Hidden symmetries of SD Poincaré Einstein metrics in split signature

Lionel Mason

The Mathematical Institute, Oxford lmason@maths.ox.ac.uk

Grieg, Orsay, March 4, 2024

Holography aims to construct gravitational physics from 𝒴. Start from: [Math.DG/0504582, Duke Math (2007)], with C. LeBrun → Global, Zoll(frei) SD Poincaré-Einstein metrics. Work with Giuseppe Bogna & Adam Kmec. [of. also M. 2212.10895, Adamo, M. Sharma 2103.16984]. Responding to celestial symmetry algebras [Strominger '21, Tayler, Zhu '23].

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Holography:

Slogan: Reformulate bulk physics in terms of 'theory' at conformal boundary at infinity.

Definition

A Poincaré-Einstein metric is an asymptotically hyperbolic metric (M^d, g) with conformal compactification $(\overline{M}, \overline{g})$

- $\blacktriangleright \ \bar{M} = M \cup \mathscr{I}, \qquad \mathscr{I} = \partial \bar{M}$
- $\blacktriangleright \ \bar{g} = \Omega^2 g,$

•
$$\mathscr{I} = \{\Omega = 0\}, d\Omega \neq 0 \text{ on } \mathscr{I}.$$

$$\blacktriangleright$$
 Ricci= $-\Lambda g$

Problem: Use induced conformal structure on \mathscr{I} as boundary data to reconstruct 'Bulk' (M, g).

(ロ) (同) (三) (三) (三) (三) (○) (○)

Holography:

Slogan: Reformulate bulk physics in terms of 'theory' at conformal boundary at infinity.

Definition

A Poincaré-Einstein metric is an asymptotically hyperbolic metric (M^d, g) with conformal compactification $(\overline{M}, \overline{g})$

- $\blacktriangleright \ \bar{M} = M \cup \mathscr{I}, \qquad \mathscr{I} = \partial \bar{M}$
- $\blacktriangleright \ \bar{g} = \Omega^2 g,$

•
$$\mathscr{I} = \{\Omega = 0\}, d\Omega \neq 0 \text{ on } \mathscr{I}.$$

Problem: Use induced conformal structure on \mathscr{I} as boundary data to reconstruct 'Bulk' (M, g).

Local constructions:

- Self-Dual Einstein 'Heaven on earth' [C. LeBrun: 1982].
- ► 'The ambient Metric,' [Fefferman-Graham 1985].

Holography:

Slogan: Reformulate bulk physics in terms of 'theory' at conformal boundary at infinity.

Definition

A Poincaré-Einstein metric is an asymptotically hyperbolic metric (M^d, g) with conformal compactification $(\overline{M}, \overline{g})$

- $\blacktriangleright \ \bar{M} = M \cup \mathscr{I}, \qquad \mathscr{I} = \partial \bar{M}$
- $\blacktriangleright \ \bar{g} = \Omega^2 g,$

•
$$\mathscr{I} = \{\Omega = 0\}, \ d\Omega \neq 0 \ on \ \mathscr{I}.$$

Problem: Use induced conformal structure on \mathscr{I} as boundary data to reconstruct 'Bulk' (M, g).

Local constructions:

- Self-Dual Einstein 'Heaven on earth' [C. LeBrun: 1982].
- ► 'The ambient Metric,' [Fefferman-Graham 1985].

Global constructions (Euclidean):

Poincaré-Einstein metrics on ball B^d from conformal structure on boundary \$\not = S^{d-1}\$, [Graham-Lee, 1992].

Global models in split signature (conformal group $SO(3,3)/\mathbb{Z}_4$):

► Conformally flat models: S² × S² or S² × S²/ℤ₂:

$$ds^2 = \Omega^2 (ds^2_{S^2_{\mathbf{x}}} - ds^2_{S^2_{\mathbf{y}}}),$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Coordinates $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^3 \times \mathbb{R}^3$, $|\mathbf{x}| = |\mathbf{y}| = 1$. $\triangleright \mathbb{Z}_2$ acts by $(\mathbf{x}, \mathbf{y}) \rightarrow (-\mathbf{x}, -\mathbf{y})$.

