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Holography aims to construct gravitational physics from 7.
Start from: math.oc/os04s82, Duke Math 20071, With C. LeBrun

~» Global, Zoll(frei) SD Poincaré-Einstein metrics.

Work with Giuseppe Bogna & Adam Kmec. (o aiso M. 2212.10895, Adamo, M.

Sharma 2103.16984].
Responding to celestial symmetry algebras istrominger 21, Tayler, zhu 23].



Holography:

Slogan: Reformulate bulk physics in terms of ‘theory’ at conformal boundary at infinity.
Definition
A Poincare-Einstein metric is an asymptotically hyperbolic
metric (M9, g) with conformal compactification (M, g)

> M=Mu.s, 7=0M

> g=0%,
> 7 ={Q=0},dQ#00n.7.
» Ricci= —N\g

Problem: Use induced conformal structure on .# as boundary
data to reconstruct ‘Bulk’ (M, g).
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Holography:

Slogan: Reformulate bulk physics in terms of ‘theory’ at conformal boundary at infinity.
Definition
A Poincare-Einstein metric is an asymptotically hyperbolic
metric (M9, g) with conformal compactification (M, )

> M=Mu.s, 7=0M

> g=0%,
> 7 ={Q=0},dQ#00n.7.
» Ricci= —N\g

Problem: Use induced conformal structure on .# as boundary
data to reconstruct ‘Bulk’ (M, g).
Local constructions:

» Self-Dual Einstein ‘Heaven on earth’ (c. LeBrun: 1982).
» ‘The ambient Metric, iFefferman-Granam 198s).
Global constructions (Euclidean):
» Poincaré-Einstein metrics on ball B? from conformal
structure on boundary .# = S (aranam-Lee, 19921.



4d self-dual Poinaré-Einstein in split signature
Global models in split signature (conformal group SO(3,3)/Z4):

» Conformally flat models: S? x S? or S? x S2/Zj:
ds® = Q°(dsg; — 0sg,)
Coordinates (x,y) € R3 x R3, |x| = |y| = 1.

> Zp acts by (x,y) = (=X, —Y).
> ForA#0:Q=1/y3,and . = S? x S'/7Z,.
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4d self-dual Poinaré-Einstein in split signature
Global models in split signature (conformal group SO(3,3)/Z4):

» Conformally flat models: S? x S? or S? x S2/Zj:
ds® = Q°(dsg; — 0sg,)
Coordinates (x,y) € R3 x R3, |x| = |y| = 1.

> Zp acts by (x,y) = (=X, —Y).
> For A #0: Q:1/y3,andﬂ S? x S1/7,.

>ForA:0:Q—X 1and S =R x 8" x §'/Zs.
Curvature: for 4d manifold (M*, g),
Q Weylt + S Ricci
> o (WeylT + iccig
2 = (9629) ,  Riem = ( Ricciy ~ Weyl™ + 86> ‘

This talk: focus on self-dual Poincaré-Einstein metrics:

Ricci = —Ag, Weyl™ =0, (can allow A — 0 too).



« and g-surfaces and the Zollfrei condition
The split signature conformally flat metric

ds® = Q*(dsf, — ds,)
admits a 3-parameter family of g-planes denoted by PTx:
> respectively totally null ASD S®s given by
x=Ay, AecSO(3)=RP3.

» Weyl~ = 0 = j-planes survive as s-surfaces.

» [-surfaces are projectively flat.

> If compact, S-surfaces are necessarily S2 or RP?.

» Null geodesics are projectively RP's or double cover.



« and g-surfaces and the Zollfrei condition
The split signature conformally flat metric

ds? = Q(ds%, — dség) ,

admits a 3-parameter family of g-planes denoted by PTx:
> respectively totally null ASD S®s given by

x=Ay, AecSO(3)=RP3.

» Weyl~ = 0 = j-planes survive as s-surfaces.

» [-surfaces are projectively flat.

> If compact, S-surfaces are necessarily S2 or RP?.

» Null geodesics are projectively RP's or double cover.
Following Guillemin we define:
Definition
An indefinite space (M9, g) is (strongly) Zollfrei if all null
geodesics are embedded S's (of same projective length).



Conformally self-dual case
Theorem (LeBrun & M. 2007)
Let (M*, g) be Zollfrei with Weyl~ = 0. Then either
> M= S? x S?/7, < conformally flat, or

> M= S? x S2 and there is a1 : 1-correspondence between
1. Perturbations of self-dual conformal structures gg], and
2. Deformations of the standard embedding of RP® ¢ CP?
modulo reparametrizations of RP® and PGL(4,C) on CP®.



