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Prologue

• Equivalence Methods SCREAMs:

� Lie
Tresse
Olver
Lychagin
Kruglikov . . .

� Cartan
Sternberg
Gardner
Kamran
Olver
Anderson
Nurowski . . .

� Poincaré
Moser
Beloshapka
Loboda
Ezhov
Eastwood . . .



• Objective: Determine homogeneous models of geometric structures.

• Question: Who would term Cartan’s method “straightforward”?

• Question: Who found a “straightforward” method?

• Difficulty:
� Wide universe of geometric structures of a certain kind

versus

� Exceptionally small subset of symmetric ones.

• Chern-Moser 1974: Levi nondegenerate hypersurfaces M 2n+1 ⊂ Cn+1:

Zero CR curvature at any p ∈ M
?

=⇒ M 2n+1 ' S2n+1 ?

Proof. Observe:
Moser curvature at p ≡ Hachtroudi-Chern curvature at p

Conclude thanks to Cartan-Frobenius EDS flatness theorem. �

• Fact: [Xiaojun Huang] A purely Poincaré-Moser proof is missing!

• Delicate: Exist 2 distinct kinds of techniques

=⇒ 2 distinct mathematical traditions
/

communities



• Bridge:

Poincaré
Moser

Cartan
Nurowski

• Bridge objective: Transfer
/

Adapt some of the Concepts
/

Techniques of Car-
tan.

Deep acknowledgments to Paweł Nurowski!



Results

• Ph. D. under finalization (jww): [Julien Heyd]

We determine all affinely homogeneous models for:
� Constant Hessian rank 1 hypersurfaces Hn ⊂ Rn+1 with n = 2, 3, 4;
� Constant Hessian rank 2 hypersurfaces S3 ⊂ R4;
� Surfaces S2 ⊂ R4;
including the simply transitive models.

We also determine all multiply transitive homogeneous models for:
� 5D PDE systems under fiber-preserving diffeomorphisms.

We employ an improved power series method of equivalence, which captures invari-
ants at the origin, creates branches, and infinitesimalizes calculations.

We find several inequivalent terminal branches yielding each to some nonempty mod-
uli space of homogeneous models, sometimes parametrized by a certain invariant alge-
braic variety.

Three main features may be emphasized:
1. Iterated single-pointed jet bundles;
2. Cartan-enhanced power series method of equivalence;
3. Constant ping-pong between normal forms (nf) and vector fields (vf).



Differential Invariants and Homogeneous Models

Consider a Lie group G acting on a given type of geometric structure. Examples
are: Euclidean, affine, conformal, projective, (pseudo-)Riemannian, symplectic, quater-
nionic, Cauchy-Riemann (CR), para-CR, . . . , structures. Other examples are: ordinary
differential equations; partial differential equations; integrability systems; Pfaffian sys-
tems, . . . .

In his complete works, Élie Cartan often started by re-expressing the considered geo-
metric structure as being a specific exterior differential system.

On the other hand, as explained in Peter Olver’s monographs and articles, after trans-
fer to an appropriate associated space (e.g. a jet bundle), several (local) geometric
structures with a (local) Lie group G acting on them can be expressed as (local) graphs
{u = F (x)} in the associated space equipped with a G-action.

In this talk, we adopt the graph point of view. Although our considerations are valid
for infinite-dimensional Lie groups, like the groups of diffeomorphisms, of biholomor-
phisms, of CR-equivalences, . . . , we shall restrict ourselves to the finite-dimensional
setting. We shall work over R or C.

Consider therefore a Lie group G of finite dimension 1 6 r < ∞. Let n ∈ N>1 and
c ∈ N>1. In Rn+c with coordinates x = (x1, . . . , xn) and u = (u1, . . . , uc), consider a
c-codimensional graph:

uj = Fj
(
x1, . . . , xn

)
(16 j6 c).

Throughout, our point of view will be local, and the Fj will be assumed to be analytic.
We will not introduce notations for open sets, subsets, sub-subsets.



Let the group G act on Rn+c, by analytic diffeomorphisms. In this talk, G will consist
of affine transformations. Also, an element g of the group G will always be explicitly
given by group parameters (g1, . . . , gr) ∈ Rr.

Two general problems are of interest, about which we will be more specific later, see
Problems on p. 36 and p. 60 infra.

Problem 1. Describe algebras of differential invariants.

Problem 2. Determine homogeneous models.

These two problems are tightly linked with each other, because most of the times,
homogeneous models of a given geometric action are ‘exceptional’ objects in a wide
universe of nonsymmetric objects. The ‘exceptional’ symmetric objects have constant
differential invariants, while the ’general’ nonsymmetric objects often have infinitely
many functional differential invariants, which share complicated differential-algebraic
relations.

The Lie-Fels-Olver recurrence relations between differential invariants constitute a
natural ‘bridge’ between these two general problems. Indeed, the effectiveness of Peter
Olver’s equivariant moving frame approach lies in the powerful recurrence relations,
which produce complete and explicit differential-algebraic structures for the under-
lying algebras of differential invariants — this without requiring explicit coordinate
expressions for either the moving frame or the invariants. Evidently, differential invari-
ants of homogeneous structures are constant, and it is a fact that the algebraic relations
between them retain major part of the recurrence relations.



Fibers Over Group Transversals Versus Full Jet Bundle

Abbreviate z := (x, u). Denote the target coordinates as z :=
(
x, u
)
. An element

g ∈ G in some neighborhood of the identity sends the graph:
M := {u = F (x)}

to a similar graph:
M :=

{
u = F

(
x, g
)}
,

with certain analytic functions F j which depend on the group parameters.
The expressions of these F j(x, g) are difficult to write down, highly nonlinear, often

cumbersome. They in fact require the full strength of the implicit function theorem.
Such transformations of graphs appear regularly in the original complete works of

Lie.
Let us write:

g · z = g · (x, u) =:
(
x, u
)

= z.

We whall assume that the group G acts transitively on Rn+c, and even, that G con-
tains all translations. (Non-transitive group actions are sometimes considered in Peter Olver’s ar-
ticles.) ‘Morally’, the fact that G acts transitively implies that all points are somewhat
‘equivalent’.

M = g ·M
p0

Transitive ActionM

0 = g · p0g · z = z



Therefore, any point p0 ∈M can be ‘moved by G’ to some ‘central’ point, 0 ∈ Rn+c,
the origin of the target coordinates z. Next, coordinates z can be ‘re-centered’ at p0.

M M

g ∈ G0
stab

00

So both graphs M and M pass through the origin. And in fact, only the (isotropy)
subgroup G0

stab ⊂ G of transformations g ∈ G sending 0 to 0 should be considered
onward, as we will argue later.

To study invariants under G-actions and to classify G-homogeneous geometries,
(roughly) two different (general) approaches exist:

• Work within (full) jet bundles (Lie, Cartan, Olver, . . . );

• Work with (truncated) power series centered at the origin (Lagrange, Poincaré,
Moser, . . . ).

The second approach, less developed, has several defects. One obvious defect is
that differential invariants of Lie type, which require differentiation with respect to
x1, . . . , xn, cannot be computed by manipulating power series only at x1 = · · · = xn =
0! Other defects will be discussed later.

The first steps of Lie’s theory of differential invariants consist in prolongating the
G-action to jet bundles. Sketching only key aspects, we will not present the complete
details.



For a jet order κ ∈ N, let Jκn,c be the bundle of κ-jets of c functions of n variables, at
all base points

(
x, u(x)

)
∈M . For instance, J1

n,c has n+c+n c independent coordinates
corresponding to the xi, and to the uj together with all their first order derivatives uj,xi.

0

M

Rn+c Rn+c

z

g · z

g1 · z1

z

0

J1
n,c

M

J
1
n,c J

1
n,c

∣∣
0

J1
n,c

∣∣
0

As is known, the G-action uniquely lifts as a G-action on first jets of graphs. This ac-
tion is just the (differential) action on tangent spaces to the two graphs at corresponding
points.



Interlude: Differential Invariants in Full Jet Bundles

• Theory in Full Jet Bundles:

w = w
(
g, z
)

= g · z.

Jnz
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Back to Fibers Over Group Transversals Versus Full Jet Bundle

Denote z1 = (x, u, u1) and similarly z1 =
(
x, u, u1

)
. Although it is the same group G

that acts on J1
n,c, denote its lifted action with the symbol g1:

g1 · z1 =: z1 (g ∈G).

0

M

Rn+c Rn+c

z

g · z

g1 · z1

z

0

J1
n,c

M

J
2
n,c

J
1
n,c

g2 · z2

J2
n,c



0 0

J
1
n,c

∣∣
0

J1
n,c

∣∣
0

(
g|0

)1

g|0 · 0

First of all, since the origin 0 ∈ M is sent to the origin 0 ∈ M , the group action
sends the first jet fiber J1

n,c

∣∣
0

over 0 to the first jet fiber J
1
n,c

∣∣
0

over 0. Of course, we are
considering only group elements g of the subgroup G0

stab ⊂ G fixing the origin, which
we denote by g|0.