For
$$\Lambda \neq 0$$
: $\Omega = 1/y_3$, and $\mathscr{I} = S^2 \times S^1/\mathbb{Z}_2$.

Global models in split signature (conformal group $SO(3,3)/\mathbb{Z}_4$):

► Conformally flat models: S² × S² or S² × S²/ℤ₂:

$$ds^2 = \Omega^2 (ds^2_{S^2_{\mathbf{x}}} - ds^2_{S^2_{\mathbf{y}}}),$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Coordinates $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^3 \times \mathbb{R}^3$, $|\mathbf{x}| = |\mathbf{y}| = 1$.

- ▶ \mathbb{Z}_2 acts by $(\mathbf{x}, \mathbf{y}) \rightarrow (-\mathbf{x}, -\mathbf{y})$.
- For $\Lambda \neq 0$: $\Omega = 1/y_3$, and $\mathscr{I} = S^2 \times S^1/\mathbb{Z}_2$.
- For $\Lambda = 0$: $\Omega = \frac{1}{x_3 y_3}$, and $\mathscr{I} = \mathbb{R} \times S^1 \times S^1 / \mathbb{Z}_2$.

Global models in split signature (conformal group $SO(3,3)/\mathbb{Z}_4$):

► Conformally flat models: S² × S² or S² × S²/ℤ₂:

$$ds^2 = \Omega^2 (ds^2_{S^2_{\mathbf{x}}} - ds^2_{S^2_{\mathbf{y}}}),$$

Coordinates $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^3 \times \mathbb{R}^3$, $|\mathbf{x}| = |\mathbf{y}| = 1$.

- $\mathbb{Z}_2 \text{ acts by } (\mathbf{x}, \mathbf{y}) \to (-\mathbf{x}, -\mathbf{y}).$
- For $\Lambda \neq 0$: $\Omega = 1/y_3$, and $\mathscr{I} = S^2 \times S^1/\mathbb{Z}_2$.
- For $\Lambda = 0$: $\Omega = \frac{1}{x_3 y_3}$, and $\mathscr{I} = \mathbb{R} \times S^1 \times S^1 / \mathbb{Z}_2$.

Curvature: for 4d manifold (M^4, g) ,

$$\Omega_M^2 = \begin{pmatrix} \Omega^{2+} \\ \oplus \\ \Omega^{2-} \end{pmatrix}, \quad \text{Riem} = \begin{pmatrix} \mathsf{Weyl}^+ + S\delta & \mathsf{Ricci}_0 \\ \mathsf{Ricci}_0 & \mathsf{Weyl}^- + S\delta \end{pmatrix}.$$

・ ロ ト ・ (目 ト ・ (目 ト ・ (日 ト ・ (日 ト

Global models in split signature (conformal group $SO(3,3)/\mathbb{Z}_4$):

► Conformally flat models: S² × S² or S² × S²/Z₂:

$$ds^2 = \Omega^2 (ds^2_{S^2_{\mathbf{x}}} - ds^2_{S^2_{\mathbf{y}}}),$$

Coordinates $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^3 \times \mathbb{R}^3$, $|\mathbf{x}| = |\mathbf{y}| = 1$.

- Z₂ acts by (x, y) → (-x, -y).
 For Λ ≠ 0: Ω = 1/y₃, and 𝒴 = S² × S¹/ℤ₂.
- For $\Lambda = 0$: $\Omega = \frac{1}{x_2 v_2}$, and $\mathscr{I} = \mathbb{R} \times S^1 \times S^1 / \mathbb{Z}_2$. For $\Lambda = 0$: $\Omega = \frac{1}{x_2 - v_2}$, and $\mathscr{I} = \mathbb{R} \times S^1 \times S^1 / \mathbb{Z}_2$.

