On 4D split-conformal structures with G_2 -symmetric twistor distribution

Dennis The

Department of Mathematics & Statistics
UiT The Arctic University of Norway

(Joint work in progress with Pawel Nurowski & Katja Sagerschnig)

March 5, 2024

GRIEG SCREAM grant

SCREAM = Symmetry, Curvature Reduction, & EquivAlence Methods

Themes in my recent projects: Homogeneous structures / classification, ODE geometry, parabolic geometry, supergeometry.

A tale of three (parabolic) geometries

```
twistor XXO-structure (5D) (N^5 = \mathbb{T}^+(M); \ell, \mathcal{D}) \xrightarrow{D \text{ non-int. on } U \subset N} (U^5; \mathcal{D}) (\text{oriented}) \text{ split-conformal (4D)} (M^4; [\mathbf{g}])
```

Here, \mathcal{D} (coming from [g]) is the twistor distribution. We'll describe its construction in more detail later.

```
Q: Which [g] lead to \mathcal D with maximal symmetry (G_2)?
```

Geometric properties: Half-flat? Symmetries? Conformal holonomy? Almost-Einstein?

Rolling examples $\leadsto G_2$

Rolling without twisting or slipping:

- (Σ_i, g_i) : Riemannian surfaces;
- $M = \Sigma_1 \times \Sigma_2$ with $g = g_1 \oplus (-g_2)$.

Famous example: Two 2-spheres with ratio of radii 1:3.

An-Nurowski (2014) - new examples:

surface of revolution: $g_1 = (\rho^2 + \epsilon)^2 d\rho^2 + \rho^2 d\varphi^2$, $\epsilon \in \{0, \pm 1\}$ plane: $g_2 = dx^2 + dy^2$

Symmetry algebra f:

- $\epsilon=\pm 1$: $\langle \partial_{\varphi},\partial_{x},\partial_{y},-y\partial_{x}+x\partial_{y} \rangle$ (Inhomogeneous)
- $\epsilon = 0$: Add $\langle \rho \partial_{\rho} + 2\varphi \partial_{\phi} + 3x \partial_{x} + 3y \partial_{y} \rangle$ to above. (hom.)

(2,3,5)-geometry

 $(N^5, \mathcal{D} \subset TN)$ is a (2,3,5)-geometry if

$$\operatorname{rank}(\mathcal{D}) = 2, \quad \operatorname{rank}([\mathcal{D}, \mathcal{D}]) = 3, \quad [\mathcal{D}, [\mathcal{D}, \mathcal{D}]] = TN.$$

Goursat (1896): Locally, $\mathcal{D} = \mathcal{D}_f$ with \mathcal{D}_f spanned by

$$D_x := \partial_x + p\partial_y + q\partial_p + f(x, y, p, q, z)\partial_z, \qquad \partial_q.$$

This is (2,3,5) iff $f_{qq} \neq 0$.

Theorem (Cartan 1910)

Any (2,3,5)-distribution has at most 14-dim symmetry. Locally, $\exists !$ maximally symmetric model, and this has G_2 -symmetry.

Example (Cartan 1893)

 \mathcal{D}_{q^2} has G_2 -symmetry.

XXO-geometry

... consists of a 5-mfld N with rank 3 dist. $\mathcal{H} \subset TN$ satisfying:

- $[\mathcal{H},\mathcal{H}]=TN$ and $\mathcal{H}=\ell\oplus\mathcal{D}$ (of ranks 1 and 2);
- $\bullet \ \ [\mathcal{D},\mathcal{D}]\subseteq \mathcal{H}. \quad \textcircled{\triangleright}: \ [\mathcal{D},\mathcal{D}] \text{ may have non-constant rank}.$

Example (Pairs of 2nd order ODE as integrable XXO-str.)

