Dancing pairs, rolling balls and the Cartan-Engel distribution

Gil Bor (CIMAT, Guanajuato, Mexico)

joint with Luis Hernández Lamoneda (CIMAT)

GRIEG meeting on Cartan Geometries, Paris, March 5, 2024

Theorem (main): there is a 1:1 correspondence

Dancing pair: is a pair of polygons in \mathbb{RP}^2 , with vertices

 $A_1, A_2, ..., A_n$ and edges $b_1, b_2, ..., b_n$, such that for all i

(1) $b_i b_{i+1} \in A_i A_{i+1}$ (red is inscribed in black)

(2)
$$[A_{i+1}, B_i, A_i, D] + [A_{i+1}, B_{i+1}, A_{i+2}, C] = 0$$

$$[x_1, x_2, x_3, x_4] := \frac{(x_1 - x_3)(x_2 - x_4)}{(x_1 - x_4)(x_2 - x_3)}$$

Non degeneracy conditions:

- (1) No 3 consecutive A's are colinear.
- (2) No 3 consecutive b's are concurrent.
- (3) $A_i \not\in b_i$, for all i.

Remark: dancing pairs of polygons = discrete version of 'dancing' pt-line pairs:

(1) A(t) always moves towards the "turning pt" of b(t) ('ice skate')

⇔ null curves of a conformal metric of signature (2,2) on

$$M^4 = \{(A, b) | A \notin b\} \subset \mathbb{R}P^2 \times (\mathbb{R}P^2)^*$$

(2) The tangent SD 2-plane along the curve (A(t), b(t)) in M is parallel (a 'half-geodesics')

Theorem: there are dancing pairs of closed n gons iff $n \ge 6$.

Proof: via rolling balls

$$n = 6$$

Rolling balls: a sphere of radius 1 is rolling without sliding and twisting along a closed polygon on a sphere of radius 3

The rolling ball defines a path in SO_3 , the rolling monodromy

Rolling monodromy (3:1 ratio)

Definition: the rolling monodromy is trivial if the corresponding path in SO_3 is closed and contractible.

Equivalently: the lifted path in S^3 is **closed.**

Example: a triangular 'octant':

Each edge is ¼ of a great circle of the big sphere

small sphere makes 1 full turn going along each edge

- ⇒ lifted monodromy for each edge is -1
- \implies monodromy of the triangle is $(-1)^3 = -1$
- ⇒ monodromy of going **twice** around the triangle is trivial.

Cartan-Engel distribution (1893): a "flat" 2-plane dist $D \subset TQ$, max non-integrable, on a 5-mnfld Q

The "octonionic" model:

$$Q^{\text{oct}} \subset \mathbb{P}(\text{Im}(\mathbb{O})), \ D = \{\zeta d\zeta = 0\}, \ G_2 = \text{Aut}(\mathbb{O}) - \text{invariant}$$

Projectivized null cone

split oct.

Theorem (Cartan, 1910):

- (1) The (loc) symmetry gp of this 235 dist is G_2 (a 14-dim noncpct simple Lie gp), max-dim possible for a 235 dist.
- (2) All "flat" 235 dist (with G_2 symmetry) are loc diffeo.
- (3) Submax symmetry for 235 dist: 7-dim.

$$Q^{\text{dance}} = \{ \mathbf{b} \cdot \mathbf{A} = 1 \} \subset \mathbb{R}^3 \times (\mathbb{R}^3)^*$$

 $D:=\{d\mathbf{b}=\mathbf{A}\times d\mathbf{A}\}\subset TQ^{\mathrm{dance}},\ \mathrm{the\ dancing\ distribution,}$ is a Cartan-Engel 235-distribution.

(Pf: 8-dim symm \Longrightarrow 14-dim symm)

GB, L Hernandez, P Nurowski (2018), *The dancing metric, G*₂-symmetry and projective rolling, Trans. Amer. Math. Soc. 370(6)

Theorem: a pair of polygons with vertices $A_1, ..., A_n \in \mathbb{RP}^2$ and edges $b_1, b_2, ..., b_n \in (\mathbb{RP}^2)^*$ is *dancing* iff there are homogeneous coordinates $\mathbf{A}_1, ..., \mathbf{A}_n \in \mathbb{R}^3, \mathbf{b}_1, ..., \mathbf{b}_n \in (\mathbb{R}^3)^*$, such that $(\mathbf{A}_1, \mathbf{b}_1), ..., (\mathbf{A}_n, \mathbf{b}_n)$ are the vertices of a horizontal polygon in Q^{dance} .

$$Q^{\text{dance}} \subset \mathbb{R}^3 \times (\mathbb{R}^3)^*$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

$$(A, b) \qquad \mathbb{RP}^2 \times (\mathbb{RP}^2)^*$$

 $Q^{\text{roll}} = S^2 \times SO_3$ = configuration space for rolling balls

The rolling distribution: $D \subset TQ^{\text{roll}}$, 235-dist if $\rho = R/r \neq 1$,

$$\begin{cases} (\rho+1)\mathbf{x}' = \mathbf{\omega} \times \mathbf{x}, \\ \mathbf{\omega} \cdot \mathbf{x} = 0 \end{cases} \mathbf{x} \in S^2, \quad \mathbf{\omega} = g^{-1}g' \in \mathbb{R}^3 \simeq \mathfrak{S}o_3$$

Theorem (R Bryant ~2000):

The rolling dist for a pair of balls with $\rho = R/r \neq 1$ is *flat* (ie a CE dist)

$$\Leftrightarrow \rho = \frac{1}{3} \text{ or } 3$$

(for $\rho \neq 1,3,1/3$, sym gp is 6-dim)

"Rigid" curves of rolling distributions: rolling along geodesics (great circles)

R Bryant, L Hsu (1993), *Rigidity of integral curves of rank 2 distributions*, Invent. math. 114

GB, R Montgomery (2009), G_2 and the 'rolling distribution', Enseign. Math. 55

Spherical **regular** *n*-gons with trivial rolling monodromy

Proposition

(a) A regular spherical polygon (n, w, ϕ) has trivial 3:1 rolling monodromy iff there exists an integer w' such that

$$n = 5, w = 2$$

- $w \equiv w' \pmod{2}$
- (b) There are solutions iff $n \ge 6$

Theorem (main): there is a 1:1 correspondence

Closed piece-wise rigid
Horizontal curves of the
Cartan-Engel distribution

Thank you!!