Curvature: for 4d manifold (M^4, g) ,

$$\Omega_M^2 = \begin{pmatrix} \Omega^{2+} \\ \oplus \\ \Omega^{2-} \end{pmatrix}, \quad \text{Riem} = \begin{pmatrix} \mathsf{Weyl}^+ + S\delta & \mathsf{Ricci}_0 \\ \mathsf{Ricci}_0 & \mathsf{Weyl}^- + S\delta \end{pmatrix}.$$

This talk: focus on self-dual Poincaré-Einstein metrics:

 $\operatorname{Ricci} = -\Lambda g$, $\operatorname{Weyl}^- = 0$, (can allow $\Lambda \to 0$ too).

α and β -surfaces and the Zollfrei condition

The split signature conformally flat metric

$$ds^2 = \Omega^2 (ds^2_{S^2_{f x}} - ds^2_{S^2_{f y}}) \, ,$$

admits a 3-parameter family of β-planes denoted by PT_R:
respectively totally null ASD S²s given by

$$\mathbf{x} = A\mathbf{y}\,, \qquad A \in SO(3) = \mathbb{RP}^3$$

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

- Weyl⁻ = $0 \Rightarrow \beta$ -planes survive as β -surfaces.
- \triangleright β -surfaces are projectively flat.
- If compact, β -surfaces are necessarily S^2 or \mathbb{RP}^2 .
- ▶ Null geodesics are projectively \mathbb{RP}^1 s or double cover.

α and $\beta\text{-surfaces}$ and the Zollfrei condition

The split signature conformally flat metric

$$ds^2 = \Omega^2 (ds^2_{S^2_{\mathbf{x}}} - ds^2_{S^2_{\mathbf{y}}}),$$

admits a 3-parameter family of β -planes denoted by $\mathbb{PT}_{\mathbb{R}}$:

respectively totally null ASD S²s given by

$$\mathbf{x} = A\mathbf{y}\,, \qquad A \in SO(3) = \mathbb{RP}^3\,.$$

- Weyl⁻ = $0 \Rightarrow \beta$ -planes survive as β -surfaces.
- \triangleright β -surfaces are projectively flat.
- If compact, β -surfaces are necessarily S^2 or \mathbb{RP}^2 .
- ► Null geodesics are projectively ℝP¹s or double cover. Following Guillemin we define:

Definition

An indefinite space (M^d, g) is (strongly) Zollfrei if all null geodesics are embedded S^1s (of same projective length).

Conformally self-dual case

Theorem (LeBrun & M. 2007)

Let (M^4, g) be Zollfrei with Weyl⁻ = 0. Then either

• $M = S^2 \times S^2 / \mathbb{Z}_2 \Leftrightarrow$ conformally flat, or

• $M = S^2 \times S^2$ and there is a 1 : 1-correspondence between

- 1. Perturbations of self-dual conformal structures [g], and
- Deformations of the standard embedding of RP³ ⊂ CP³ modulo reparametrizations of RP³ and PGL(4, C) on CP³.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Conformally self-dual case

Theorem (LeBrun & M. 2007)

Let (M^4, g) be Zollfrei with Weyl⁻ = 0. Then either

• $M = S^2 \times S^2 / \mathbb{Z}_2 \Leftrightarrow$ conformally flat, or

• $M = S^2 \times S^2$ and there is a 1 : 1-correspondence between

- 1. Perturbations of self-dual conformal structures [g], and
- Deformations of the standard embedding of RP³ ⊂ CP³ modulo reparametrizations of RP³ and PGL(4, C) on CP³.

Let $i\mathbb{R}^3 \times \mathbb{RP}^3 \subset \mathbb{CP}^3$ be a neighbourhood of of \mathbb{RP}^3 in \mathbb{CP}^3 ,

Key ideas of proof: 1. real geometry

- ► Zollfrei \Rightarrow compact β -surfaces \Rightarrow compactness of *M*.
- Two cases: β -surfaces are either S^2 s or \mathbb{RP}^2 s.
- Intersection properties: ℝP²s intersect in one point, S²s in two → characterisation of topology.
- The space of real β -surfaces $\mathbb{PT}_{\mathbb{R}}$ is constructed via

$$\mathscr{F}_{\mathbb{R}} = \{F \in \Omega^{2-}_{M}, F \wedge F = 0\}/\mathbb{R}^{*} \to M,$$

the S^1 -bundle on M of ASD 2-plane elements with double fibration

• $\mathscr{F}_{\mathbb{R}}$ is foliated by β -surfaces and $\mathbb{PT}_{\mathbb{R}} \simeq \mathbb{RP}^3$ in both cases.