0 0

J
1
n,c

∣∣
0

J1
n,c

∣∣
0

(
g|0

)1

g|0 · 0



As a key decision here, we decide to forget other jet fibers (!). Full bundles will not
anymore be dealt with (!). When passing to higher jet orders, this decision of restricting
to selected fibers will be iterated. Of course, there are prolongations

(
g|0
)1, (g|0)2, . . . ,

to jet fibers J1
∣∣
0
, J2

∣∣
0
, . . . , and we will later show formulas for such prolongations,

which are simpler than the formulas in the full jet bundle.

0 0

g|0

g1|0

g2|0

J1
∣∣
0

01 0
1

J
1∣∣

0

J
2∣∣

0

J
2∣∣

01

J2
∣∣
0

J2
∣∣
01

Several groups G, as e.g. the affine or projective groups, contain not only translations
but also transvections, namely maps of the form:

vj = uj + qj,1 x1 + · · · + qj,x xn (16 j6 c),



with arbitrary qj,i ∈ R. Such maps enable to ‘strengthen’ tangent spaces of both M at
0 and M at 0 to be ‘horizontal’, that is, to normalize to zero all first order terms in the
power series expansions:

u = 0 + Ox1,...,xn(2) and u = 0 + Ox1,...,xn(2),

where of course:
Ox1,...,xn(2) =

∑
i1+···+in>2

xi11 · · · xinn Fi1,...,in.

Precise formulas and normalization equations can easily be written, for G =
Aff(Rn+1). Geometrically, this means that the G-action lifted to the first jet bundle
J1 and restricted to its fiber J1

∣∣
0

over the origin 0 only, is transitive, and this means
that the origin 01 ∈ J1

∣∣
0

is taken as a transversal to the unique G0
stab-orbit in J1

∣∣
0
.

0 0

01 0
1

J
2∣∣

01J2
∣∣
01

g2|01



Therefore, not the whole second order jet fibers J2
∣∣
0

and J
2∣∣

0
over the origins 0 ∈M

and 0 ∈ M should be dealt with. Instead, and precisely as it is drawn in the simplified
diagram above, one should consider only:
• J2

∣∣
01

:= the part of J2 over the origin 01 of J1
∣∣
0
;

• J2∣∣
0
1 := the part of J

2
over the origin 0

1 of J
1∣∣

0
.

These two smaller subspaces are the respective two preimages of 01 and of 0
1 under the

(unwritten) projections from the second floor to the first floor.
Furthermore, only the subgroup G1

stab ⊂ G0
stab ⊂ G of transformations sending 01 to

0
1 (hence sending 0 to 0) should be dealt with. As in the figure above, let us denote by
g2
∣∣
01

the prolongation to J2
∣∣
01

of group elements g belonging to G1
stab.

Thus, exactly as in Cartan’s method of equivalence, there are here successive group
reductions.

g2|01
J
2∣∣

01J2
∣∣
01

So again, there is an action on selected (reduced) fibers. And again, the concerned
fiber must be decomposed into group orbits. Theorem 42 of Lie — probably the most
complicated statement of the whole Volume I of Theorie der Transformationsgrup-
pen — explains in an algorithmic way how to decompose group actions into orbits,
applying an infinitesimal technique.



Example: Parabolic Surfaces S2 ⊂ C3

With G := Aff(C3), in the left space, let S2 ⊂ C3 3 (x, y, u) be a graphed (analytic)
surface:

u = F (x, y) = 0 + 0 + F2,0 x
2 + F1,1 x y + F0,2 y

2 + Ox,y(3),

its constant term 0 and its first order term 0 being already normalized. Of course:

Ox,y(3) =
∑
i+j>3

Fi,j x
i yj.

Clearly, J2
∣∣
01

is coordinatized by
(
F2,0, F1,1, F0,2

)
.

In the right space, let the target surface in C3 3 (p, q, v) be similarly graphed as:

v = G(p, q) = 0 + 0 + G2,0 p
2 + G1,1 p q + G0,2 q

2 + Op,q(3),

with
(
G2,0, G1,1, G0,2

)
being coordinates on J

2∣∣
0
1.

A general transformation of Aff(C3) writes:

p := a1,1 x + a1,2 y + b1 u + τ1,

q := a2,1 x + a2,2 y + b2 u + τ2,

v := c1 x + c2 y + d u + σ,
with 0 6=

∣∣∣∣∣∣
a1,1 a1,2 b1
a2,1 a2,2 b2
c1 c2 d

∣∣∣∣∣∣ .



But 0 should be sent to 0, which holds if and only if all translational parameters τ1 =
τ2 = σ = 0 vanish, so that the transformation belongs to GL(C3): pq

v

 =

 a1,1 a1,2 b1
a2,1 a2,1 b1
c1 c2 d

 xy
u

 .
Thus G0

stab = GL(C3) here.
Furthermore, 01 should be sent to 0

1, and the reader can verify that this corresponds
to the group reduction towards G1

stab: a1,1 a1,2 b1
a2,1 a2,2 b2
c1 c2 d

0

;

 a1,1 a1,2 b1
a2,1 a2,2 b2
0 0 d

1

.

How? Simply by inspecting the fundamental equation:
0 ≡ − c1 x− c2 y − dF (x, y)

+ G
(
a1,1 x + a1,2 y + b1 F (x, y), a2,1 x + a2,2 y + b2 F (x, y)

)
,(0.1)

which expresses that
{
u = F (x, y)

}
is mapped to

{
v = G(p, q)

}
. This fundamental

equation must hold identically in the ring C{x, y} of convergent power series. Thus,
neglecting second and higher order terms:

0 ≡ − c1 x− c2 y + Ox,y(2),

we see that 0 = c1 = c2, necessarily. Visibly, in G1
stab, there remain 7 (isotropy)

parameters.



And now, what is the action of G1
stab on J2

∣∣
01

? How to prolong G1
stab to second order

jets? Simply by looking at second order terms in the fundamental equation! By hand
or using a computer, we find:

0 ≡ x2
[
a22,1G0,2 + a1,1 a2,1G1,1 + a21,1G2,0 − dF2,0

]
+ x y

[
2 a2,1 a2,2G0,2 + a1,1 a2,2G1,1 + a1,2 a2,1G1,1 + 2 a1,1 a1,2G2,0 − dF1,1

]
+ y2

[
a22,2G0,2 + a1,2 a2,2G1,1 + a21,2G2,0 − dF0,2

]
+ Ox,y(3).

(0.2)

(Another — less economic — way of doing would consist in applying Lie’s prolongation formulas of
diffeomorphisms to the full bundle of second order jets, before restricting these formulas to the consid-
ered fiber.)

Since G1
stab is a subgroup of GL(C3), its determinant must be nonzero:

0 6=
(
a1,1 a2,2 − a2,1 a1,2

)
d = det

 a1,1 a1,2 b1
a2,1 a2,2 b2
0 0 d

 .
Equating to zero the coefficients of x2, of x y, of y2, and solving for G2,0, G1,1, G0,2

gives a linear representation on C3: G2,0

G1,1

G0,2

 =
1

(a1,1 a2,2 − a2,1 a1,2)2

 a22,2 d − a2,1 a2,2 d a22,1 d

− 2 a1,2 a2,2 d a1,1 a2,2 d + a2,1 a1,2 d − 2 a1,1 a2,1 d

a21,2 d − a1,1 a1,2 d a21,1 d


 F2,0

F1,1

F0,2

 .



This is the action of G1
stab on J2

∣∣
01

= C3, and in fact, the action of the block-diagonal
subgroup GL(C2)× C∗ ⊂ G1

stab, because b1, b2 are absent.
It is elementary to realize that this action is equivalent, up to dilation, to the action of

SL(C2) on binary quadrics, and to deduce that there are exactly 3 possible inequivalent
normal forms at order 2:

Branch 2a u = 0 + Ox,y(3),

Branch 2b u = x2 + Ox,y(3),

Branch 2c u = x y + Ox,y(3).

Indeed, over the comblex numbers, both x2 + y2 and x2− y2 are equivalent to x y. Geo-
metrically, there are 3 group-orbits, and there are 3 — point-like, zero-dimensional —
transversals

A quick way to recover this fact is to realize by a direct computation that the Hessian
at the origin is a relative invariant:

4G2,0G0,2 −G2
1,1 =

d2

a1,1 a2,2 − a2,1 a1,2

[
4F2,0 F0,2 − F 2

1,1

]
.

Higher-dimensional Hessian matrices are also known to be relatively invariant.

