

covol3⃗

∣∣∣∣(φ(N )N 1−α

)4−2α
1−α

− λ
4−2α
1−α

∣∣∣∣ ∑
p∈3⃗−{0}

|p|≤2A/(αλ)

|p|
2

1−α

)

+ A2
∥ f ∥∞ Oα

(sys
−

4−2α
1−α

3⃗

covol3⃗

∑
p∈3⃗−{0}

|p|≤2A/(αλ)

|p|
2

1−α 2π max
{
α
φ(N )
N 1−α

|p|, αλ|p|

}∣∣∣∣αφ(N )N 1−α
|p| −αλ|p|

∣∣∣∣)

= ∥ f ∥∞ Oα,3

(
A

6−4α
1−α (1 + λ2)

λ
4−2α
1−α

∣∣∣∣( φ(N )
λN 1−α

)4−2α
1−α

− 1
∣∣∣∣ + A

8−6α
1−α (1 + λ2)

λ
8−6α
1−α

∣∣∣∣ φ(N )λN 1−α
− 1

∣∣∣∣)
= Oα,3

(
∥ f ∥∞ A

8−6α
1−α (1 + λ2)

(
1

λ
4−2α
1−α

+
1

λ
8−6α
1−α

)∣∣∣∣ φ(N )λN 1−α
− 1

∣∣∣∣).
Recalling that νN = gN LebC, combining the latter estimate with the ones from (40), (41), (44), the
symmetry described in (12), and Lemmas 2.12 and 2.14, we have finally proven Theorem 2.8 (in which
we simplified the error term by using standard inequalities such as 1 + λβ ≤ 2(λ+ 1/λ)|β| for every real
number β). □

4. Removing the branch cut

In the beginning of Section 2, we defined an empirical pair correlation measure Rα,3
N ,N ′,N ′′ . In its defini-

tion (3), for all grid points n,m ∈3, we have the condition |Im(r)−Im(s)|< 2π where r, s are logarithms
of n,m in the associated Riemann surface C̃∗ = C. In terms of the levels introduced in Section 2.1, this
translates to consider all terms of the form n[α,k]

− m[α,k] (already taken into account in Rα,3,lvl
N ,N ′,N ′′), as

well as the terms n[α,k+1]
− m[α,k] (resp. n[α,k]

− m[α,k+1]) for which the argument condition θ(n) < θ(m)
(resp. θ(n) > θ(m)) holds. In other words, comparing the measure Rα,3

N ,N ′,N ′′ with its level separated
avatar Rα,3,lvl

N ,N ′,N ′′ defined in (5) and studied in Section 3, we obtain

Rα,3
N ,N ′,N ′′ − Rα,3,lvl

N ,N ′,N ′′

=
1

(N ′ + N ′′)ψ(N )

N ′′
−2∑

k=−N ′

∑
n,m∈3, n ̸=m
0<|n|,|m|≤N

1φ(N )(n[α,k+1]−m[α,k])1θ(n)<θ(m)+1φ(N )(n[α,k]−m[α,k+1])1θ(n)>θ(m). (45)

Lemma 4.1. Let A > 1. For every integer k ∈ Z, let

IN ,A,k =

{
(n,m) ∈32

: n ̸= m, 0< |n|, |m| ≤ N , |n[α,k+1]
− m[α,k]

| ≤
A

φ(N )
and θ(n) < θ(m)

}
.
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n[ +1]a, k

( )− 2e pa
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≤ A
f(N)−

≤ A
f(N)−

a,kL

Figure 9. Illustration of the proof that both points n[α,k+1] (confined in the red region)
and m[α,k] (in the blue one) are close to the ray Lα,k .

Then we have, as N → ∞,

Card(IN ,A,k)= Oα,3

(
N

(
AN 1−α

φ(N )
+ 1

)3

1λ̸=+∞

)
.

Proof. Let (n,m) ∈ IN ,A,k , set ε = (θ(n)+ θ(m))/2 ∈ ]0, 2π [ and notice that

α(2πk + θ(m)) ∈ α2πk +α]ε, 2π ] = α2π(k + 1)+α]ε− 2π, 0],

α(2π(k + 1)+ θ(n)) ∈ α2π(k + 1)+α[0, ε[.

