• HomePage »
  • Research »
  • Harmonic analysis
  • Harmonic analysis

    Research

    Harmonic analysis

    Head: Colin Guillarmou
    Assistant: Delphine Lelièvre 
    Weekly seminar: Mondays, 2pm, room 3L8

     

    The main themes of the team are harmonic and microlocal analysis applied to PDEs, geometric measure theory, complex geometry, and dynamics in several variables: 

    • Theory of varifolds
    • Calculus of variations
    • Kählerian or CR varieties and Monge-Ampere equations
    • Bergman kernels 
    • Inverse problems 
    • Geometric measure theory 
    • Multifractal analysis, diophantine approximation
    • Microlocal analysis and applications
    • Real harmonic analysis, applications to PDEs 
    • Analytic torsion 
    • Hyperbolic dynamical systems, dynamical zeta functions
    • Minimal sets
    • Nodal sets of eigenfunctions 
    • Random geometry 
    • Conformal field theory 
    • Kato problem, Riesz transforms
    • Holomorphic dynamics 
    • Multizeta functions
    • Hopf algebras and mould calculus.

    Team members

    Nom Fonction / Statut Site Bureau

    Upcoming events

    21
    Jan. 2025
    logo_team
    Séminaire Analyse Harmonique
    Carlos Pérez
    University of the Basque Country and Basque Center for Applied Mathematics (BCAM)
    14h00 - 15h00
    04
    March 2025
    logo_team
    Séminaire Analyse Harmonique
    Giorgi Oniani
    School of Mathematics, Kutaisi International University, Kutaisi, Georgia
    14h00 - 15h00