Observation. In all affine structures classified in this talk, at every jet order, there will
always appear explicit linear representations of subsequently reduced subgroups Gκ−1

stab

on jet fibers Jκ
∣∣
Tκ−1 over certain group-transversals T κ−1 ⊂ Jκ−1 from the jet level

beneath.



Infinitesimal Counterpart

At the infinitesimal level, a general affine vector field:

L =
(
T1 + A1,1 x + A1,2 y + B1 u

) ∂
∂x

+
(
T2 + A2,1 x + A2,2 y + B2 u

) ∂
∂y

+
(
U0 + C1 x + C2 y + Du

) ∂
∂u
,

is tangent to
{
u = F (x, y)

}
if and only if:

0 ≡ L
(
− u + F (x, y)

)∣∣∣
u=F (x,y)

,

identically in C{x, y}. With the normalization up to order 2 included:
u = 0 + 0 + F2,0 x

2 + F1,1 x y + F0,2 y
2 + Ox,y(3),

these tangency equation reads:
0 ≡ −U0 + x

[
F1,1 T2 + 2F2,0 T1 − C1

]
+ y

[
2F0,2 T2 + F1,1 T1 − C2

]
+ Ox,y(2),

whence necessarily:
U0 := 0,

C1 := F1,1 T2 + 2F2,0 T1,

C2 := 2F0,2 T2 + F1,1 T1.



This corresponds to the group reduction to G1
stab seen above, and this means that the

general infinitesimal generator of G1
stab writes:

L1
stab :=

(
T1 + A1,1 x + A1,2 y + B1 u

) ∂

∂x

+
(
T2 + A2,1 x + A2,2 y + B2 u

) ∂

∂y

+
([
F1,1 T2 + 2F2,0 T1

]
x +

[
2F0,2 T2 + F1,1 T1

]
y + Du

) ∂

∂u
.



Branching Diagram for Surfaces S2 ⊂ C3



General Setting: Induction on Jet Order

In the (x, u)-space and in the (x, u)-space as well, let the two normal forms be written
as:

uj = Nnormal
j,κ−1

(
I•, x

)
+
∑

i1+···+in>κ
Fj,i1,...,in x

i1
1 · · · xinn ,

uj = Nnormal
j,κ−1

(
I•, x

)
+
∑

i1+···+in>κ
F j,i1,...,in x

i1
1 · · · xinn ,

with 1 6 j 6 c, where the following holds.
� The Nnormal

j,κ−1 represent all x-monomials in the left space and all x-monomials in the
right space, monomials which are normalized and finalized up to order 6 κ− 1.
� These normalized polynomials Nnormal

j,κ−1 are exactly the same functions on both
sides — only the argument x is changed to x.
� The supplementary argument I• (without indices, sometimes absent) indicates that
in some branches, there might remain a certain number of absolute invariants found in
preceding orders, namely function satisfying in this branch:

I•
(
Jκ−1F

)
= I•

(
J
κ−1

F
)
,

with on both sides exactly the same functions I• of the collection of order6 κ−1 power
series coefficients — plainly denoted here with the notation Jκ−1.

So now, how to determine Gκ−1
stab? Just by requiring that the normal form is preserved

by a transformation g ∈ G up to order 6 κ − 1. In the example of S2 ⊂ C3 under



Aff(C3), we saw the fundamental equation (0.1), and we truncated it at order 1 to get
G1

stab with c1 = c2 = 0.
In the general setting, the reduced groupGκ−1

stab ⊂ Gκ−2
stab ⊂ · · · ⊂ G can be determined,

theoretically, as follows. At first, with g ∈ Gκ−2
stab , let the group-dependent diffeomor-

phism (x, u) 7−→
(
x, u
)

be written as:

x = x
(
x, u, g

)
, u = u

(
x, u, g

)
.

ForG = Aff(C3), such formulas are explicit. Such a diffeomorphism maps
{
u = F (x)

}
to
{
u = F (x)

}
if and only if:

u = F (x) =⇒ u = F
(
x
)
,

which yields the fundamental equations, in the current branch:

0 ≡ −uj
(
x, F (x), g

)
+ F j

(
x
(
x, F (x), g

))
≡

∑
i1+···+in>0

Enf
j,i1,...,in

(
I•, F•, F •, g

)
xi11 · · · xinn .

These c equations for 1 6 j 6 c should be satisfied identically in C{x1, . . . , xn}.
The upper index nf in Enf

• indicates that these equations are involved in the production
of normal forms. Infra, we will introduce other kinds of equations Evf

• with the upper
index vf, indicating that they come from tangential vector fields.

So all these Enf
j,i1,...,in

= 0 should vanish. Above, the lightened notation F• denotes a
certain finite collections of power series coefficient Fj,i′1,...,i′n, always with i′1+ · · ·+ i′n 6



i1 + · · · + in, and the same for F •. In practice, real formulas are challenging, even for
powerful symbolic computers.

By the induction hypothesis, since g ∈ Gκ−2
stab , all equations Enf

j,i1,...,in
= 0 with 1 6

j 6 c and with i1 + · · · + in 6 κ− 2 are already fulfilled, and it remains:

0 ≡
∑

i1+···+in=κ−1
Enf
j,i1,...,in

(
I•, F•, F •, g

)
xi11 · · · xinn + Ox1,...,xn(κ) (16 j6 c),

whence:

0 = Enf
j,i1,...,in

(
I•, F•, F •, g

)
(∀ 16 j6 c, ∀ i1+···+in=κ−1).

Once F• is chosen in a certain transversal T κ−1 with (by invariancy) the same choice
for F •, these (algebraic) equations are used as supplementary constraints on g ∈ Gκ−2

stab .
These equations therefore force g to belong to a specific reduced subgroup Gκ−1

stab ⊂
Gκ−2

stab .
In this order κ−1 preceding the working order κ, because we reason by induction, we

have not yet explained how transversals T κ−1 to Gκ−1
stab -orbits were constructed

/
chosen.

This aspect is more delicate. Infra, at the next (working) order κ, we will explain how
to create transversals T κ. At least for now, in our reasoning by induction, we have
explained what we assume to be achieved at orders 6 κ− 1

Once Gκ−1
stab is known, the next step is to prolong its action to the space of κ-jets.

Remember that we do not work in full jet bundles, which is a key trick to dominate the
complexity of computations. We work only above successive transversals. This means



that we work over the already normalized power series coefficients, at orders 6 κ− 1,
namely ‘over’ Nnormal

j,i1,...,in
, symetrically on both left and right sides.

Also, this means that the relative fiber of the projection from κ-jets to normalized jets
of order6 κ−1 is represented just by letting appear order = κ power series coefficients:

uj = Nnormal
j,κ−1

(
I•, x

)
+
∑

i1+···+in=κ
Fj,i1,...,in x

i1
1 · · · xinn + Ox1,...,xn(κ + 1),

and the same for:

uj = Nnormal
j,κ−1

(
I•, x

)
+
∑

i1+···+in=κ
F j,i1,...,in x

i1
1 · · · xinn + Ox1,...,xn(κ + 1).

Of course, the appearing Fj,i1,...,in and F j,i1,...,in are a priori different here (while at
orders 6 κ− 1, they are equal by construction).

The goal is to normalize these Fj,i1,...,in and F j,i1,...,in, i.e. to find appropriate orbit
transversals. But for which group action? It is at this precise step that things often
happen to become delicate.

Abbreviating:
Jκ∗F :=

{
Fj,i1,...,in

}16j6c
i1+···+in=κ

,

Jκ∗F :=
{
F j,i1,...,in

}16j6c
i1+···+in=κ

,

the fundamental equation, which is now identically satisfied up to all orders 6 κ − 1
when g ∈ Gκ−1

stab , reads at order κ as:

0 = Enf
j,i1,...,in

(
I•, Jκ∗F, Jκ∗F , g

)
(∀ 16 j6 c, ∀ i1+···+in=κ).



Provided that g ∈ Gκ−1
stab lies in some neighborhood of the identity, these algebraic

equations, of degree 1 with respect to Jκ∗F and to Jκ∗F , may always be solved under
the form:

Jκ∗F = Λ
(

I•, Jκ∗F, g
)
.

But some key information may be missing. This is a ‘defect’ of the normal form
equations 0 = Enf

• which, by working only over the origin (x, u) = (0, 0), are unable
per se to capture differentialo-geometric information.



Reduced Linear Representation and Branch Creation

Back to the general setting, with g ∈ Gκ−1
stab , in the order κ normal form equations:

0 = Enf
j,i1,...,in

(
I•, Jκ∗F, Jκ∗F , g

)
(∀ 16 j6 c, ∀ i1+···+in=κ).

some jet coordinates in Jκ∗F and, parallelly, in Jκ∗F , should disappear due to the previ-
ous history within the branches created before.