Conformally self-dual case
Theorem (LeBrun & M. 2007)
Let (M*, g) be Zollfrei with Weyl~ = 0. Then either
> M= S? x S?/7, < conformally flat, or

> M= S? x S2 and there is a1 : 1-correspondence between

1. Perturbations of self-dual conformal structures gg], and
2. Deformations of the standard embedding of RP® ¢ CP?
modulo reparametrizations of RP® and PGL(4,C) on CP®.

Let iR® x RPP® ¢ CP® be a neighbourhood of of RP? in CP?,

1% op? Z=U+iV
3
IR F] PTx
| U
RPS3

Figure: PTr = {graph V = F(U)} for some F : RP® — RS,



Key ideas of proof: 1. real geometry

v

Zollfrei = compact s-surfaces = compactness of M.
Two cases: 3-surfaces are either S2s or RP?s.

Intersection properties: RP?s intersect in one point, S2s in
two ~» characterisation of topology.

The space of real g-surfaces PTy is constructed via
Fr={FecQ2  FANF=0}/R* - M,

the S'-bundle on M of ASD 2-plane elements with double
fibration
IR
p v N q
Mm* PTg,

Zr is foliated by -surfaces and PTy ~ RP® in both cases.



Key ideas: 2. Complex geometry

The fibrewise complexification of %y

Fc={FeC®Q  FAF=0}/C",

is a CP' bundle on M, fibre coord C.

>

>
| 2
>

At each x € M, Z, cuts .Zxc into two discs D

for M = S? x S?, 3 global choice .%Z:, a D} bundle on M.
OFE = Fn.

F¢ admits a C-involutive distribution D = {KerF,9/9(}

> defines a C-structure on .7} — % and
» on g, leaves of D N D = lifts of 5-surfaces.

Blowing down .7r — PTy yields compact complex
manifold which must be CP® > PTy.

If M = S? x S2/Z5, construct CP® > PTy via double cover.
Then Z, ~» complex conjugation fixing standard RPS.



3. Reconstruction of M from twistor space PTgr

Reconstruction:
Each x € M* « holomorphic disc D} ¢ CP® with 9Dy C PTg:

Cp®

PTR
d

| RP3

iR3 Dx

Figure: D = hol. disc ¢ CP® with 9D C PTy.

» D generates the degree-1 class in Hy(CP?, PTg, Z) = Z.
» Reconstruct M from PTy space of all such disks:

M = {Moduli of degree-1 hol. disks: D} c CP? aD; c PTg}

» Finding such holomorphic discs is an elliptic problem of
index 4, the problem is stable under deformations.
» Gives compact 4d moduli space M*.



M* admits a conformal structure for which D5 N oD}, = Z
means that x, x’ sit on same -plane:

Space-time Twistor Space
_— — X/

— 7




Restriction to Einstein case

Which PTy c CP® give SD Einstein g € [g] on S? x S2?
» Let ZA, A=1,...,4 be homogenous coordinates for CP3.
» Introduce real skew £4B¢D and

Iag = /[AB]7 IAB = ;z?ABCD/CD, with /ABIAC = A(Sg .

» To define contact and Poisson structures on CP3

:/ABif g

- A 4B 1 . —Z
0=lapZldz”cQ(2), {f.g9}:=1"7735p

valued in O(2), O(—2) respectively.



Restriction to Einstein case

Which PTy c CP® give SD Einstein g € [g] on S? x S2?
» Let ZA, A=1,...,4 be homogenous coordinates for CP3.
» Introduce real skew £4B¢D and

Iag = /[AB]7 IAB = ;z?ABCD/CD, with /ABIAC = A(Sg .

» To define contact and Poisson structures on CP3

of 0g
A 7B 1 ._ |AB
valued in O(2), O(—2) respectively.

» We have after Penrose & Ward:

Theorem
An Einstein g € [g] exists when 0|pr, and {, }|pr, are real.

[A section of O(n)|pr, is real via O(—4)r = Q3 ]



Generating functions for Einstein embeddings

Explicitly in homogeneous coordinates:
> Let ZA = UA +iVA UA VA c R
» Let H(U) be an arbtrary function of homogeneity degree 2,

OH
—— = 2h.
v ou

» Then the Einstein conditions are satisfied by

oH
_ A A AB
Tr = {Z u”+il 6UB}

projectivising gives PTx.
» All sufficiently small such arise in this way.



Split signature Poincaré-Einstein metrics

Are any corresponding Einstein metrics Poincaré-Einstein?
» They are small perturbations of the standard example

’
— ?(dsg)g( — ds%) +...,

ds®

Coordinates (x,y) € R® x R3, |x| = |y| = 1.
» Einstein scale encoded in solution to conformally invt

(VaVp + Rap)o® =0

where ® has conf. weight 1; scale to 1 for Einstein metric.
» Standard case ¢ = y3, changes sign at .7.
» .7 cannot suddenly evaporate under perturbation.



