Presentation
The program « Analysis, Arithmetic, Geometry » (M2 AAG) is one of the programs of the second year of master (M2) of the Master « Mathematics and applications » of the Paris-Saclay University. This master also contains a two-years long (M1+M2) program « Applied Algebra ».
This « Analysis, Arithmetic, Geometry » program is part ot the European master program ALGANT (Algebra, geometry and number theory), see https://algant.eu/
Objectives
The main objective of the program « Analysis, Arithmetic, Geometry » (M2 AAG) is to optimally prepare the students to a PhD in fundamental mathematics. Most of the courses topics and lecturers are renewed every two years in order to cover a large diciplinary panel. The students construct their training with a choice of various courses, subjet to the validation of the professors in charge of the program. The courses are taught in French or in English, , and in English whenever a nonfrench speaking student attends the course. Among the fields represented in the M2 AAG are:
Arithmetic and number theory
Algebraic geometry
Representation theory and Lie theory
Differential and Riemannian geometry
Geometric group theory
Ergodic Theory and dynamics systems
Harmonic analysis
Partial differential equations, ...
Career opportunities
The main consecutive careed opportunity of the program « Analysis, Arithmetic, Geometry » (M2 AAG) is a PhD thesis in fundamental mathematics.
Application process and registration process information
The prerequisites for the M2 AAG program are the theoretical knowledge in mathematics analogous to the one taught in the first year of Master "Fundamental Mathematics".
1) Concerning the Université Paris-Saclay, the applications to the M2 AAG Program are online on the software Inception by clicking on the link below " I apply ". They are open March 1rst-June 30th of the previous academic year. After the applications files have been evaluated, the candidates will receive an electronic mail giving them the decision of the admission jury, and can ask for a admission statement on paper by sending by electronic mail to the M2 AAG secretary (see contact information below). Concerning the Institut Polytechnique de Paris, the application information is available on the site Admission Master IPP
2) Financial applications to master fellowships for the M2 AAG are not linked to the previous pedagogical application, they should be done separately on the following sites, with different deadlines, some of them being as soon as the Fall semester of the previous academic year:
FMJH Sophie Germain Fellowship
FMJHCare Fellowship
IDEX international master fellowships : For these last fellowships, it is necessary to have applied to the M2 AAG program as described above on the Inception site before mid-April, and to be selected by the M2 AAG admission jury before end of April, in order to be able to receive an application link to such a fellowship.
3) Beware : The above pedagogical admission to the M2 AAG program does not allow by itself to obtain the master degree. For this, an administrative registration at the selected institution needs to be undertaken at the begining of the program, as described during the organisational Welcome meeting of the M2 AAG beginning of September.
Contacts and practical informations
Directors of the program :
Emanuele Macri (Faculté des Sciences d’Orsay, Université Paris-Saclay) Email
Frédéric Paulin (Faculté des Sciences d’Orsay, Université Paris-Saclay) Email
Pedagogical secretary :
Due to the August 2024 cyberattack of the Paris-Saclay University, the electronic mail system and some online services of the Paris-Saclay University are not working. In order to contact the pedagogical secretary offices , until further notice , please use the following adress : secretariat.maths.m2edmh@gmail.com
UPSaclay (Orsay) : Séverine SIMON and Florence FERRANDIS
Tél. 01 69 15 71 53 / 5 31 66 (Office 1A2, Laboratoire de Mathématiques d’Orsay, Bâtiment 307, Université Paris-Saclay, ORSAY)
Schedules
September 2024 intensive courses - Septembre 2024 welcome meeting (version 30/08/24)
Schedule of the first semester 2024-25 (version 06/12/2024)
Schedule second semester 2024-2025 (version 21/01/2025)
University Paris-Saclay academic year calendar 2024-2025
Slides Organisational meeting M2 AAG September 2024
The organisational Welcome meeting was held Wednesday, September 4rth, 2024 from 10:30am to 12:00am in the room 3L8, building 307 at Orsay (Institut mathématique d'Orsay).
Fundamental courses from Monday, September 23rd 2024 toFriday, January 10th 2025 - EXAMS : From 20th to 24th of January 2025
REMARK : The joint courses with the M2 AMS program (O1, O2, O3) of the first semester are held during the first period of that master program, that is , from September 9th to November 22nd, 2024.
Holidays : Allsaints vacations from October 28th to November 1rst, 2024 – Christmas vacations from december 23rd to January 6th, 2025 - Winter vacations : one week in February-March - Easter vacations : one week in April-May.
All the lectures are held at the Orsay Mathematical Institute (IMO), Building 307, rue Magnat, 91405 Orsay cedex.
Second semester starts : January 27th, 2025
Contents of the courses
The following courses are the one offered directly by the M2 AAG program. For the joint courses with the M2 AMS program and the M2 MdA program, see the corresponding internet pages.
Among the courses of the M2 program, are distinguished:
- The intensive courses (Topology and differential calculus, Commutative algebra, Analysis), that are held in September
- The fundamental courses, mostly during the first semester, each course representing about 72 hours.
- The specialized courses, mostly during the second semester, each course being about 20 hours.
