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Abstract

We prove that among 1 and the odd zeta values ζ(3), ζ(5), . . . , ζ(s), at least
0.21

√
s/ log s are linearly independent over the rationals, for any sufficiently large odd

integer s. This is the first asymptotic improvement on the lower bound, logarithmic
in s, obtained by Ball-Rivoal in 2001.

The proof is based on Siegel’s lemma to construct non-explicit linear forms in val-
ues at odd integers of the Riemann zeta function, instead of using explicit well-poised
hypergeometric series. Siegel’s linear independence criterion (instead of Nesterenko’s)
is applied, with a multiplicity estimate (namely a generalization of Shidlovsky’s
lemma).

The result is also adapted to deal with values of the first s polylogarithms at a
fixed algebraic point in the unit disk, improving bounds of Rivoal and Marcovecchio.

Math. Subject Classification: 11J72 (Primary), 11M06 (Secondary).

1 Introduction

It is well known that ζ(s) =
∑∞

n=1 n
−s is equal, when s ≥ 2 is an even integer, to csπ

s

for some cs ∈ Q∗. Since π is transcendental, so is ζ(s) in this case. No such formula is
known, or even conjectured to exist, when s ≥ 3 is odd. Eventhough π, ζ(3), ζ(5), . . . are
conjectured to be algebraically independent over Q, very few results are known in this
direction.

The first one is due to Apéry [2]: ζ(3) is irrational. Then the next breakthrough is the
following result of Ball-Rivoal [3, 22]:

dimQ SpanQ(1, ζ(3), ζ(5), . . . , ζ(s)) ≥ 1− ε
1 + log 2

log s (1.1)
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for any ε > 0, provided that s is an odd integer large enough in terms of ε. This result has
been made effective, and refined, by several authors – but only for small values of s, and
there is still no odd s ≥ 5 for which ζ(s) is known to be irrational. For large values of s,
the following result is the first improvement on the lower bound (1.1).

Theorem 1. For any sufficiently large odd integer s we have:

dimQ SpanQ(1, ζ(3), ζ(5), . . . , ζ(s)) ≥ 0.21

√
s√

log s
.

Here 0.21 is the rounded value of a real number that we did not try to compute exactly.

As a corollary, there are at least 0.21
√
s√

log s
irrational numbers among ζ(3), ζ(5), . . . , ζ(s).

This weaker result was proved recently by Lai and Yu [17] with a better numerical constant,
namely 1.19 . . . instead of 0.21, by following the approach of [28] and [27], developed in
[15]. This strategy provides only a lower bound on the number of irrational odd zeta
values, but nothing like (1.1) or Theorem 1 about linear independence. This makes an
important difference: no linear independence criterion is needed, so that the proof is much
more elementary.

The proof of Theorem 1 extends to values of polylogarithms Lis(z) =
∑∞

n=1
zn

ns
. From

now on, we fix an embedding of Q in C. Given a positive integer s, and z ∈ Q∗ such that
|z| is small enough (in terms of s and the degree and height of z), the values 1, Li1(z),
. . . , Lis(z) are known to be Q(z)-linearly independent (see [21, 16] for the case z ∈ Q, and
[9, 7, 1] for the general case). If z ∈ Q∗ is fixed with |z| < 1, this is conjecturally true
for any s but the only known result is the following one (due to Rivoal [23] for z ∈ R, to
Marcovecchio [18] in the general case): for any non-zero z ∈ Q such that |z| < 1 we have

dimQ(z) SpanQ(z)(1,Li1(z), . . . ,Lis(z)) ≥ 1− ε
(1 + log 2)[Q(z) : Q]

log s

provided s ∈ N is sufficiently large in terms of ε > 0. We refer also to [14] for algebraic
points z outside the unit disk.

In this paper we improve this lower bound as follows.