Key ideas: 2. Complex geometry

The fibrewise complexification of $\mathscr{F}_{\mathbb{R}}$

$$\mathscr{F}_{\mathbb{C}} = \{F \in \mathbb{C} \otimes \Omega^{2-}_{M}, F \wedge F = 0\}/\mathbb{C}^{*},$$

is a \mathbb{CP}^1 bundle on *M*, fibre coord ζ .

- At each $x \in M$, $\mathscr{F}_{x\mathbb{R}}$ cuts $\mathscr{F}_{x\mathbb{C}}$ into two discs D_x^{\pm} .
- ▶ for $M = S^2 \times S^2$, \exists global choice $\mathscr{F}^+_{\mathbb{C}}$, a D^+_x bundle on M.

$$\blacktriangleright \partial \mathscr{F}_{\mathbb{C}}^+ = \mathscr{F}_{\mathbb{R}}.$$

- $\mathscr{F}^+_{\mathbb{C}}$ admits a \mathbb{C} -involutive distribution $\mathcal{D} = \{ \text{Ker} F, \partial / \partial \overline{\zeta} \}$
 - defines a \mathbb{C} -structure on $\mathscr{F}^+_{\mathbb{C}} \mathscr{F}_{\mathbb{R}}$ and
 - on $\mathscr{F}_{\mathbb{R}}$, leaves of $\mathcal{D} \cap \overline{\mathcal{D}} =$ lifts of β -surfaces.
- Blowing down 𝔅_R → 𝒫T_ℝ yields compact complex manifold which must be ℂ𝒫³ ⊃ 𝒫T_ℝ.
- If M = S² × S²/Z₂, construct CP³ ⊃ PT_R via double cover. Then Z₂ → complex conjugation fixing standard RP³.

3. Reconstruction of *M* from twistor space $\mathbb{PT}_{\mathbb{R}}$

Reconstruction:

Each $x \in M^4 \leftrightarrow$ holomorphic disc $D_x^+ \subset \mathbb{CP}^3$ with $\partial D_x \subset \mathbb{PT}_{\mathbb{R}}$:

Figure: $D = hol. \ disc \subset \mathbb{CP}^3$ with $\partial D \subset \mathbb{PT}_{\mathbb{R}}$.

- ▶ D_x^+ generates the degree-1 class in $H_2(\mathbb{CP}^3, \mathbb{PT}_{\mathbb{R}}, \mathbb{Z}) = \mathbb{Z}$.
- Reconstruct *M* from $\mathbb{PT}_{\mathbb{R}}$ space of all such disks:

 $M = \{ \text{Moduli of degree-1 hol. disks: } D_x^+ \subset \mathbb{CP}^3, \partial D_x^+ \subset \mathbb{PT}_{\mathbb{R}} \}$

う つ つ し く 川 マ く 川 マ う く 町 マ

- Finding such holomorphic discs is an elliptic problem of index 4, the problem is stable under deformations.
- ► Gives compact 4d moduli space *M*⁴.

 M^4 admits a conformal structure for which $\partial D_x^+ \cap \partial D_{x'}^+ = Z$ means that x, x' sit on same β -plane:

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Restriction to Einstein case

Which $\mathbb{PT}_{\mathbb{R}} \subset \mathbb{CP}^3$ give SD Einstein $g \in [g]$ on $S^2 \times S^2$?

▶ Let Z^A , A = 1, ..., 4 be homogenous coordinates for \mathbb{CP}^3 .

• Introduce real skew ε^{ABCD} and

$$I_{AB} = I_{[AB]}, \quad I^{AB} = \frac{1}{2} \varepsilon^{ABCD} I_{CD}, \quad \text{with} \quad I^{AB} I_{AC} = \Lambda \delta^B_C.$$

► To define contact and Poisson structures on CP³

$$heta = I_{AB}Z^A dZ^B \in \Omega^1(2), \qquad \{f,g\} := I^{AB} rac{\partial f}{\partial Z^A} rac{\partial g}{\partial Z^B}$$

valued in $\mathcal{O}(2)$, $\mathcal{O}(-2)$ respectively.