$$\begin{cases} \ddot{x} = F(t, x, y, \dot{x}, \dot{y}) \\ \ddot{y} = G(t, x, y, \dot{x}, \dot{y}) \end{cases} \begin{cases} N^5 : (t, x, y, \dot{x}, \dot{y}) \\ \ell = \langle \partial_t + \dot{x} \partial_x + \dot{y} \partial_y + F \partial_{\dot{x}} + G \partial_{\dot{y}} \rangle \\ \mathcal{D} = \langle \partial_{\dot{x}}, \partial_{\dot{y}} \rangle \end{cases} \text{ (integrable: } [\mathcal{D}, \mathcal{D}] = \mathcal{D})$$

Example (Enhancing (2, 3, 5) to a non-integrable XXO-str.)

For $\mathcal{D}=\mathcal{D}_{q^2}=\langle D_x,\partial_q\rangle$, we have $[\mathcal{D},\mathcal{D}]/\mathcal{D}=\langle \partial_p+2q\partial_z\rangle$. We can define an XXO geometry via a choice of ℓ :

$$\ell = \langle \partial_p + 2q\partial_z + AD_x + B\partial_q \rangle$$
 (non-int: $[\mathcal{D}, \mathcal{D}] = \mathcal{H} := \ell \oplus \mathcal{D}$)

An–Nurowski construction

General construction:

- Input: $(M^4, [g])$, with g a split-signature (2, 2)-metric.
- Output: On "circle-twistor bundle" $N = \mathbb{T}^+(M) \to M$ (of SD totally null 2-planes), get twistor XXO structure $\mathcal{H} = \ell \oplus \mathcal{D}$.
 - $\ell = \ker(TN \to TM);$
 - \mathcal{D} = "twistor distribution": distinguished via the 1-dim kernel of $\bigwedge^2 \mathcal{H}^* \to TN/\mathcal{H}$.
- Locally, $g = \theta^1 \theta^2 + \theta^3 \theta^4$, $\operatorname{vol}_g = \theta^1 \wedge \theta^2 \wedge \theta^3 \wedge \theta^4$, SD totally null 2-planes look like $\langle e_1 + \xi e_3, e_4 \xi e_2 \rangle$. Lift to XXO:

$$\ell = \langle \partial_{\xi} \rangle, \quad \mathcal{D} = \langle e_1 + \xi e_3 + A \partial_{\xi}, e_4 - \xi e_2 + B \partial_{\xi} \rangle.$$

- Efficiently compute \mathcal{W}^+ via: $\bigwedge^2 \mathcal{D} \xrightarrow{[\cdot,\cdot]} \mathcal{H} = \ell \oplus \mathcal{D} \xrightarrow{\operatorname{pr}_{\ell}} \ell$. (Locally, $\mathcal{W}^+(\xi)$ is a quartic polynomial in $\xi \leadsto \mathsf{Petrov}$ type.)
- \mathcal{D} is (2,3,5) where $\mathcal{W}^+ \neq 0$.
- Q: Which [g] lead to \mathcal{D} with G_2 symmetry?

A classification theorem

Theorem (Nurowski-Sagerschnig-T. 2024)

We have a complete classification of those locally homogeneous 4D split-conformal structures with:

- 1 multiply-transitive twistor XXO-structure, and
- $\mathbf{2}$ G_2 -symmetric twistor distribution.

Complexified summary:

Label	Petrov type	Comments
M9	N.O	$\mathfrak{p}_1^{\mathrm{op}}$
M8	D.O	$\mathfrak{sl}(3,\mathbb{R}), \mathfrak{su}(1,2)$
$M7_a$	$\begin{cases} \text{N.N,} & a^2 \neq \frac{4}{3}; \\ \text{N.O,} & a^2 = \frac{4}{3} \end{cases}$	$new: \mathbb{R}^2 \ltimes \mathfrak{heis}_5$
M6S	D.D	1:3 rolling spheres + variants
M6N	III.O	$new: \mathfrak{aff}(2)$

Example: 9-dim symmetry

Plebanski:
$$g = dwdx + dydz - \Theta_{xx}dz^2 - \Theta_{yy}dw^2 + 2\Theta_{xy}dwdz$$

 $\rightsquigarrow \mathcal{W}^+(\xi) = (\partial_x + \xi\partial_y)^4\Theta.$

Example

Let $\Theta = -\frac{y^4}{12}$. Then $g = y^2 dw^2 + dw dx + dy dz$ has 9 CKV's.