1

2a 2b

3a

4c

3b

5b

1

2b

3a

4c

5b

2c

? ? ? ? ? ? ? ? ? ?



In the illustrating figure above, 5b would be the branch at order κ − 1 = 5 at which
considerations hold (instead of κ − 1 = 3 above), with nearby branches, and with the
whole history of preceding branches. Still, the creation of order 6 = κ subsequent
branches is not yet done.

? ? ? ? ?

κ− 1

In the previous history, some relative differential invariants, say K1, . . . ,Kt, were
encountered which were assumed to be ≡ 0. (Some other relative differential invari-
ants may have been assumed to be nonzero and then normalized to +1 or to −1 with
associated group reductions, but such kinds of normalizations have no differential con-
sequences.) These invariant differential relations:

0 ≡ K1

(
Jκ−1F

)
, . . . . . . . . . , 0 ≡ Kt

(
Jκ−1F

)
,

encountered at jet orders 6 κ− 1, do not depend on J∗κF .
But by differentiation with respect to x1, . . . , xn, these PDEs do (in general) provide

resolutions of certain dependent Jκ∗,depF in terms of some other independent Jκ∗,indF ,
possibly with discussion of determinantal loci, hence with creation of branches. For
instance, from the parabolic surfaces differential relation Fyy =

F 2
xy

Fxx
with κ − 1 = 2, it



comes:

Fxyy = 2
Fxy Fxxy
Fxx

−
F 2
xy Fxxx

F 2
xx

,

Fyyy = 3
F 2
xy Fxxy

F 2
xx

− 2
F 3
xy Fxxx

F 3
xx

.

In summary, coming back to our power series, let us admit that all the order κ differ-
ential consequences of the degeneracy assumptions encountered before in the current
branch are computable in some ‘external’ way and have been inserted in the order κ
normal form equations:

0 = Enf
j,i1,...,in

(
I•, Jκ∗,indF, Jκ∗,indF , g

)
(∀ 16 j6 c, ∀ i1+···+in=κ),

with g ∈ Gκ−1
stab .

In fact, since we will abandon the Differential Invariants Problem on p. 7, and focus
only on the Homogenous Models Problem on p. 7, we will develop a precise, elemen-
tary, and unambiguous method for determining the explicit expressions of the depen-
dent jets Jκ∗,depF , together with some extra jet constraints required to construct homoge-
neous geometries, see the explanations below. This method will only use power series
at the origin.

It seems that now, the appropriate linear representation can be obtained by solving
for Jκ∗,indF . But using some of the group parameters g ∈ Gκ−1

stab , some of the power
series coefficients Jκ∗,indF may still be normalized, e.g. to 0, and then, associated group
reductions must be set up.



Let us assume that such extra normalizations have been made, let us keep the same
notation Jκ∗,indF for the remaining independent jets, and let us keep the same notation
Gκ−1

stab for the reduced group.
Once all these tasks are achieved, we can really solve:

Jκ∗,indF = Λ
(

I•, Jκ∗,indF, g
)

(g ∈Gκ−1stab ).

Observation. In all affine structures treated in this talk, and in other geometric struc-
tures as well, at every jet order κ, these Λ-formulas always were certain explicit linear
matrix representations of a certain reduced Lie group Gκ−1

stab ⊂ Gκ−2
stab ⊂ · · · ⊂ G, and

even, always independent of the absolute invariants I• coming from the preceding jet
orders.

Consequently, to each node of the final branching tree is attached a linear represen-
tation of a Lie group!

This is very analogous to the existence of G-structures with their successive reduc-
tions, a central feature of Cartan’s method of equivalence. But there is an important dif-
ference: G structures have functional entries, while our Λ-matrices always have scalar
entries, even when G is a group of diffeomorphisms — is infinite-dimensional.

This is explained by our key decision not to work in full jet bundles, but only above
successively selected points or transversals to group-orbits.

So quite unexpectedly for researchers like us who during several years worked out the
very nonlinear and PDE-theoretic (parametric) Cartan equivalence method, the theory



of linear representations of Lie groups became very useful, very universal, and present
at each step of the process, at every node of every branching tree!

To our knowledge, the observation that linear representations of Lie groups are uni-
versally present has not been made in the literature.

We can now terminate our induction reasoning. The linear representation written
above of Gκ−1

stab in the (finite-dimensional) vector space of the components of Jκ∗,indF
then decomposes this vector space into a finite number of group-orbits.

Transversals T κ• to all these group-orbits must then be appropriately chosen.

κ− 1

κ

This is how we create the branches at the working order κ.
This terminates our description of the process, by induction on the jet order κ.
Of course, in the specific examples treated in papers, details are presented, especially,

linear representations.



Determination of Homogeneous Models

Thus, we focus our attention mainly on

Problem. Given a finite-dimensional local Lie group acting G on graphed submani-
folds Mn =

{
u = F (x)

}
in Rn+c

x,u , find and classify all possible M having a locally
transitive local automorphisms group Sym(M) ⊂ G.

Here:
Sym(M) =

{
g ∈ G : g(M) ⊂M

}
,

where we do not stipulate that open subsets V ⊂ U ⊂ M should be chosen with
g(V ) ⊂ U and that g ∈ G should lie in some neighborhood of the identity.

Local Lie groups, not often considered in the modern literature, are easy to handle
because they are well represented (in a one-to-one manner) by Lie algebras of vector
fields.

In fact, SymM has Lie algebra:
Lie Sym(M) = sym(M) :=

{
L ∈ g : L

∣∣
M

is tangent to M
}
,

where g denotes the Lie algebra of vector fields inside Rn+c obtained by diffentiating at
the identity the action of G on Rn+c. For instance, when G = Aff(Rn+c):

g = Span
(
∂xi, ∂uj, xi1 ∂xi2, uj ∂xi, xi ∂uj, uj1 ∂uj2

)
.

Since all our considerations are local, after recentering the coordinates, we can as-
sume that everything takes place in some neighborhood of the origin 0 ∈M .



Definition. A c-codimensional submanifold Mn ⊂ Rn+c is said to be (locally) affinely
homogeneous if:

T0M = SpanR
{
L
∣∣
0
: L ∈ sym(M)

}
.

According to basic Lie theory, the 1-parameter group p 7−→ exp(t L)(p) stabilizes M ,
and Sym(M) is then locally transitive in a neighborhood of 0 ∈M .

As is known, the datum of the Lie algebra sym(M) enables (by exponentiation) to
reconstitute (a neighborhood of the identity in) Sym(M). But sym(M) is much better
handled than Sym(M), thanks to its linear and infinitesimal features. Lie himself in-
sisted on the fact that Lie algebras of vector fields are the right objects of study when
classifying continuous transformation group actions. And all of Lie’s classifications
consist in lists of Lie algebras of infinitesimal transformations (vector fields), see e.g.
on pages 6, 17, 26, 57, 71, 106, 116, 139, 167, 203, 209, 214, 226, 246, 257, 271, 334,
370, 388, 384, 388, 391 of Engel-Lie 1893.

We will adopt Lie’s way of classifying geometries, namely, by presenting explicit Lie
algebras of vector fields.

Now, in continuation with what precedes, set:
gκ−1stab := LieGκ−1

stab .

Reasoning by induction on the jet order, assume that there are vector fields:
e1, . . . , en ∈ gκ−1stab ,

such that, at the origin 0 ∈M :

Span
(
e1
∣∣
0
, . . . , en

∣∣
0

)
= T0M.



Certainly, n 6 dim gκ−1stab 6 dimG.
Together with e1, . . . , en, there are a certain number ν > 0 of isotropy vector fields

f1, . . . , fν ∈ gκ−1stab , i.e. vector fields vanishing at the origin (x, u) = (0, 0), such that the
general infinitesimal transformation L ∈ gκ−1stab writes for 1 6 j 6 c:

L = T1 e1 + · · · + Tn en + A1 f1 + · · · + Aν fν,

with n + ν arbitrary parameters Tm and Aµ.
To guarantee local homogeneity (transitivity), no linear relation can ever exist be-

tween T1, . . . , Tn.
The condition that L be tangent to M up to orders 6 κ− 1, writes:

0 ≡ L
(
− uj + Fj(x)

)∣∣∣
u=F (x)

≡
∑

i1+···+in6κ−2
xi11 · · · xinn

(
· · ·
)
◦

vanish
by induction

+
∑

i1+···+in=κ−1
xi11 · · · xinn Evf

j,i1,...,in

(
I•, Jκ∗F, T1, . . . , Tn, A1, . . . , Aν

)
+ Ox1,...,xn(κ),

that is, after reorganization:

0 ≡
n∑

m=1

Tm

(
Φvf
j,i1,...,in,m

(
I•, Jκ∗F

))
+

ν∑
µ=1

Aµ

(
Ψvf
j,i1,...,in,µ

(
I•, Jκ∗F

))
(16 j6 c, i1+···+in=κ−1).