Since in addition α ∈ ]0, 1[ and the scaling factor N 7→ φ(N ) converges to +∞, we claim that both
points m[α,k] and n[α,k+1] are close to the ray Lα,k of argument 2π(k + 1)α. Indeed, assume first that the
segment [n[α,k+1],m[α,k]

] and the ray Lα,k don’t intersect
(
which can happen only if α ≥

1
2

)
. Applying

Al-Kashi’s law of cosines to the triangle with vertices n[α,k+1], m[α,k] and 0 with angle ω ∈ [2π(1−α), π]

at 0, we obtain the inequalities(
A

φ(N )

)2

≥ |n[α,k+1]
− m[α,k]

|
2
= |n|

2α
+ |m|

2α
− 2|n|

α
|m|

α cos(ω)

≥ |n|
2α

+ |m|
2α

− 2|n|
α
|m|

α cos(2π(1 −α))

= (|n|
α
− |m|

α)2 + 2|n|
α
|m|

α(1 − cos(2π(1 −α))).

Assuming that |n| ≤ |m| (instead of using min{|n|, |m|} and max{|n|, |m|}), the latter equation and the
triangle inequality on |m|

α
= |m[α,k]

| = |m[α,k]
± n[α,k+1]

| grant us the bound

|n|
α

≤
1

√
2(1 − cos(2π(1 −α)))

A
φ(N )

and |m|
α

≤
A

φ(N )
+ |n|

α. (46)

Then n[α,k+1] and m[α,k] are both close to 0, and hence close to Lα,k : see Figure 9.
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And now if (n′,m′)∈ IN ,A,k and if the segment [n′[α,k+1],m′[α,k]
] and the ray Lα,k intersect, we directly

have the inequalities

d(m′[α,k], Lα,k), d(n′[α,k+1], Lα,k) <
A

φ(N )
. (47)

By Gauss counting argument (9) and since A/φ(N ) → 0, the inequalities (46) are only valid for a
number Oα((1 + diam3⃗)

4/covol2
3⃗
) of indices (n,m) ∈ 32. Hence, from now on we can assume that

[n[α,k+1],m[α,k]
] and the ray Lα,k do intersect and work with (47). Geometrically, this implies that (at

least) one of the points n[α,k+1] and m[α,k] is in the open half-space centred at Lα,k , i.e., of equation
Re(ze−i2πkα) > 0. By symmetry, we can assume this holds for the point m[α,k]. Set

Pα : z 7→ |z|αeiαω, where arg(z)≡ ω ∈ 2π(k + 1)+ ]ε− 2π, ε[.

This function coincides with z 7→ z[α,k] around m, and with z 7→ z[α,k+1] at n. Set εN = A/φ(N ). Denote
by ℓ a point in Lα,k for which the inequality |m[α,k]

− ℓ|< εN holds. By the reversed triangle inequality,
we see that |ℓ| ∈ D(|m|

α, εN ). Applying the mean value inequality to the inverse function of Pα , we can
locate the grid point m as follows

|m − P−1
α (ℓ)| ≤ |m[α,k]

− ℓ| max
D(ℓ,εN )

|(P−1
α )′| ≤ εN

1
α
(|ℓ| + εN )

1
α
−1.

In other words, the grid point m is close to the positive real line in the following sense

m ∈ D
(

x0,
εN

α
(xα0 + εN )

1
α
−1

)
, where x0 = P−1

α (ℓ) ∈ R+. (48)

We assume that N is large enough so that the three inequalities,

2
1
α
−1εN

α
≤

1
2
, εN ≤

(
sys3

2

)α
and

εN

α
(sysα3 +εN )

1
α
−1 <

sys3
2

hold. The latter inequality implies that x0 ≥ sys3 /2 for (48) to hold. One can then notice that the ball
described in (48) has radius bounded by

2
1
α
−1εN

α
x1−α

0 ≤
1
2

x0.

Since it is centred at x0 ≥ sys3 /2, we obtain the inequality Re(m)≥ sys3 /4. More generally, for every
real number x ≥ 0, the ball from (48) can intersect the vertical line above x (or equivalently contains x)
only if x0 ≤ 2x . Using the notation Lg of Lemma 2.11, this remark applied to x = Re(m) ∈ [sys3 /4, |m|]

implies that the point m belongs to the set Lg for the function

g : x 7→
3

1
α
−αεN

α
x1−α.