- Lift to XXO-geometry $\leadsto (\ell, \mathcal{D})$ admits 9-dim. sym. alg. $\mathfrak{f}.$
- $\mathcal{W}^+ = -2\xi^4$, so \mathcal{D} is (2,3,5) when $\xi \neq 0$.
- Cartan (1910): Submax. sym. dim. for (2, 3, 5) is 7.
- Thus, $\mathfrak{f} \hookrightarrow \mathfrak{g} := \mathsf{Lie}(G_2)$. Indeed $\mathfrak{f} \cong \mathfrak{p}_1^{op} \subset \mathfrak{g}$.

Harmonic curvatures

Structure	Hieroglyphic	Harmonic curvatures	Hom.
(2, 3, 5)	-8 4 ★ •	Cartan quartic: 🥥	+4
4D split-conf	0 -4 4 • × •	ASD Weyl: \mathcal{W}^-	+2
4D 3piit 601ii	4 −4 0 • × •	SD Weyl: W+	+2
	$\begin{array}{cccc} 0 & -4 & 4 \\ \times & \times & \bullet \end{array}$	${\cal S}$	+3
XXO	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	au	+2
	$\begin{array}{cccc} 4 & -4 & 0 \\ \times & \times & \bullet \end{array}$	\mathcal{I}	+1

Remarks:

- T precisely obstructs integrability of D.
- Čap (2006) \rightsquigarrow 4D split-conf. \leftrightarrow XXO geometry with $\mathcal{T} \equiv 0$.

How to systematically classify?

- Via coordinate methods: not sure how to start.
- Cartan reduction on XXO with T ≡ 0 and T ≠ 0: get a list, but need to impose Q ≡ 0 to remove extraneous items.
 (This is cumbersome, especially for the 6D case.)

Strategy:

- Build in $Q \equiv 0$ and $\mathcal{I} \neq 0$ from the outset, but need $\mathcal{T} \equiv 0$;
- Work inside $\mathfrak{g} = \text{Lie}(G_2)$, filtered by the parabolic $P = P_1$: $\mathfrak{g} = \mathfrak{g}^{-3} \supset ... \supset \mathfrak{g}^0 = \mathfrak{p} \supset ... \supset \mathfrak{g}^3.$

What should we classify?

Suppose we have a Lie-theoretic XXO model $(\mathfrak{f},\mathfrak{f}^0;\ell,\mathcal{D})$. Assume \mathcal{D} is non-int. & $\mathcal{Q}\equiv 0$. Define admissible $(\mathfrak{f},\mathfrak{f}^0;\ell,\mathcal{D})$:

- (X.1) $\mathfrak{f} \hookrightarrow \mathfrak{g} = \mathsf{Lie}(G_2)$ as a filtered (wrt P) Lie subalgebra;
- (X.2) $\operatorname{gr}_{-}(\mathfrak{f}) = \mathfrak{g}_{-} \& \dim(\mathfrak{f}^{0}) \geq 1$ ("multiply-transitive");
- (X.3) On f/f^0 , we have the data

$$\mathfrak{f}^{-1}/\mathfrak{f}^0=\mathcal{D},\quad \mathfrak{f}^{-2}/\mathfrak{f}^0=\ell\oplus\mathcal{D};$$

- (X.4) $\mathcal{T} \equiv 0;$
- (X.5) maximal wrt natural partial order: $f \leq \tilde{f}$ iff $f \hookrightarrow \tilde{f}$.