A few times below, we will abbreviate these equations as:
0 = Evf

• .

Whenever one of these equations, say for some indices j, i1, . . . , in, does not incor-
porate any of the isotropy parameters A1, . . . , Aν, but incorporates only the transitivity
parameters T1, . . . , Tn, we receive n equations:

0 = Φvf
j,i1,...,in,m

(
I•, Jκ∗F

)
(16m6n),

which are of degree 1 with respect to Jκ∗F , and which express constraints on certain ‘de-
pendent’ jets Jκ∗,depF to be resolved in terms of certain other ‘independent’ jets Jκ∗,indF .

Some of these ‘independent’ jets may simultaneously become absolute invariants at
order κ, hence join the current collection I• before passing to order κ + 1.

Sometimes even, some linear combinations between these equations must be per-
formed in some tricky way in order to eliminate A1, . . . , Aν, so as to ‘discover’ further
transitivity equations which would reveal new constraints. In many branches of our
classification of affinely homogeneous surfaces S2 ⊂ R4, we were blocked for this
reason.

This method based on transitivity equations has already been applied in in a paper
of Foo-M.-Nurowski-Ta 2021, in a degenerate CR-geometric context, for the infinite-
dimensional group of biholomorphisms of C3. However, no details of proof were given.
A complete written proof would be about 50 pages long, due to subtle computational
aspects in degenerate branches. Indeed, even for a reduction to an explicit, parametric,
Cartan-type {e}-structure, which is a preliminary step to determine homogeneous mod-
els, the calculations are long. Similarly, in the degenerate para-CR context, by lack of



space, several computations used to determine homogeneous geometries are not fully
presented by M.-Nurowski 2020.

Lastly, and importantly, at the end of the process, we often obtain a collection of
algebraic equations in the remaining absolute invariants I•, some key equations whose
zero-set defines an algebraic moduli space of a collection of homogeneous models,
represented by a terminal leaf of the tree.



Ping-Pong Method of Equivalence



Invariant Quartic for PDEs Under Fiber-Preserving Transformations

Proposition. Any equivalence fixing the origin Φ from:
F = c + ax + by

+ F2,0,2,0,0x
2a2 + F2,0,1,1,0x

2ab + F2,0,0,2,0x
2b2

+ F1,1,2,0,0xya
2 + 0 + F1,1,0,2,0xyb

2

+ F0,2,2,0,0y
2a2 + F0,2,1,1,0y

2ab + F0,2,0,2,0y
2b2 + Ox,y,a,b,c(5),

to:
G = c′ + a′x′ + b′y′

+ G2,0,2,0,0x
′2a′2 + G2,0,1,1,0x

′2a′b′ + G2,0,0,2,0x
′2b′2 + G1,1,2,0,0x

′y′a′2 + G1,1,0,2,0x
′y′b′2

+ G0,2,2,0,0y
′2a′2 + G0,2,1,1,0y

′2a′b′ + G0,2,0,2,0y
′2b′2 + Ox′,y′,a′,b′,c′(5),

transforms the 8 order 4 coefficients as:

G2,0,2,0,0

G2,0,1,1,0

G2,0,0,2,0

G1,1,2,0,0

G1,1,0,2,0

G0,2,2,0,0

G0,2,1,1,0

G0,2,0,2,0


= A(α, β, γ, δ, χ) ·



F2,0,2,0,0

F2,0,1,1,0

F2,0,0,2,0

F1,1,2,0,0

F1,1,0,2,0

F0,2,2,0,0

F0,2,1,1,0

F0,2,0,2,0


,



where:

A(α, β, γ, δ, χ) =
1

χ(αδ − βγ)2
, Ã,

and where:

Ã =


αδ(αδ + 2βγ) βδ(2αδ + βγ) 3β2δ2 −γα(2αδ + βγ) −βδ(αδ + 2βγ) 3α2γ2 γα(αδ + 2βγ) βγ(2αδ + βγ)

2αδ2γ δ2(αδ + βγ) 2βδ3 −2γ2αδ −2βδ2γ 2αγ3 γ2(αδ + βγ) 2γ2βδ
δ2γ2 δ3γ δ4 −γ3δ −δ3γ γ4 γ3δ γ2δ2

−2α2βδ −2αβ2δ −2β3δ α2(αδ + βγ) β2(αδ + βγ) −2α3γ −2α2βγ −2αβ2γ
−2γ2βδ −2βδ2γ −2βδ3 γ2(αδ + βγ) δ2(αδ + βγ) −2αγ3 −2γ2αδ −2αδ2γ
β2α2 αβ3 β4 −α3β −αβ3 α4 α3β α2β2

2αβ2γ β2(αδ + βγ) 2β3δ −2α2βγ −2αβ2δ 2α3γ α2(αδ + βγ) 2α2βδ
βγ(2αδ + βγ) βδ(αδ + 2βγ) 3β2δ2 −γα(αδ + 2βγ) −βδ(2αδ + βγ) 3α2γ2 γα(2αδ + βγ) αδ(αδ + 2βγ)

 .

set:

P := P1 P2 =



0 0 2 0 0 0 1
2 0

0 2 0 0 0 1 0 0
4 0 0 0 0 0 0 0
0 0 0 −2 0 0 0 −1
0 −2 0 0 0 1 0 0
0 0 0 0 4 0 0 0
0 0 0 2 0 0 0 −1
0 0 2 0 0 0 −1

2 0


,(0.3)

and set:

B̃ :=
(
P1 P2

)−1
Ã P1 P2,



so that:

B̃ =


δ4 δ3γ δ2γ2 γ3δ γ4 0 0 0

4βδ3 δ2(αδ + 3βγ) 2δγ(αδ + βγ) γ2(3αδ + βγ) 4αγ3 0 0 0
6β2δ2 3βδ(αδ + βγ) α2δ2 + 4αδβγ + β2γ2 3αγ(αδ + βγ) 6α2γ2 0 0 0
4β3δ β2(3αδ + βγ) 2αβ(αδ + βγ) α2(αδ + 3βγ) 4α3γ 0 0 0
β4 αβ3 β2α α3β α4 0 0 0
0 0 0 0 0 δ2(αδ − βγ) δγ(αδ − βγ) γ2(αδ − βγ)
0 0 0 0 0 2βδ(αδ − βγ) (αδ − βγ)(αδ + βγ) 2αγ(αδ − βγ)
0 0 0 0 0 β2(αδ − βγ) αβ(αδ − βγ) α2(αδ − βγ)

 ,

• Branching Diagram for Multiply Transitive Models:



• Example: In branch 4bb, the found linear representation is:

G1,1,3,0,0

G1,1,0,1,1

G1,1,2,1,0

G1,2,2,0,0

G1,1,1,0,1

G0,2,3,0,0

G0,3,2,0,0


=



δ 0 0 0 0 0 0

0 1
δ 0 0 0 0 0

0 0 δ 0 0 0 0

0 −16β
δ2

0 1
δ 0 0 0

0 2β
δ2

0 0 1
δ 0 0

β
2 0 4β 0 0 δ 0

0 4
3
β2

δ3
+ 256

9
β
δ2

0 −1
3
β
δ2
−4

3
β
δ2

0 1
δ





F1,1,3,0,0

F1,1,0,1,1

F1,1,2,1,0

F1,2,2,0,0

F1,1,1,0,1

F0,2,3,0,0

F0,3,2,0,0


,

This leads to the creation of 5 branches:
4bb ↓ F1,1,3,0,0 F1,1,0,1,1 F1,1,2,1,0 F1,2,2,0,0 F1,1,1,0,1 F0,2,3,0,0 F0,3,2,0,0

5a 1 0 −1
8 −4F1,1,1,0,1 F1,1,1,0,1 F0,2,3,0,0 F0,3,2,0,0

5b 0 0 0 1 −1
4 F0,2,3,0,0 F0,3,2,0,0

5c 0 0 0 0 0 1 F0,3,2,0,0

5d 0 0 0 0 0 0 1

5e 0 0 0 0 0 0 0



Order 2 Branches for Surfaces S2 ⊂ R4

In R4 3 (x, y, u, v), local analytic surfaces S2 can be graphed, after an affine trans-
formation, as:

u = F
(
x, y
)

= F2,0 x
2 + F1,1 x y + F0,2 y

2 + Ox,y(3),

v = G(x, y) = G2,0 x
2 + G1,1 x y + G0,2 y

2 + Ox,y(3),

with F , G real-analytic at the origin.
The property that the two quadratic forms F2 and G2 are parallel (colinear) is affinely

invariant.
Then 7 inequivalent normalizations exist at order 2:

F2 G2

2a 0 0
2b x2 0
2c x y 0
2d x2 + y2 0
2e x y x2

2f x y x2 + y2

2g x y x2 − y2



Branching Diagrams for Surfaces S2 ⊂ R4













Model 2e3a4a for Surfaces S2 ⊂ R4

Model 2e3a4a



u = xy + y3 + F0,4y
4 + F1,3xy

3 + F2,2x
2y2 + F3,1x

3y + x4+

+ ( 9
10F1,3 − 9

250F0,4F1,3F3,1 +
1
25F0,4F1,3G4,0 +

32
25F

2
0,4+

− 1
250F0,4G4,0F3,1G3,1 +

2
375F0,4G4,0F3,1F2,2 +

1
200F0,4G

2
3,1+

+ 1
75F0,4F

2
2,2 − 1

60F0,4G3,1F2,2 +
1
25F0,4F3,1F5,0 +

1
250F0,4F

2
3,1G3,1+

− 2
375F0,4F

2
3,1F2,2)y

5 + (34G3,1 + F2,2 +
1
10F0,4F3,1G3,1+

− 2
15F0,4F3,1F2,2 − 1

10F0,4G4,0G3,1 +
2
15F0,4G4,0F2,2 +

8
5F0,4F1,3+

+ F0,4F5,0)xy
4 + (6F3,1 − 4G4,0 +

1
10G3,1F1,3F3,1 − 2

15F2,2F1,3F3,1+

− 1
10G3,1F1,3G4,0 +

2
15F2,2F1,3G4,0 +

3
5F

2
1,3 + F1,3F5,0 − F0,4G3,1+

+ 4
3F2,2F0,4)x

2y3 + (4 + 1
10G3,1F3,1F2,2 − 1

10G3,1G4,0F2,2 − 1
2G3,1F1,3+

+ 14
15F2,2F1,3 + F2,2F5,0 − 2

15F3,1F
2
2,2 +

2
15G4,0F

2
2,2)x

3y2+

+ (− 1
10G4,0F3,1G3,1 +

2
15G4,0F3,1F2,2 +

1
8G

2
3,1 +

1
3F

2
2,2 − 5

12G3,1F2,2+

+ 1
10F3,1F1,3 + F3,1F5,0 +

1
10F

2
3,1G3,1 − 2

15F
2
3,1F2,2)x

4y + F5,0x
5 + · · · ,

v = x2 − 3
2y

4 +G3,1x
3y +G4,0x

4 − 18
5 F0,4y

5 − 3F1,3xy
4+

+ (−2F2,2 + 3G3,1)x
2y3 + (− 1

10G3,1F3,1F2,2 +
1
10G3,1G4,0F2,2+

+ 1
5G3,1F1,3 +

3
4G3,1F5,0 +

3
40F3,1G

2
3,1 − 3

40G4,0G
2
3,1)x

4y+

+ ( 2
25G4,0F3,1G3,1 − 8

75G4,0F3,1F2,2 − 1
10G

2
3,1 +

2
25G4,0F1,3+

+ 4
5G4,0F5,0 − 2

25G
2
4,0G3,1 +

8
75G

2
4,0F2,2 +

2
15G3,1F2,2)x

5 + · · ·



e1 := −(−1 + 1
5F1,3x+ 2xF5,0 +

1
5xF3,1G3,1 − 4

15xF3,1F2,2 − 1
5xG4,0G3,1 +

4
15xG4,0F2,2+

+ 3
2G3,1u+ 2vG4,0)∂x − (4v − 1

2xG3,1 +
2
3xF2,2 +

3
5yF1,3 + yF5,0 − 2uG4,0 + 3uF3,1+

+ 1
10yF3,1G3,1 − 2

15yF3,1F2,2 − 1
10yG4,0G3,1 +

2
15yG4,0F2,2)∂y − (−y + 4

5uF1,3 + 3uF5,0+

+ 3
10uF3,1G3,1 − 2

5uF3,1F2,2 − 3
10uG4,0G3,1 +

2
5uG4,0F2,2 − 1

2vG3,1 +
2
3vF2,2)∂u+

− (−2x+ 2
5vF1,3 + 4vF5,0 +

2
5vF3,1G3,1 − 8

15vF3,1F2,2 − 2
5vG4,0G3,1 +

8
15vG4,0F2,2)∂v,

e2 := −(45xF0,4 − 9
25F1,3xF3,1 +

2
5F1,3xG4,0 − 1

25xG4,0F3,1G3,1 +
4
75xG4,0F3,1F2,2 +

1
20xG

2
3,1+

+ 2
15xF

2
2,2 − 1

6xG3,1F2,2 +
2
5xF3,1F5,0 +

1
25xF

2
3,1G3,1 − 4

75xF
2
3,1F2,2 + 3y + 1

2vG3,1)∂x+

− (F1,3x− 1 + 12
5 yF0,4 +

1
40yG

2
3,1 +

1
15yF

2
2,2 − 1

2G3,1u+ 2uF2,2 + vF3,1 − 1
50yG4,0F3,1G3,1+

+ 2
75yG4,0F3,1F2,2 − 9

50yF1,3F3,1 +
1
5yF1,3G4,0 − 1

12yG3,1F2,2 +
1
5yF3,1F5,0 +

1
50yF

2
3,1G3,1+

− 2
75yF

2
3,1F2,2)∂y − (−x+ 16

5 uF0,4 − 27
50uF1,3F3,1 +

3
5uF1,3G4,0 − 3

50uG4,0F3,1G3,1+

+ 2
25uG4,0F3,1F2,2 +

3
40uG

2
3,1 +

1
5uF

2
2,2 − 1

4G3,1uF2,2 +
3
5uF3,1F5,0 +

3
50uF

2
3,1G3,1+

− 2
25uF

2
3,1F2,2 + vF1,3)∂u − (6u+ 8

5vF0,4 − 18
25vF1,3F3,1 +

4
5vF1,3G4,0 − 2

25vG4,0F3,1G3,1+

+ 8
75vG4,0F3,1F2,2 +

1
10vG

2
3,1 +

4
15vF

2
2,2 − 1

3vG3,1F2,2 +
4
5vF3,1F5,0 +

2
25vF

2
3,1G3,1 − 8

75vF
2
3,1F2,2)∂v.



Gröbner basis generators of moduli space core algebraic variety in R7 3
F0,4, F2,2, F1,3, F3,1, G3,1, G4,0, F5,0:

B1 := 16F 2
0,4F3,1G3,1 − 48F0,4F

2
3,1 + 96F0,4F3,1G4,0 + 12F1,3F2,2F3,1 − 24F1,3F2,2G4,0+

+ 30F 2
2,2G3,1 − 15F2,2G

2
3,1 − 24F0,4G3,1,

B2 := 180F0,4F
2
1,3G3,1 + 576F0,4F2,2F3,1 + 864F0,4F2,2G4,0 + 528F0,4F3,1G3,1+

− 1448F0,4G3,1G4,0 + 60F1,3F
2
2,2 − 60F1,3F2,2G3,1 + 375F1,3G

2
3,1 − 432F0,4F1,3+

− 4320F0,4F5,0 − 2880F 2
3,1 + 9240F3,1G4,0 − 6960G2

4,0 + 5040F2,2 − 6840G3,1,

B3 := −288F0,4F2,2F3,1 + 1728F0,4F2,2G4,0 + 996F0,4F3,1G3,1 − 2216F0,4G3,1G4,0+

+ 540F 2
1,3F3,1 − 1080F 2

1,3G4,0 − 120F1,3F
2
2,2 − 285F1,3F2,2G3,1 + 465F1,3G

2
3,1+

− 3024F0,4F1,3 + 2160F0,4F5,0 − 2340F 2
3,1 + 8520F3,1G4,0 − 7680G2

4,0 − 10080F2,2 + 1530G3,1,

B4 := 320F0,4F1,3G
2
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B5 := 240F 2
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0,4G
2
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2
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2
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B6 := 80F 2
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2
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2
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B7 := 32F0,4F1,3F3,1G3,1 − 168F1,3F
2
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2
4,0 + 96F 2
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B8 := 2560F0,4F1,3F2,2G4,0 + 6840F1,3F
2
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2
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− 3240F2,2F5,0 − 6210F5,0G3,1 − 43200.
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Creations of Geometries

By what precedes, the equations 0 = Enf
• together with the equations 0 = Evf

• are
used to determine homogeneous geometries, namely submanifolds M ⊂ Rn+c having
(locally) transitive symmetry group Sym(M), jet order after jet order. These equations
are responsible for the creation of a certain branching tree. In principle, the terminal
leaves of this tree correspond to (families of) homogeneous models.

To each node of the branching tree, there is associated a certain linear representation
of a certain subgroup G′ ⊂ G on a certain vector space V ′ coordinatized by certain
(independent) jet coefficients of F . As we already explained, from this node are born
as many edges towards the next jet order as there are transversals to G′-orbits in V ′.

