Décoder la complexité quantique : Vers une simulation plus accessible des matériaux
Avec Antoine Levitt
Et si l'on pouvait prédire le comportement d'un matériau avant même de l'avoir créé ? Autrefois, la découverte de nouveaux matériaux s'appuyait sur une longue quête d'expérimentations, d’essais et d’erreurs. Mais aujourd'hui, grâce aux avancées en physique, mathématique et informatique, il est de plus en plus possible d’appréhender les propriétés des matériaux avant même de les synthétiser en laboratoire.
Des équations pour simuler le comportements de la matière
Ces avancées ont été permises notamment par le développement de la physique quantique. Pour prédire comment un matériau va se comporter ou réagir, il est crucial de comprendre comment les électrons interagissent entre eux et avec les atomes du matériau. La physique quantique fournit un cadre théorique pour décrire le comportement des atomes et des électrons à l'échelle microscopique. Contrairement à la physique classique, la physique quantique révèle un monde où les particules peuvent exister dans plusieurs états simultanément et où leur comportement est décrit par des probabilités plutôt que par des trajectoires déterministes. Pour décrire ces interactions, il a fallu développer de nouvelles équations mathématiques, comme l’équation de Schrödinger, qui régit toujours la mécanique quantique. Du fait de sa complexité, les physiciens ont développé des dérivés de l’équation de Schrödinger. Bien qu’ayant près de 100 ans, les résolutions de l’équation de Schrödinger et de ses dérivés font encore l’objet de recherche.
C’est dans de contexte qu’interviennent les travaux d’Antoine Levitt. Il va chercher à partir de l’équation de Schrödinger à développer des méthodes de calcul ab initio. Ces méthodes de calcul doivent permettre de prédire les propriétés des matériaux uniquement à partir d’équations mathématiques fondamentales, sans ajustements empiriques venant de la physique. Il développe notamment des méthodes pour simuler le comportement des électrons dans les solides. A partir de ces équations fondamentales, il va donc pouvoir déduire des comportements macroscopiques de la matière, comme la densité d’un cristal ou la température d’ébullition d’un liquide.
Optimiser le fonctionnement des algorithmes
Les propriétés de base de petites molécules sont faciles à prédire à partir de l'équation de Schrödinger et de ses approximations. Mais d’autres propriétés, sont beaucoup plus complexes, en raison de la taille globale du système et des interactions multiples en jeu. Par exemple, pour simuler une protéine, il va falloir prendre en compte les interactions entre les milliers d’atomes dont elle est composée.
Antoine Levitt travaille sur des méthodes numériques et des algorithmes qui permettent de résoudre de manière simplifiée des dérivés de l’équation de Schrödinger. Il va chercher à obtenir des résultats rapides et d’un niveau de précision satisfaisant par rapport à la réalité physique.
Pour ce faire, Antoine Levitt élabore des approximations en se basant sur la réalité physique sous-jacente. Dans de nombreux matériaux, seuls les électrons les plus externes des atomes participent activement aux liaisons chimiques et aux propriétés électroniques. Ainsi il est possible de traiter de manière simplifiée les électrons de coeur pour réduire la complexité des calculs.
Vers une simulation quantique accessible
Un exemple concret de l'impact de ces optimisations algorithmiques est la simulation de matériaux à haute pression. Comprendre le comportement des matériaux sous pression extrême est crucial dans de nombreux domaines, de la géophysique (pour comprendre l'intérieur de la Terre) à la science des matériaux (pour développer de nouveaux matériaux très résistants). Cependant, simuler ces conditions extrêmes est coûteux en termes de calcul.
Les améliorations algorithmiques développées par Antoine Levitt et ses collègues permettraient de simuler le comportement de matériaux sous haute pression. Ils pourraient ainsi prédire des propriétés qui seraient extrêmement difficiles à observer expérimentalement.
De plus, ces optimisations rendent les calculs ab initio accessibles à un plus grand nombre de chercheurs. Auparavant, seuls les grands centres de recherche disposant de ordinateurs très puissants pouvaient effectuer ces calculs. Grâce aux améliorations algorithmiques, il devient possible avec des ordinateurs de calcul plus modestes d'explorer des systèmes vastes et complexes.
Antoine Levitt est professeur junior (CPJ) au Laboratoire de Mathématiques d'Orsay de l'Université Paris-Saclay, où il mène des recherches en analyse numérique, structure électronique et théorie spectrale.