Classify admissible $(\mathfrak{f},\mathfrak{f}^0;\ell,\mathcal{D})$ (up to the natural *P*-action).

Classification steps

- **1** Classify complex admissible $(\mathfrak{f},\mathfrak{f}^0;\ell,D)$ + real forms.
- 2 Check Petrov types.
- Integrate structure eqns to get local coordinate models. For half-flat ones, write 2nd order ODE pairs.
- 4 Find "Cartan-theoretic" embeddings into $(\mathfrak{sl}_4, \mathfrak{p}_{1,2})$. (This also determines Petrov types, as well as holonomy.)

We will:

- Sketch key ideas relating to the first step;
- 2 Show an example demonstrating: Petrov type, holonomy, Cartan-theoretic embedding, assessing almost-Einstein

Examples

Let $\mathsf{Z}_1, \mathsf{Z}_2 \in \mathfrak{h}$ be dual to the simple roots $\alpha_1, \alpha_2 \in \mathfrak{h}^*$ of G_2 . Grading element: Z_1 . For $i, j \geq 0$, write $e_{ij} \in \mathfrak{g}_{i\alpha_1 + j\alpha_2}$ and $f_{ij} \in \mathfrak{g}_{-i\alpha_1 - j\alpha_2}$. Define $\mathsf{H} := [e_{01}, f_{01}] = -\mathsf{Z}_1 + 2\mathsf{Z}_2$.

	M9	M6S
$\overline{\mathfrak{f}^0}$	f_{01}, Z_1, H, e_{01}	Н
$\mathcal{D} = \mathfrak{f}^{-1}/\mathfrak{f}^0$	f_{10}	$f_{10} + e_{11}$
	f_{11}	$f_{11} + e_{10}$
$\mathfrak{f}^{-2}/\mathfrak{f}^{-1}$	f_{21}	$f_{21} + e_{21}$
$\mathfrak{f}^{-3}/\mathfrak{f}^{-2}$	f_{31}	$f_{31} + e_{32}$
	f_{32}	$f_{32} + e_{31}$
ℓ	f_{21}	$f_{21} + e_{21}$

Leading parts

The graded subalgebra $\mathfrak{s}:=\operatorname{gr}(\mathfrak{f})\subset\mathfrak{g}$ determines leading parts of \mathfrak{f} . (Also need to determine "tails".) Start with the isotropy \mathfrak{f}^0 .

Lemma

1
$$f^i = 0$$
 for $i \ge 1$

2
$$\operatorname{gr}(\mathfrak{f}^0) \subseteq \mathfrak{g}_0 \cong \mathfrak{gl}(\mathfrak{g}_{-1}) \cong \mathfrak{gl}_2$$
, so $\dim(\mathfrak{f}^0) \leq 4$.

P-action \rightsquigarrow G_0 -action on $\mathfrak{s}_0 \subseteq \mathfrak{g}_0$. Classification over \mathbb{C} :

\dim	\mathfrak{gl}_2 subalgebra
4	\mathfrak{gl}_2
3	$\left \begin{array}{ccc} \mathfrak{sl}_2, & \left\langle \begin{pmatrix} * & 0 \\ * & * \end{pmatrix} \right\rangle \end{array} \right $
2	$\left \left\langle \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix} \right\rangle, \left\langle \begin{pmatrix} \lambda_1 & 0 \\ * & \lambda_2 \end{pmatrix} \right\rangle \right $
1	$\left(\left\langle \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \right\rangle, \left\langle \left(\begin{matrix} \lambda & 0 \\ 1 & \lambda \end{matrix} \right) \right\rangle \right)$

(Here, identify $Z_1 \leftrightarrow -id$ and $H \leftrightarrow diag(1, -1)$.)