But instead of repeating in the next jet order the use of the equations 0 = Enf
• and

0 = Evf
• to continue to develop the branching tree of homogeneous models, we can stop

the transitive analysis at this point. We can take each created edge as the departure
for a new subgeometry, without continuing the tree, even without knowing what could
happen next.

Indeed, in all the preceding jet orders, there were certain (relative) differential invari-
ants which were assumed to be zero at the origin. And to each one of these punctual
invariants there corresponded a (relative) differential invariant. Denote these differen-
tial invariants as K1, . . . ,Kt.

So these K• are assumed to vanish at the origin 0 ∈ M . Of course, they can take
nonzero values nearby, a situation that could be treated by Singularity Theory. But as
we decided to study only constant-type geometries, adopting Lie’s principle of thought,



we are led to assume that:

0 ≡ K1

(
x, J •F (x)

)
≡ · · · ≡ Kt

(
x, J •F (x)

)
,

for x in some neighborhood of the origin.
Thus, we can stop the homogeneous geometries process 0 = Enf

• = Evf
• anywhere.

Principle. [Creation of constant-type (degenerate) geometries] Given a group G
acting transitively on graphs

{
u = F (x)

}
in Rn+c 3 (x, u), with its prolonged ac-

tions to jet bundles J1
n,c, J

2
n,c, . . . , Jκn,c, . . . , at each order κ > 1, at each node of the

branching tree (even if incomplete) which is constructed to determine homogeneous
models, create (introduce) new geometries, of constant type, degenerate in a certain
sense, depending on the history of the node.

Some of the nodes are such that all the power series coefficients of F are already
uniquely determined, especially the final nodes, i.e. the terminal leaves.

Some other nodes are such that there still remain infinitely many power series F -
coefficients which are free, not normalized, and then, the G′-action must be prolonged
to the jet (sub)bundle of this (sub)geometry, in order to determine the corresponding
algebras of differential invariants.

In conclusion, many new geometries having algebras of differential invariants exist
which should (can) be studied.



Most of the times, the creation of constant-type geometries is well known at jet or-
der 2. For instance, under the group Aff(Cn+1) of affine transformations of Cn+1 —
codimension c = 1 — since the punctual rank of the Hessian matrix is invariant, in-
equivalent graphed normal forms are:

u = x21 + · · · + x2m + Ox1,...,xn(3),

with an invariant integer 0 6 m 6 n, which produces n + 1 different (inequivalent!)
geometric structures. Similarly, for hypersurfaces, the rank and the signature of the
Levi form are invariant under CR equivalences, hence several order 2 geometries can
be ‘created’.

Applying his theory of moving frames, Olver studied algebras of differential invari-
ants for elliptic and hyperbolic surfaces S2 ⊂ R3 under Euclidean and Affine transfor-
mations, i.e. with Hessians of maximal rank 2, see Chen-M. 2019 for the Hessian rank
1 geometry. To study only a single one of these constant Hessian rank affine geometries
from the point of view of differential invariants, for instance with n = 5 and m = 3 (a
case probably never looked at), might already be a considerable task.

Constant type (degenerate) geometries at jet order > 3 are not much studied, but
they are as legitimate as the order 2 (degenerate) geometries. The branching tree in
M.-Nurowski 2020 shows certain degenerate para-CR geometries of jet order > 3, i.e.
beyond Levi form (which is of order 2) and beyond 2-nondegeneracy (which of order
3).



Problem. [Algebras of differential invariants for degenerate geometries] Describe
algebras of differential invariants of constant-type degenerate geometries. Find minimal
sets of (differential) generators.

We insist on the fact that we formulate this general problem for all possible constant-
type degenerate (sub)geometries. Even, the considered Lie group G can be an infinite-
dimensional Lie pseudo-group.

At the opposite are the generic geometries, those for which it is allowed to assume that
some functions, some determinants, are nonzero, some rank matrices are maximal, etc.
For some generic geometries, under some classical groups, Peter Olver 2007, Hubert-
Olver 2007, have established remarkable theorems that a single differential invariant is
sufficient to (differentially) generate the whole algebra of differential invariants.

But certainly, the genericity of a geometry is a relative concept! Genericity also
concerns subgeometries!

Indeed, in any node at which a constant-type (degenerate) geometry is created, by
assuming that all higher order encountered (relative) differential invariants are non-
vanishing (after restriction to open subsets), by assuming in addition if it is conve-
nient that some functions, some determinants, etc., are nonzero, then a certain ‘generic’
(sub)geometry can be defined within the considered degenerate geometry.



Termination: Moduli Spaces of Homogeneous Models

Now, when, why, and how the Steps 1-2-3-4-5 ‘algorithm’ terminates? What does its
‘termination’ produce? Before answering these questions, let us present some aspects
of the current state of the art.

First of all, as for Cartan’s method of equivalence which is sometimes termed to be
an ‘algorithm’, most of the times, as soon as the number n of independent variables
x• is > 2 or is > 3, any ‘equivalence algorithm’ can be ‘blocked’ by computational
complexity, even with the help of powerful machines.

Indeed, the exploration of the branching tree of a given kind of homogeneous geome-
tries requires in some circumstances to continue the computations until reaching simply
transitive models, i.e. those with:

dim symM = dimM,

and then in this case, the ‘algorithm’ necessarily terminates. The other homogeneous
models M , those for which dim sym(M) > dimM , are termed multiply transitive.

As a matter of fact, it is (well) known in the literature that, for a number of famous
geometric structures, either simply transitive models were never found yet, or were
found by indirect methods, without discovering the complete branching tree created
by invariants together with all the linear representations in the nodes. Let us give 5
examples.

• For (2, 3, 5) distributions D2 in a five-manifold M 5, Cartan classified multiply tran-
sitive models, see The-2022 (and the reference therein) for a recent synthesis based



on Cartan (parabolic) geometries, and see also Doubrov-Govorov 2013 for a complete
classification, including simply transitive models, which is based on Lie algebraic tech-
niques. Beyond Cartan quartic types, it seems that no complete picture exists for the
branching tree of order > 5 (punctual) invariants.
• For completely integrable second order PDE systems in 2 dependent complex vari-
ables and 1 independent complex variable, the multiply transitive models have been
neatly classified in Doubrov-Medvedev-The-2019, but the complete branching tree of
invariants is also missing, and simply transitive models have not been determined yet.
• For CR-homogeneous Levi nondegenerate hypersurfaces M 5 ⊂ C3, the multiply
transitive models have been neatly classified by Doubrov-Medvedev-The 2020, Lo-
boda 2020, the complete branching tree of invariants is also missing, while the simply
transitive models have been determined by abstract Lie algebraic method, cf. Loboda
2020, Doubrov-M.-The 2020.
• For 4th order ODEs under point transformations, existing classifications are not
complete, while classifications of homogeneous models 3th order ODEs under fiber-
preserving, point, contact, transformations have been achieved by Michal Godiński and
Paweł Nurowski, cf. Godlinski 2008, Godlinski-Nurowski 2009.
• For affinely homogeneous hypersurfaces H3 ⊂ R4, Eastwood-Ezhov 2001 do not
show simply transitive models.

Now, let us come back to the Steps 1-2-3-4-5 ‘algorithm’ in the general setting. Be-
cause:

n 6 dimG < ∞,



it is clear that the dimensions of the isotropy subgroups Gκ
stab ⊂ G at orders κ =

0, 1, 2, 3, . . . , can decrease (strictly) only a finite number of times, in all branches. So in
each one of the branches constructed by induction, after a while, no more isotropy group
reduction can occur. This is when and why the Steps 1-2-3-4-5 ‘algorithm’ terminates.

And in fact, all boxed terminal leaves in the branching trees shown in this talk indicate
termination by end-of-isotropy-reduction.

But from the computational point of view, how termination does occur, concretely?
Namely, what really happens ‘at the end’ of the ‘ping-pong’ play between the equations
0 = Evf

• and 0 = Enf
• ?

First of all, after that Steps 1 and 2 have been passed, as soon as there is a non-
trivial linear representation in Step 3, necessarily, there must be at least one further
subbranch which is accompanied with a nontrivial group reduction — except for the
mostly degenerate linear group-orbit: the origin in the vector space R`κ, cf. for instance
Branch 2b3a4a below.

Consequently, termination holds if and only if no (nontrivial) linear representation
occurs at Step 3, at all higher jet orders κ, wich requires to continue the ‘ping-pong’
between 0 = Evf

• (firstly) as Step 1 and 0 = Enf
• (secondly) as Step 2.

We did not attempt to prove or just state stabilization or pseudo-stabilization theo-
rems as in Olver 1995, Olver 2007 — which, we believe, can be done —, because
there is here a simple alternative and direct way of realizing that the process rigorously
terminates.