Applying Lemma 2.11 to the grid 3 and the inequalities max[k−1,k] g = g(k)≤ g(N ) (since g is nonde-
creasing), this gives us the inequality

Card{m ∈3 : there exists n ∈3 such that (n,m) ∈ IN ,A,k} ≤ 4N
(1 + diam3⃗)(g(N )+ diam3⃗)

covol3⃗
. (49)
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In order to count not only such points m but all the ordered pairs (n,m) ∈ IN ,A,k , we will use the function
Qα : z 7→ z[1/α,0]. The assumption θ(n) < θ(m) gives the formula

n
m

= Qα

(
n[α,k+1]

m[α,k]

)
.

By applying the mean value inequality to the function Qα between the points 1 and n[α,k+1]/m[α,k] on an
adequate neighbourhood V of 1 (e.g., we can choose the half-disk V = D(1, A/(φ(N0) sysα3))∩Qα(C

∗) for
N0 large enough so that the closure of this half disk does not contain 0), we obtain, with cα = maxV |Q′

α|,∣∣∣∣1 −
n
m

∣∣∣∣ ≤ cα

∣∣∣∣1 −
n[α,k+1]

m[α,k]

∣∣∣∣ ≤ cα
A

φ(N )|m|α
, i.e., |m − n| ≤ cα

A|m|
1−α

φ(N )
≤ cα

AN 1−α

φ(N )
. (50)

Using Gauss counting argument (more precisely, the right-hand inequality of (9) applied to the grid
m −3), and recalling the definitions εN = A/φ(N ) and g(N )= (31/α−αεN/α)N 1−α , the latter inequality
yields, as N → ∞,

Card(IN ,A,k)≤ 4N
(1 + diam3⃗)(g(N )+ diam3⃗)

covol3⃗

π

covol3⃗

(
cα

AN 1−α

φ(N )
+ diam3⃗

)2

= Oα,3

(
N

(
AN 1−α

φ(N )
+ 1

)3)
.

In the case λ ̸= ∞, this proves the lemma. If λ = +∞, then (50) becomes impossible as long as N is
large enough so that φ(N )/N 1−α > cαA/sys3⃗, and hence IN ,A,k is empty. □

Proof of Theorem 2.1. Immediate by combining (45) with Lemma 4.1. □

Remark 4.2. In addition, for all f ∈ C1
c (C) and A > 1 such that supp f ⊂ D(0, A), we obtain the error

term in Theorem 2.1, as min{N , N ′
+ N ′′

} → ∞,

Rα,3
N ,N ′,N ′′( f )=

∫
C

f (z)ρα,3⃗,λ(z) dz + ErrThm2.8(α,3, f, A)

+ Oα,3

(
N

(N ′ + N ′′)ψ(N )

(
AN 1−α

φ(N )
+ 1

)3

1λ ̸=+∞

)
.

Proof of Theorem 2.2. Immediate by combining the rational version of Theorem 2.8 stated in Remarks 2.9
with Lemma 4.1. □

Proof of Theorem 1.1. Let γ ∈ ]0, 1[. Assuming φ(N )= N γ and ψ(N )= N 2(2−α−γ ), we can compare
R

1/b,3
N ,0,b defined in (3) to the measure RN defined in the introduction and obtain

RN − R
1
b ,3

N ,0,b =
1

bψ(N )

∑
m,n∈3, n ̸=m
0<|m|,|n|≤N

∑
r∈exp−1(m), s∈exp−1(n)

|Im(r)−Im(s)|≥2π
0≤Im(r), Im(s)<2πb

1φ(N )(exp( s
b )−exp( r

b ))
.

Since z 7→ exp(z/b) induces a biholomorphism from C/ i2πbZ to C∗, for two points exp(r/b) and
exp(s/b) to be close together, the associated classes [r ] and [s] have to be close together in C/ i2πbZ.
Under the assumptions |Im(r)− Im(s)| ≥ 2π and 0 ≤ Im(r), Im(s) < 2πb, this implies that one of the
two points r ,s is close to the real line, and the other one to the horizontal line R + i2πb. We use the
notation IN ,A,b from Lemma 4.1. Let f ∈ C1

c (C) and A > 1 be such that supp f ⊂ D(0, A). For N
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large enough, for an index (n,m) to contribute to the sum RN ( f )− R
1/b,3
N ,0,b ( f ), then either (n,m) or

(m, n) has to belong to IN ,A,b. The number of such points n,m is evaluated in Lemma 4.1. Combining
this with Theorem 2.2, we obtain the vague convergence RN − R

1/b,3
N ,0,b

∗
⇀ 0 as N → +∞ and deduce

Theorem 1.1. □
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