Tails

- Suppose $\exists S \in \mathfrak{f}^0$ with $S_0 = \operatorname{gr}_0(S) \in \mathfrak{s}_0$ semisimple.
- Try to use P-action to normalize tails so that $S = S_0$.
- Pick S-invariant decomp. $\mathfrak{s} \oplus \mathfrak{s}^{\perp} = \mathfrak{g}.$
- Tails \rightsquigarrow deform. map $\mathfrak{d} \in (\mathfrak{s}^* \otimes \mathfrak{s}^{\perp})_+$ is highly constrained:

$$S \cdot \mathbf{0} = 0$$
. (\rightsquigarrow eigenvalue restrictions!)

All cases with such semisimple elements in (normalized) \mathfrak{s}_0 :

$S_0 \in \mathfrak{s}_0$	Constraints	Admissible models
Z_1	-	M9
Н	$Z_1 ot\in \mathfrak{s}_0$	M8 & M6S
$Z_1 + cH$	$c \neq 0$,	$c \neq 1$: none
	$\mathfrak{s}_0 \subseteq \langle Z_1 + cH, f_{01} \rangle$	$c=1:M7_a$

Remaining cases with no such: $\mathfrak{s}_0 = \langle f_{01} + r \mathsf{Z}_1 \rangle$ (Jordan case).

- $r \neq 0$: No admissible model. (Easy.)
- r=0: M6N. (Most challenging case; $\mathcal{T}\equiv 0$ is essential.)

Running example: M6S

Filtrand	M6S
f_0	Н
$\mathcal{D} = \mathfrak{f}^{-1}/\mathfrak{f}^0$	$X_1 = f_{10} + e_{11}$
	$X_2 = f_{11} + e_{10}$
$\mathfrak{f}^{-2}/\mathfrak{f}^{-1}$	$X_3 = f_{21} + e_{21}$
) /)	(also spans ℓ)
f^{-3}/\mathfrak{f}^{-2}	$X_4 = f_{31} + e_{32}$
	$X_5 = f_{32} + e_{31}$

Let $\mathfrak{k}:=\mathfrak{f}^0+\ell.$ On $\mathfrak{f}/\mathfrak{k}$ (4D), $\exists!$ $\mathfrak{k}\text{-inv. conf. str. [g]. Define}$

$$\mathfrak{f} \ni e_1 = X_1, e_2 = X_5 + \frac{2}{3}X_2, e_3 = X_4, e_4 = X_2.$$

Let $\{\theta^i\}$ be dual to $\{e_i\} \pmod{\mathfrak{k}}$. Then $g = 2(\theta^1\theta^2 + \theta^3\theta^4)$. SD totally null 2-planes:

$$\Pi_{\xi} := \langle e_1 + \xi e_3, e_4 - \xi e_2 \rangle \pmod{\mathfrak{k}}.$$

M6S: Isotropy

 $\mathfrak{k} = \langle \mathsf{H}, X_3 \rangle$ acts on SD family. FACTS: For any $\xi \in \mathbb{R}$,

- **1** Π_{ξ} has isotropy $\mathfrak{t}_{\xi} = \langle \mathsf{H} \rangle$.
- 2 On f/\mathfrak{k}_{ξ} (5D), have $\mathfrak{k}/\mathfrak{k}_{\xi}$ modelling ℓ .
- 3 X_3 acts via $(\xi+3)(\xi-1)\partial_{\xi}$.

Example

Via the isotropy rep, $\rho(X_3) = \begin{pmatrix} -2 & 0 & -1 & 0 \\ 0 & 2 & 0 & 3 \\ -3 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$. The local action is

$$\Pi_{\widetilde{\xi}} = e^{t
ho(X_3)}\Pi_{\xi}.$$
 This sends $e_1 + \xi e_3$ to

$$e_1 + \xi e_3 + t(-2e_1 - 3e_3 - \xi e_1) + O(t^2) \mod \{e_2, e_4\}$$

so
$$\widetilde{\xi} = \frac{\xi - 3t + O(t^2)}{1 - 2t - \xi t}$$
. Diff. at $t = 0$ to get $(\xi + 3)(\xi - 1)\partial_{\xi}$.