Concretely, the process stops if, after having resolved the equations 0 = Evf
• , all

equations 0 = Enf
• only show constant power series coefficients or absolute invariants

G• = F•, this, at every higher jet order.
Of course, it can happen that termination takes place with isotropy dimension being

stably constant and > 0, whichever high is the jet order.
Thus, termination holds when the equations 0 = Enf

• no more bring any normaliza-
tion of the G• and F• coefficients. However, the equations 0 = Evf

• still bring a lot of
information!

Observation. At all higher jet orders, when some absolute invariants I• which come
from preceding jet orders are still present in computations, the equations 0 = Evf

• do
bring more and more algebraic equations in terms of I• which coherently define a cer-
tain algebraic moduli space of homogeneous models — unless some algebraic contra-
diction occurs which indicates that no homogeneous model can exist in the considered
terminal leaf.

(Contradictory terminal leaves are indicated plainly with the ∅ symbol, or even some-
times, plainly erased.)

An example of such an algebraic moduli space of homogeneous models was already
shown above, with the Branch 2c3c for surfaces S2 ⊂ C3. Certainly, the obtained alge-
braic equations are deeply related with the Lie-Fels-Olver recurrence relations between
differential invariants.



Observation. To each boxed terminal leaf, there corresponds a family of homogeneous
models parametrized by a certain algebraic variety.

Quite often, a terminal leaf of a branching tree is of the form IkP0, with k-dimensional
isotropy Ik, where P0 means that zero Parameter is present, so that the concerned alge-
braic variety is just 1 point (or 2, 3, 4 points, never more in this talk).

As is known, every (complicated) algebraic variety may always be decomposed into a
finite number of simpler disjoint smooth pieces, e.g., by a process called stratifification.

However, conceptionally, group reduction in the spirit of Lie and Cartan is of different
nature, compared with further explorations by stratifying algebraic moduli spaces of
homogeneous models. In some papers, both group reduction — in fact not explicitly
mentioned there — and moduli space stratification, seem to be treated on equal footing,
cf. the flow diagrams on pages 67–69 there.

Ma dernière remarque générale concerne un aspect de la Math-
ématique moderne en quelque sorte complémentaire de ses ten-
dances unificatrices, à savoir sa capacité à dissocier ce qui était
indûment confondu. Jean DIEUDONNÉ, 1964.

As Dieudonné writes, one must indeed:

‘dissociate what was unduly confused’

Observation. In this talk, we decided not to stratify the algebraic moduli spaces of
homogeneous models that we obtained, after termination of group reduction, at any
terminal leaf.



Such a task could be endeavoured in a future publication. Of course, stratifying an
algebraic moduli space of homogeneous models would bring further sub-branches (of
a different nature), devloping and branching after the boxed terminal leaves.

Eastwood-Ezhov 1999 had only a single branch among all the branches which did not
lead to a non-trivial algebraic variety, namely what we call here Branch 2c3c, and what
is called there ‘Nonvanishing Pick Invariant’.

In fact, if the system E = F = G = H = 0 is simply passed to the
‘solve’ routine of the computer algebra system MAPLE (Version V
Release 3), then the program returns the correct solutions as a
set of approximately 20 cases, in effect constructing its own flow
diagram)!

These 4 equations E = F = G = H = 0 are precisely equivalent to the 3 equations
appearing in Branch 2c3c, and it is indeed already difficult to stratify their zero-locus.

All other branches treated there directly lead either to individual models with all coef-
ficients F• being numerical (hence uniquely prescribed), or to the existence of a single
real or complex parameter (absolute invariant) I ∈ R1 or I ∈ C1, with no algebraic
equation involved.

By contrast, in this talk, several terminal leaves, especially the simply transitive ones,
led us to certain quite complicated algebraic moduli spaces of homogeneous models,
far beyond what was handled above.

Even for just one terminal leaf like e.g.:

2f3a, or 2f3g, or 2g3a,



to set up a stratification could be a formidable task! We believe that a similar algebraic
complexity lies behind the simply transitive affinely homogeneous hypersurfacesH3 ⊂
R4, never attained in the literature.

In addition, no stratification in smooth neatly parametrized pieces would be ‘canoni-
cal’ in any sense — similarly as the choice of a group-transversal is never ‘canonical’.

In conclusion, in this talk, our classification approach decides to stop (to terminate)
once algebraic moduli spaces of homogeneous models have been reached.

And now, we know the reason why, in the existing literature, some classifications
using the approach with (differential) invariants are missing, especially concerning the
(difficult) simply transitive homogeneous models.

It is because the concerned algebraic varieties which parametrize the sought (simply
transitive) homogeneous models happen to be very complicated.



Lie Algebras of Vector Fields Versus Closed Forms

In the literature, most of the times, classifications of affinely or projectively homoge-
nous small-dimensional submanifolds in Rn+c (or in Cn+c) attain closed forms, that is,
equations u = F (x) with F being expressed as a polynomial, or

/
and in terms of ele-

mentary transcendental functions: exponentials, logarithms, trigonometric functions.
However, often, Lie algebras sym(M) of infinitesimal symmetries are not shown,

simultaneously with the (nice) functions F . And it is then a non-immediate task to
determine sym(M) from a given closed graphed form

{
u = F (x)

}
, especially when

some continuous parameters α, β, . . . , are present in F = Fα,β. Indeed, for various
values of the parameters in the closed form, most probably, the (graphed) manifold:

Mα,β,... =
{
u = Fα,β,...

}
,

crosses the branches of any invariant branching tree, so that the dimensions of
sym

(
Mα,β,...

)
‘jump’ in some way as the parameters α, β, . . . do vary. Mathematical

life is complicated!
Not only the Lie algebras sym

(
Mα,β,...

)
are not always shown in the literature, but

also, the branching trees created by invariants are almost never constructed until reach-
ing all terminal leaves, except in some computationally simple cases, e.g. in the curve
case n = 1.

Certainly, such invariant branching trees are often at least partly known, concerning
relatively small order differential invariants, for instance: Cartan’s quartic for (2, 3, 5)
distributions; or Chern-Moser’s order 4 tensor for CR hypersurfaces M 5 ⊂ C3.



For the constant Hessian rank 1 affinely homogeneous hypersurfaces H2 ⊂ R3 and
H3 ⊂ R4 that we treat in a forthcoming paper, we did not search for a closed form
representation of the single (up to sign) model H4 ⊂ R5 which we found.

And for higher-dimensional constant Hessian rank 1 hypersurfaces Hn ⊂ Rn+1, a
quite unexpected fact was established by M. 2022, namely that in any dimension n > 5,
there are no nonproduct homogeneous models at all! Passim, let us raise a

Question. Is it true, also, that in all high enough dimensions n > N2 � 1, there are,
similarly, no nonproduct constant Hessian rank 2 hypersurfaces Hn ⊂ Rn+1 (or Cn+1)
which are locally affinely homogeneous ?

A similar question may be formulated for any fixed constant Hessian rank 1 6 r 6
n − 1. Also, the question may be considered with the projective group Proj(Rn+c)
instead of Aff(Rn+c).

Back to closed forms (that we will not seek in this talk), experts to whom we asked
whether there exist theoretical explanations — that could be read off from a given Lie
algebra of vector fields — why, when, how, closed forms (may) exist, answered us that
they ignore what could be such reason(s), and that they obtained closed forms with the
help of Maple PDE integration programs.

It is therefore legitimate to raise a

Problem. Find criteria, if not necessary and sufficient conditions, on given Lie alge-
bras of vector fields that are symmetries of homogeneous models, in order that, after a
change of coordinates belonging to the initial group G, the graphing function F (x) is



70

either polynomial, or is expressed in terms of usual transcendental functions: exponen-
tials, logarithms, trigonometric functions.

Of course, the theorem of Frobenius guarantees the existence of an analytic graph
Mn ⊂ Rn+c which is simply the orbit of the origin under the action of the found
transitive Lie algebra of vector fields. Such Lie algebras may be truncated, especially
when dealing with an infinite-dimensional Lie group G acting on Rn+c (or Cn+c), and
again, the same problem appears to be meaningful.

In sum, there are 5 reasons why we did not seek closed forms (for the moment).
• No general theory seems to exist around Problem on p. 69, and probably, there might
exist certain special homogeneous Lie algebras of vector fields which would not be
elementarily integrable.
• Lie’s original principle of classification, with which we agree, was to determine and
to present Lie algebras of vector fields, only.
• Punctual invariants of homogeneous models are strongly related to algebras of dif-
ferential invariants, a research field that we learned from Peter Olver’s monographs and
articles, and in this field, branching by invariants is a natural process.
• Successive group reductions leading to linear representations in all nodes seem to be
universal, although they were not discovered in the existing normal forms articles we
know.
• Branching trees of invariants lie at the heart matter, hence must be exhibited, even
when quite ramified.