Restriction to Einstein case

Which $\mathbb{PT}_{\mathbb{R}} \subset \mathbb{CP}^3$ give SD Einstein $g \in [g]$ on $S^2 \times S^2$?

▶ Let Z^A , A = 1, ..., 4 be homogenous coordinates for \mathbb{CP}^3 .

• Introduce real skew ε^{ABCD} and

$$I_{AB} = I_{[AB]}, \quad I^{AB} = \frac{1}{2} \varepsilon^{ABCD} I_{CD}, \quad \text{with} \quad I^{AB} I_{AC} = \Lambda \delta^B_C.$$

► To define contact and Poisson structures on CP³

$$heta = I_{AB}Z^A dZ^B \in \Omega^1(2), \qquad \{f,g\} := I^{AB} rac{\partial f}{\partial Z^A} rac{\partial g}{\partial Z^B}$$

valued in $\mathcal{O}(2)$, $\mathcal{O}(-2)$ respectively.

We have after Penrose & Ward:

Theorem

An Einstein $g \in [g]$ exists when $\theta|_{\mathbb{PT}_{\mathbb{R}}}$ and $\{,\}|_{\mathbb{PT}_{\mathbb{R}}}$ are real. [A section of $\mathcal{O}(n)|_{\mathbb{PT}_{\mathbb{R}}}$ is real via $\mathcal{O}(-4)_{\mathbb{R}} = \Omega^{3}_{\mathbb{PT}_{\mathbb{P}}}$.]

Generating functions for Einstein embeddings

Explicitly in homogeneous coordinates:

• Let
$$Z^A = U^A + iV^A$$
, U^A , $V^A \in \mathbb{R}^4$.

Let H(U) be an arbtrary function of homogeneity degree 2,

$$U \cdot \frac{\partial H}{\partial U} = 2h.$$

Then the Einstein conditions are satisfied by

$$\mathbb{T}_{\mathbb{R}} = \left\{ Z^{A} = U^{A} + i I^{AB} \frac{\partial H}{\partial U^{B}} \right\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

projectivising gives $\mathbb{PT}_{\mathbb{R}}$.

All sufficiently small such arise in this way.

Split signature Poincaré-Einstein metrics

Are any corresponding Einstein metrics Poincaré-Einstein?

They are small perturbations of the standard example

$$ds^2 = rac{1}{y_3^2} (ds^2_{S^2_{f x}} - ds^2_{S^2_{f y}}) + \dots ,$$

Coordinates $(\mathbf{x}, \mathbf{y}) \in \mathbb{R}^3 \times \mathbb{R}^3$, $|\mathbf{x}| = |\mathbf{y}| = 1$.

$$(\nabla_a \nabla_b + R_{ab})_0 \Phi = 0$$

where Φ has conf. weight 1; scale to 1 for Einstein metric.

- Standard case $\Phi = y_3$, changes sign at \mathscr{I} .
- If cannot suddenly evaporate under perturbation.

Holography: SD Poincaré-Einstein Spaces from *I* Expectations:

- Data at *I* is its conformal structure: To fill in with SD Poincaré-Einstein, must be zollfrei.
- Two natural cases: $\mathscr{I} = S^2 \times S^1$ or $S^2 \times S^1 / \mathbb{Z}_2$.
- Guillemin studied perturbations of $S^2 \times S^1/\mathbb{Z}_2$, his work \Leftrightarrow :

Proposition (Guillemin)

Zollfrei linear perturbations of $S^2 \times S^1/\mathbb{Z}_2$ conf. structure is

$$H^1_{\bar{\partial}}(\mathbb{CP}^3_0,\mathcal{O}(2))=H^1_{\bar{\partial}}(\mathbb{CP}^3_+,\mathcal{O}(2))\oplus H^1_{\bar{\partial}}(\mathbb{CP}^3_-,\mathcal{O}(2))$$

where $\mathbb{CP}_0^3 = \{I_{AB}Z^A \overline{Z}^B = 0\}$ and $\mathbb{CP}_{\pm}^3 = \{\pm i I_{AB}Z^A \overline{Z}^B > 0\}.$