M6S: Petrov classification

Recall $\ell = \mathfrak{k}/\mathfrak{k}_{\xi}$. Let's determine the twistor distribution \mathcal{D} .

$$\mathfrak{f}/\mathfrak{k}_{\xi} \quad \mathcal{D} = \langle e_1 + \xi e_3 + AX_3, e_4 - \xi e_2 + BX_3 \rangle \pmod{\mathfrak{k}_{\xi}}
\downarrow^{\pi} \qquad \qquad \downarrow^{\cong}
\mathfrak{f}/\mathfrak{k} \qquad \qquad \Pi_{\xi}$$

The condition $[\mathcal{D},\mathcal{D}]\subseteq\mathcal{H}:=\pi^{-1}(\Pi_{\xi})$ forces A=B=0 for M6S.

We have $\mathcal{H} = \ell \oplus \mathcal{D}$. Then \mathcal{W}^+ arises $\bigwedge^2 \mathcal{D} \stackrel{[\cdot,\cdot]}{\to} \mathcal{H} \stackrel{\operatorname{pr}_{\ell}}{\to} \ell$. We find:

$$[e_1 + \xi e_3, e_4 - \xi e_2] \equiv \frac{2}{3} (\xi + 3)(\xi - 1) X_3 \pmod{\mathfrak{t}_{\xi}}.$$

Recall X_3 acts via $(\xi+3)(\xi-1)\partial_{\xi}$, so \mathcal{W}^+ is a multiple of $(\xi+3)^2(\xi-1)^2$, i.e. type D. (\mathcal{D} is integrable at $\xi=-1$ or 3.)

Cartan-theoretic description

We saw Lie-theoretic XXO-models earlier, embedded in $\mathfrak{g}=\mathsf{Lie}(G_2)$. These quotient to 4D split-conformal models. Equivalent description: Definition

A Cartan-theoretic model $(\mathfrak{f}; \widetilde{\mathfrak{g}}, \widetilde{\mathfrak{q}})$ is a Lie algebra $(\mathfrak{f}, [\cdot, \cdot]_{\mathfrak{f}})$ s.t.:

- (M1) $\mathfrak{f} \subset \widetilde{\mathfrak{g}}$ is a filtered subspace, with filtrands $\mathfrak{f}^i := \mathfrak{f} \cap \widetilde{\mathfrak{g}}^i$, and $\mathfrak{f}/\mathfrak{f}^0 \cong \widetilde{\mathfrak{g}}/\widetilde{\mathfrak{q}}$.
- (M2) \mathfrak{f}^0 inserts trivially into the curvature $\kappa(x,y):=[x,y]-[x,y]\mathfrak{f}$.
- (M3) $\kappa \in \bigwedge^2(\mathfrak{f}/\mathfrak{f}^0)^* \otimes \widetilde{\mathfrak{g}} \cong \bigwedge^2(\widetilde{\mathfrak{g}}/\widetilde{\mathfrak{q}})^* \otimes \widetilde{\mathfrak{g}}$ is regular and normal, i.e. $\kappa \in \ker(\partial^*)^1$. (Define $\kappa_H := \kappa \mod \operatorname{im}(\partial^*) \in H_2(\widetilde{\mathfrak{q}}_+, \widetilde{\mathfrak{g}})^1$.)

Example (M6S, $\widetilde{\mathfrak{g}} = \mathfrak{sl}_4$, $\widetilde{\mathfrak{q}} = \mathfrak{p}_2$)

$$\mathfrak{f} = \begin{pmatrix} s_1 & 0 & \frac{11}{6} \, a_2 \, \frac{19}{6} \, a_1 \\ 0 & -s_1 \, \frac{19}{6} \, a_4 \, \frac{11}{6} \, a_3 \\ a_3 & a_1 & s_2 & 0 \\ a_4 & a_2 & 0 & -s_2 \end{pmatrix}, \quad \kappa = -\frac{4}{3} \phi_2 + \frac{4}{3} \psi_2, \quad \text{where}$$