First semester
Intensive courses (3 ECTS)
They cover mostly the first three weeks
- C. VITERBO : Differential manifolds and differential forms (EN1705) - From 18th au 20th of September 2024
Contenu
Le but de ce cours est de couvrir les bases de la géométrie différentielle en s'appuyant sur la connaissance du calcul différentiel, avec pour objectif final la cohomologie de de Rham des variétés. Pour cela nous introduirons donc les variétés, leurs fibrés tangents et cotangents, les champs de vecteurs et leurs flots, et les formes différentielles. Nous verrons alors comment intégrer ces dernières sur les variétés, ce qui nous mènera naturellement à la cohomologie de de Rham et sa célèbre dualité, la dualité de Poincaré.
- Variétés différentielles : espace tangent et cotangent, fonctions lisses
- Formes différentielles : formes exactes et fermées, lemme de Poincaré.
- Cohomologie de Rham et applications : quelques calculs, cohomologie des sphères
- Intégration des formes de degré maximum : orientation, variétés à bord
- Champ de vecteurs et formules de Lie-Cartan.
Références
- J. Lafontaine, Introduction aux variétés différentielles, Press. Univ. Grenoble, 1996.
- F. Paulin, Géométrie différentielle élémentaire, Notes de cours, https://www.imo.universite-paris-saclay.fr/~paulin/notescours/cours_geodiff.pdf
- M. Postnikov, Leçons de géométrie : Variétés différentiables, Mir, Moscou, 1990.
- M. Spivak, Differential geometry I, Publish or Perish, Wilmington, 1979.
- B. HENNION : Commutative algebra, homological algebra and sheaves theory (EN1706) - from 04th to 10th of September 2024
Résumé
This course will present a toolbox of commutative algebra, with an emphasis on the topological and geometrical behaviours arising from commutative rings.
We will include a review of noetherianity, localizations, Nakayama's lemma, Noether's normalization and Hilbert's Nullstellensatz and dimension theory, as well as sheaf theory and the definition of the affine scheme associated to commutative ring.
The course will end with a rapid introduction to homological algebra and the main features of this toolbox.
Contenu
Algèbre commutative, algèbre homologique et théorie des faisceaux. Comme l’indique son titre, ce cours poursuit un triple but :
- Rappeler et approfondir les connaissances d’algèbre commutative acquises en master 1 (localisation dans les anneaux commutatifs, produit tensoriel, idéaux premiers et maximaux, théorème des zéros de Hilbert, dimension et correspondance algèbre/géométrie).
- Proposer une brève introduction aux outils essentiels d’algèbre homologique (complexes, cohomologies, résolutions injectives et projectives, foncteurs dérivés).
- Développer les rudiments de théorie des faisceaux.
Références
- Introduction to commutative algebra, Atiyah-Macdonald
- Introduction to the theory of schemes, Manin
- Commutative algebra with a view towards Algebraic Geometry, Eisenbud
- Commutative Ring Theory, Matsumura
- Topologie algébrique et théorie des faisceaux, Godement
- An introduction to homological algebra, Weibel
- J. FENEUIL : Elements of functional analysis (EN1704) - from 11th to 23rd of September 2024
(Français) :
- Rappels d'analyse fonctionnelle (sans démonstrations) : Dualité, théorèmes de Hahn-Banach, de Baire, de Banach-Steinhaus, du graphe fermé. Topologie faible et faible-étoile, théorème de compacité faible.
- Caractérisation des espaces réflexifs.
- Bases de Schauder et bases inconditionnelles.
- Introduction à la théorie spectrale dans les espaces de Banach, dont alternative de Fredholm.
- S'il reste du temps, introduction à l'interpolation complexe.
Contents (English) :
* Overview of basic functional analysis (theorems without proofs) : Duality, Hahn-Banach, Baire, Banach-Steinhaus, closed graph theorem.
* Weak and weak-* topology, Ascoli theorem. Applications.
* Spectral theorem in Banach spaces, Fredhohm alternative.
* Complex interpolation: at least Riesz-Thorin theorem.
References :
* H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations, Springer-Verlag New York Inc., 2010.
* J. van Neerven, Functional Analysis, Cambridge University Press, disponible sur https://arxiv.org/abs/2112.11166.
* J. Bergh, J. Lofstrom, Interpolation spaces, Grund. math Wiss. 223, Springer Verlag 1976.
* G. Weiss, E. Stein., Introduction to Fourier analysis on Euclidean spaces, Princeton University Press, 1971.
* F. Albiac, N. Kalton, Topics in Banach space theory (Chapters I, III), Grad Text Math 233, Springer Verlag 2016.
Participation to these intensive courses is mandatory for all students. They are credited of 3 ECTS among the 30 ECTS needed to validate the second semester, by passing at least one of the three exams (only the best grade is kept).
Fundamental courses (30 ECTS)
After the September intensive courses, during the first semester, the students need to valildate 30 ECTS by choosing among the following fundamental courses.