▶ Real such def'ms dont extend far off \mathbb{CP}_0^3 or \mathscr{I} , but

Proposition

for $\mathscr{I} = S^2 \times S^1$, \exists extra class of perturbations from smooth sections h of $\mathcal{O}(2)$ over \mathbb{RP}^3 as above. These give complete fully nonlinear Zollfrei bulk metrics (on both sides).

linear theory works by generalized 'X-ray transform'.

'Hidden' symmetries Following [Strominger 2021, Taylor, Zhu 2023]

Space of solutions as homogeneous space Space \mathcal{P} of Poincaré Einstein metrics on $S^2 \times S^2$ is mapped to

 $\begin{aligned} \mathcal{P} &= \frac{\mathbb{C}\text{-Holomorphic Poisson diffeos near } \mathbb{P}\mathbb{T}_{\mathbb{R}} \\ &= \{ \text{real } H \in C^{\infty}(\mathbb{RP}^3, \mathcal{O}(2)) \} \,. \end{aligned}$

 $\blacktriangleright \mathcal{P}$ is homogeneous space.

- ▶ Infinitesimally Lie algebra = complex $h \in C^{\infty}(\mathbb{RP}^3, \mathcal{O}(2))$
- Lie bracket = Poisson bracket.

• acts by
$$\delta H = \Im h + \{\Re h, H\}$$
.

► To study $\Lambda \rightarrow 0$ let $Z^A = (\lambda_{\alpha}, \mu^{\dot{\alpha}}), \alpha = 0, 1, \dot{\alpha} = 0, 1$

$$I^{AB}\partial_{Z^A}\partial_{Z^B} = \varepsilon^{\dot{\alpha}\dot{\beta}}\partial_{\mu^{\dot{\alpha}}}\partial_{\mu^{\dot{\beta}}} + \Lambda \varepsilon^{\alpha\beta}\partial_{\lambda_{\alpha}}\partial_{\lambda_{\beta}} \,.$$

- ► As $\Lambda \to 0$, Lie algebra = $Lw_{1+\infty}$ = loop algebra of $Diff_0 \mathbb{R}^2$.
- As found by Strominger via 'celestial holography' at $\Lambda = 0$,

From disks to scattering amplitudes

The holomorphic disc $Z(\sigma) : D \to \mathbb{T}$ through $Z_i \in \mathbb{T}_{\mathbb{R}}$ at $\sigma_i \in \partial D$, with $\partial D \subset \mathbb{PT}_{\mathbb{R}}$ degree k - 1 arise from action:

$$S_D[Z_i,h] = \int_D I_{AB} Z^A \bar{\partial} Z^B d\sigma + \oint_{\partial D} h(Z) d\zeta + \sum_i I_{AB} Z^A(\sigma_i) Z_i^B$$

Amplitudes are functionals $\mathcal{M}[h, \tilde{h}_i]$ of gravitational data:

- ▶ $h \in C^{\infty}(\mathbb{PT}_{\mathbb{R}}, \mathcal{O}(2))$ for fully nonlinear SD part,
- ▶ $\tilde{h}_i \in C^{\infty}(\mathbb{PT}_{\mathbb{R}}, \mathcal{O}(-6)), i = 1, ..., k$, ASD perturbations.

Amplitude M := Einstein-Hilbert action S_{EH} of 'bulk metric'. Evaluate perturbatively:

From disks to scattering amplitudes

The holomorphic disc $Z(\sigma) : D \to \mathbb{T}$ through $Z_i \in \mathbb{T}_{\mathbb{R}}$ at $\sigma_i \in \partial D$, with $\partial D \subset \mathbb{PT}_{\mathbb{R}}$ degree k - 1 arise from action:

$$S_D[Z_i,h] = \int_D I_{AB} Z^A \bar{\partial} Z^B d\sigma + \oint_{\partial D} h(Z) d\zeta + \sum_i I_{AB} Z^A(\sigma_i) Z_i^B$$