$$\phi_2 = E_{31}^* \wedge E_{41}^* \otimes E_{21} + E_{42}^* \wedge E_{32}^* \otimes E_{12} + (E_{31}^* \wedge E_{42}^* + E_{32}^* \wedge E_{41}^*) \otimes H_{12}$$

$$\psi_2 = E_{42}^* \wedge E_{41}^* \otimes E_{43} + E_{31}^* \wedge E_{32}^* \otimes E_{34} + (E_{42}^* \wedge E_{31}^* + E_{32}^* \wedge E_{41}^*) \otimes H_{43}$$

Holonomy & aE scales

Given a Cartan-theoretic model $(\mathfrak{f}; \widetilde{\mathfrak{g}}, \widetilde{\mathfrak{q}})$, define:

$$\mathfrak{hol}^0:=\langle \kappa(x,y): x,y\in \mathfrak{f}\rangle, \qquad \mathfrak{hol}^i:=\mathfrak{hol}^{i-1}+[\mathfrak{f},\mathfrak{hol}^{i-1}], \ \forall i\geq 1.$$

Then $\mathfrak{hol} := \mathfrak{hol}^{\infty}$ is the (infinitesimal) holonomy algebra.

Holonomy obstructs existence of almost-Einstein scales. Via the "tractor" picture, we should ask:

- Via $\mathfrak{hol} \hookrightarrow \mathfrak{sl}_4 \cong \mathfrak{so}_{3,3}$, what is $(\mathbb{R}^{3,3})^{\mathfrak{hol}}$?
- Equivalently, what is $(\bigwedge^2 \mathbb{R}^4)^{\mathfrak{hol}}$?

Example (M6S)

 $\mathfrak{hol}^0 = \{E_{12}, E_{21}, H_{12}, E_{34}, E_{43}, H_{34}\}, \quad \mathfrak{hol} = \mathfrak{hol}^1 = \mathfrak{sl}_4$ There are no almost-Einstein scales here.

Holonomy & aE scales - 2

For our (complexified) models, we find:

Label	$\mathfrak{hol}, ext{ represented on } \mathbb{C}^4 = \langle e_1, e_2, e_3, e_4 angle$	$(\bigwedge^2 \mathbb{C}^4)^{\mathfrak{hol}}$	Almost-Einstein?
М9	$\begin{pmatrix} 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 \\ * & 0 & 0 & 0 \\ * & 0 & 0 & 0 \end{pmatrix}$	$e_{2} \wedge e_{3}, \\ e_{2} \wedge e_{4}, \\ e_{3} \wedge e_{4}$	✓
М8	$\begin{pmatrix} s_1 & s_2 & \frac{c_4}{2} & -\frac{c_2}{2} \\ s_3 & -s_1 & -\frac{c_3}{2} & \frac{c_1}{2} \\ c_1 & c_2 & t_1 & t_2 \\ c_3 & c_4 & t_3 & -t_1 \end{pmatrix}$	$e_1 \wedge e_2 - 2e_3 \wedge e_4$	✓
М 7_a .	$a^{2} \neq \frac{4}{3}: \begin{pmatrix} 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 \\ * & 0 & 0 & 0 \\ * & * & * & 0 \end{pmatrix}$	$e_2 \wedge e_4, \ e_3 \wedge e_4$	✓
	$a^2 = \frac{4}{3}: \begin{pmatrix} 0 & 0 & 0 & 0 \\ * & 0 & 0 & 0 \\ * & 0 & 0 & 0 \\ * & 0 & 0 & 0 \end{pmatrix}$	$egin{array}{c} e_2 \wedge e_3, \ e_2 \wedge e_4, \ e_3 \wedge e_4 \end{array}$	✓
M6S	${\mathfrak {sl}}_4$	0	×
M6N	(* 0 0 0 0	0	×

Thanks for your attention!