Cours fondamentaux
Course title | Instructor | ECTS | Lectures | TD | TP | Cours/TD | Cours/TP | TD/TP | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Groups and Geometries 2024-2025 | Patrick Massot | 15 | 50h | 25h | ||||||
Introduction à l'analyse semi-classique | Matthieu Léautaud | 5 | 30h | |||||||
Introduction à la théorie spectrale | 5 | 30h | ||||||||
Equations elliptiques linéaires et non-linéaires | 5 | 30h | ||||||||
Géométrie algébrique : Théorie des schémas 2024-2025 | Emanuele Macri, David Harari | 15 | 50h | 25h | ||||||
Introduction aux variétés complexes 2024-2025 | Susanna Zimmermann | 15 | 50h | 25h | ||||||
Systèmes dynamiques topologiques et différentiables 2024-2025 | Frédéric Paulin | 7.5 | 25h | 12.5h | ||||||
Techniques d'analyse harmonique et d'analyse globale 2024-2025 | Alix Deruelle, Pascal Auscher | 15 | 50h | 25h | ||||||
Théorie des Nombres 2024-2025 | Jean-Benoit Bost | 15 | 50h | 25h | ||||||
Théorie des représentations 2024-2025 | Anne Moreau | 7.5 | 25h | |||||||
Théorie ergodique 2024-2025 | Frédéric Paulin | 7.5 | 25h | 12.5h |
The student may also validate some of the joint courses with the program Analyse Modélisation Simulation (M2 AMS)
- Matthieu Léautaud : Introduction à la théorie spectrale (30h) - 5 ECTS
- Stéphane Nonnenmacher : Introduction à l’analyse semi-classique (30h) - 5 ECTS
- Jean-François Babadjian : Équations elliptiques linéaires et non-linéaires (30h) - 5 ECTS
Second semester
During the second semester, the students need to validate 27 ECTS by writing a Master memoir and validating at lteast one specialized course. It is mandatory for the students to validate with the directors of the program the name of the Master memoir advisor and the subject of the Master memoire before the start of the memoir.
Mémoire
Course title | Instructor | ECTS | Lectures | TD | TP | Cours/TD | Cours/TP | TD/TP | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
AAG - Mémoire | Emanuele Macri | 21 |
Cours avancés
Course title | Instructor | ECTS | Lectures | TD | TP | Cours/TD | Cours/TP | TD/TP | Projet | Tutorat |
---|---|---|---|---|---|---|---|---|---|---|
Problèmes asymptotiques en géométrie complexe 2024-2025 | Siarhei Finski | 6 | 20h | |||||||
Configurations équiangulaires de droites 2024-2025 | Yves Benoist | 6 | 20h | |||||||
Groupes et moyennabilité 2024-2025 | Bruno Duchesne | 6 | 20h | |||||||
Introduction à la théorie de l'indice 2024-2025 | Martin Puchol | 6 | 20h | |||||||
Introduction à la théorie géométrique des représentations 2024-2025 | Vincent Pilloni | 6 | 20h | |||||||
Topos et mathématiques condensées 2024-2025 | Johannes Anschütz | 6 | 20h | |||||||
Variétés sphériques 2024-2025 | Nicolas Perrin | 6 | 20h |
The student may also validate a joint course with the program Analyse Modélisation Simulation (M2 AMS) :
- C. Letrouit : Fonctions propres du Laplacien (21h) 3 ECTS
- Y. Martel : Equation de Klein Gordon non linéaire amortie (21h) - 3 ECTS
and with the program Mathématiques de l'Aléatoire (M2 MdA)
Other courses
- English - 3 ECTS
- Bertrand Echeynne : History of Mathematics (25h) - 3 ECTS
Contenu
Un module d’histoire des mathématiques en master de sciences et technologie mention mathématiques répond à un double objectif, tant pour les masters recherche que les masters professionnels. Tout en permettant de travailler autrement des contenus mathématiques, il donnera l’occasion de situer des enjeux d’ordre épistémologique et d’ordre culturel de la discipline et de ses applications à travers l’histoire. En s’attachant à l’histoire de notions mathématiques, que les étudiants ont fréquentées depuis leurs études secondaires jusqu’à leur dernière année de licence, il s’agira de montrer comment ont pu se construire, dans les pratiques même de mathématiciens de différentes époques et cultures, des concepts et des résultats considérés aujourd’hui comme universels. On examinera des dispositifs scientifiques comme les outils théoriques, les modes d’argumentation, les perspectives sur la réalité mathématique et leur relation à d’autres dispositifs culturels. Le module optionnel, de 25 heures (3 ECTS), sera proposé à la fois aux étudiants de M1 et de M2 sur un semestre. Il sera organisé, dans la proportion de un tiers / deux tiers, en cours et TD. Les séances de TD seront consacrées à un travail sur des textes mathématiques originaux et la discussion de travaux de recherche (la plupart en langue anglaise).
- Student seminar - 3 ECTS - Please contact the directors of the M2 AAG program
Master fellowships
The Fondation Mathématique Jacques Hadamard (FMJH) offers Sophie Germain Master fellowships, allowing in particular to follow the M2 AAG program, both for students that were in a first year of Master program at the Polytechnic Institute of Paris or at the Paris-Saclay University, and for international students coming from Europe or outside Europe.
The Paris-Saclay University offers Master fellowships for students coming from abroad.