Amplitudes are functionals $\mathcal{M}[h, \tilde{h}_i]$ of gravitational data:

▶ $h \in C^{\infty}(\mathbb{PT}_{\mathbb{R}}, \mathcal{O}(2))$ for fully nonlinear SD part,

• $\tilde{h}_i \in C^{\infty}(\mathbb{PT}_{\mathbb{R}}, \mathcal{O}(-6)), i = 1, ..., k$, ASD perturbations. Amplitude $\mathcal{M} :=$ Einstein-Hilbert action S_{EH} of 'bulk metric'. Evaluate perturbatively:

• At k = 1, $h = h_1 + h_2$ and we find to second order

$$\mathcal{M}[h_1, h_2, \tilde{h}] = \delta^3 S_{\text{EH}}[\tilde{h}, h_1, h_2] = \int D^3 Z \, \tilde{h}(Z) \delta^2 S_D[Z, h]$$
$$= \int D^3 Z \, \tilde{h}(Z) \{h_1(Z)h_2(Z)\}$$

At higher k disk action embeds into Einstein Hilbert action.
 Full gravity amplitudes invariant under hol. Poisson diffeos.

Conclusions and open problems

- Rigidity of conformally-flat SD split signature Poincaré-Einstein metrics with \$\mathcal{I} = S^2 \times S^1 / \mathbb{Z}_2\$.
- Have construction for split signature SD Poincaé-Einstein metrics on S² × S² with 𝒴 ≃ S² × S¹ depending on smooth sections *h* of 𝒴(2) over ℝP³.
- Similar results at Λ = 0 where it is possible to reconstruct h from data at 𝒴, M. 2212.10895, [also 2103.16984 w/ Sharma, Adamo].

Open questions:

- characterize Zollfrei conformal structures on S² × S¹ with Poincaré-Einstein extensions over S² × S².
- Understand extent to which hidden symmetries extend beyond SD sector.
- Express ASD perturbations nonperturbatively.

The end

Thank You

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Examples for $\Lambda = 0$: Gibbons-Hawking

• Let
$$Z^{A} = (\lambda_{\alpha}, \mu^{\alpha}), \alpha, \beta = 0, 1$$
; set $\varepsilon_{\alpha\beta} = \varepsilon_{[\alpha\beta]}$ and
 $\theta = \lambda_{\alpha} d\lambda_{\beta} \varepsilon^{\alpha\beta}, \qquad \{f, g\} = \varepsilon^{\alpha\beta} \frac{\partial f}{\partial \mu^{\alpha}} \frac{\partial g}{\partial \mu^{\beta}},$

• Defn of $\mathbb{PT}_{\mathbb{R}}$: λ_{α} is real and for $\mu^{\dot{\alpha}} = u^{\alpha} + iv^{\alpha}$, take $v^{\alpha} = \lambda^{\alpha} \dot{h}, \qquad h = (u^{\alpha} \lambda_{\alpha}, \lambda_{\alpha}).$

 Use λ_α as homogeneous coordinates on the hol. disks, expressed as graphs by

$$\mu^{\alpha} = \mathbf{x}^{\alpha\beta}\lambda_{\beta} + (\mathbf{t} + \mathbf{g}(\mathbf{x},\lambda))\lambda^{\alpha}, \qquad \mathbf{x}^{\alpha\beta} = \mathbf{x}^{(\alpha\beta)}.$$

where

$$g(x^{\alpha\beta},\lambda) = \oint \frac{\lambda_0 - i\lambda_1}{\lambda'_0 - i\lambda'_1} \frac{1}{\langle \lambda \lambda' \rangle} \dot{h}((x^{\alpha\beta}\lambda'_\alpha\lambda'_\beta,\lambda'_\alpha)D\lambda'$$

Gives split signature version of familiar metric

$$ds^2 = V d\mathbf{x} \cdot d\mathbf{x} + V^{-1} (dt + \omega)^2$$
, $dV =^* d\omega$, $V = \oint \ddot{h} D\lambda$.

r

But now V satisfies 2 + 1 wave equation!, A = 1 + 1 = 1