Holography: SD Poincaré-Einstein Spaces from .#

Expectations:

» Data at .7 is its conformal structure:

To fill in with SD Poincaré-Einstein, must be zollfrei.

» Two natural cases: .# = S? x S' or 82 x S'/Z,.

» Guillemin studied perturbations of S? x S'/Z,, his work <-:
Proposition (Guillemin)
Zollfrei linear perturbations of S? x S' /7, conf. structure is

H3(CP3, 0(2)) = H3(CP2, 0(2)) & H3(CP®, 0(2))

where CP3 = {I4pZAZ8 = 0} and CP3. = {+ilsgZ”Z8 > 0}.
> Real such def’ms dont extend far off CIP3 or .#, but

Proposition

for # = 82 x S', 3 extra class of perturbations from smooth

sections h of O(2) over RP® as above. These give complete
fully nonlinear Zollfrei bulk metrics (on both sides).

» linear theory works by generalized ‘X-ray transform’.



‘H Idden, Sym metrleS Following [Strominger 2021, Taylor, Zhu 2023]

Space of solutions as homogeneous space
Space P of Poincaré Einstein metrics on S? x S? is mapped to

p_ C-Holomorphic Poisson diffeos near PTg
N Real Poisson diffeos of PTg
= {real H e C*(RP?,0(2))}.

‘P is homogeneous space.

Infinitesimally Lie algebra = complex h € C®(RP3, 0(2))
Lie bracket = Poisson bracket.

acts by 6H = Sh+ {®h, H} .

To study A — O let Z4 = (A, %), a = 0,1, & =0, 1

vVvyyVvyyVvyy

148020076 = 990,60 5 + N0 0,

» As A — 0, Lie algebra = Lwy ., = loop algebra of DiffyR?.
» As found by Strominger via ‘celestial holography’ at A = 0,



From disks to scattering amplitudes
The holomorphic disc Z(¢) : D — T through Z; € T at o; € 9D,
with 9D C PTy degree k — 1 arise from action:

SplZ, ] = / 2?0780 + ¢ h(Z)dC+ S g2 (0))ZE
b i

oD
Amplitudes are functionals M|h, hj] of gravitational data:

» he C>*(PTg, O(2))for fully nonlinear SD part,

> hj € C®°(PTg,O(—6)),i=1,..., k, ASD perturbations.
Amplitude M := Einstein-Hilbert action Sgy of ‘bulk metric’.
Evaluate perturbatively:



From disks to scattering amplitudes
The holomorphic disc Z(¢) : D — T through Z; € T at o; € 9D,
with 9D C PTk degree k — 1 arise from action:

SplZ, ] = / 2?0780 + ¢ h(Z)dC+ S g2 (0))ZE
b i

oD
Amplitudes are functionals M|h, hj] of gravitational data:

» he C>*(PTg, O(2))for fully nonlinear SD part,

> hj € C®°(PTg,O(—6)),i=1,..., k, ASD perturbations.
Amplitude M := Einstein-Hilbert action Sgy of ‘bulk metric’.
Evaluate perturbatively:

» At k=1, h= hy + h, and we find to second order

Ml b, B = 6% Sl v, ) = [ D°ZB(Z)2SolZ. 1

_ / D3Z H(Z){M(Z)hs(2)}

» At higher k disk action embeds into Einstein Hilbert action.
» Full gravity amplitudes invariant under hol. Poisson diffeos.



Conclusions and open problems

> Rigidity of conformally-flat SD split signature
Poincaré-Einstein metrics with .7 = S? x S'/7Z.

» Have construction for split signature SD Poincaé-Einstein
metrics on S? x S? with .# ~ S? x S' depending on
smooth sections h of O(2) over RP°.

» Similar results at A = 0 where it is possible to reconstruct h
from data at .#, M. 2212.10895, [ais0 2103.16984 w/ Sharma, Adamo].

Open questions:

» characterize Zollfrei conformal structures on S? x S! with
Poincaré-Einstein extensions over S? x S2.

» Understand extent to which hidden symmetries extend
beyond SD sector.

» Express ASD perturbations nonperturbatively.



The end

Thank You



Examples for A = 0: Gibbons-Hawking
> Let ZA = (Mo, %), a, B =0,1; s€t g5 = €[« and
as O 09
ou oub’
» Defn of PTy: \, is real and for & = u® + iv®, take
v = \°h, h = (U"Xas Aa) -

» Use )\, as homogeneous coordinates on the hol. disks,
expressed as graphs by

1 = xxg + (4 g(x, NN, x¥F = x(B)
where

. P N
g(x* \) = % Y Wh((x BXLNG, AL) DX

» Gives split signature version of familiar metric

0 = Ao dAge™? {f,g} =¢

ds? = Vax-dx+ V- (dt4w)?,  dV =" dw, V= 7§ ADA.

But now V satisfies 2 + 1 wave equation!