Theorem 2. Let s be a sufficiently large integer. Then for any z ∈ Q such that |z| ≤ 1
and z 6∈ {0, 1} we have:

dimQ(z) SpanQ(z)(1,Li1(z),Li2(z), . . . ,Lis(z)) ≥ 0.26

[Q(z) : Q]

√
s√

log s
.

Of course this result holds trivially at z = 1 (after removing Li1(z) from the family),
since even powers of π are linearly independent over Q.

Most proofs of irrationality (or linear independence) of odd zeta values start with a
rational function

Fn(X) =
a∑
i=1

n∑
j=0

ci,j
(X + j)i

∈ Q(X)
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where ci,j ∈ Z. For instance Ball-Rivoal’s proof of (1.1) is based on the following one
(where n is even and s is odd), which is related to a well-poised hypergeometric series:

Fn(X) = dsnn!s−2r (X − rn)rn(X + n+ 1)rn
(X)sn+1

,

where (x)α = x(x+ 1) . . . (x+ α− 1) is Pochhammer’s symbol, dn = lcm(1, 2, . . . , n), and
r = b s

(log s)2
c. The point to obtain a linear combination of 1 and odd zeta values, namely

∞∑
t=1

Fn(t) = %0,n + %3,nζ(3) + %5,nζ(5) . . .+ %s,nζ(s) (1.2)

with %i,n ∈ Z such that |%i,n| ≤ βn(1+o(1)) as n→∞, and the absolue value of (1.2) is less
than αn(1+o(1)). Applying a linear independence criterion yields a lower bound 1− logα

log β
on

the dimension of the Q-vector space spanned by 1, ζ(3), ζ(5), . . . , ζ(s).

In the literature, this strategy has always been applied to an explicit rational function
Fn(X), and therefore explicit integers ci,j. This has allowed Ball-Rivoal to bound from
below the absolue value of (1.2), and apply Nesterenko’s linear independence criterion
[20].

On the contrary, to prove Theorem 1 we apply Siegel’s lemma and obtain in this way
the existence of integers ci,j, not all zero, satisfying suitable assumptions. These integers
are therefore not explicit. This allows us to get completely different asymptotic values of
the parameters as s → ∞. Whereas logα ∼ −s log s and log β ∼ (1 + log 2)s in Ball-
Rivoal’s proof, we obtain logα ∼ −4.55

√
s log s and log β ∼ 20.93 log s. In particular the

coefficients ci,j are much smaller than in explicit constructions.
Using non-explicit integers ci,j makes it impossible to use Nesterenko’s linear indepen-

dence criterion. We use Siegel’s criterion instead, by considering for each n a family of
linear forms instead of just (1.2). This extrapolation procedure is performed using deriva-
tion with respect to both t and z (see parameters p and k in §4.1). Then a multiplicity
estimate (namely a generalization [12] of Shidlovsky’s lemma) is used to provide sufficiently
many linearly independent linear forms. Since z = 1 is a singularity of the underlying dif-
ferential system, we work at the point z = −1 by taking profit of the classical relation
Lii(−1) = (21−i − 1)ζ(i) for i ≥ 2.

The structure of this paper is as follows. Section 2 contains the tools we need: a version
of Siegel’s lemma combining equalities and inequalities, a linear independence criterion in
the spirit of Siegel, and a generalization of Shidlovsky’s lemma. In §3 we apply Siegel’s
lemma to construct the integers ci,j, or in other words the rational function Fn(X), that
will allow us to prove Theorems 1 and 2 in §4.

2 Diophantine tools

We gather in this section the auxiliary Diophantine tools we shall use in the proof of Theo-
rems 1 and 2, namely Siegel’s lemma and linear independence criterion, and a multiplicity
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estimate which is a generalization of Shidlovsky’s lemma.

2.1 Siegel’s lemma

We shall apply the following version of Siegel’s lemma. The new feature with respect to
usual statements (see for instance [24, Chapter 1, Lemmas 1, 4D or 9A]) is that linear
inequalities (namely (2.2) below) appear: there are not only linear equations with integer
coefficients.

Lemma 1. Let N > M ≥ M0 > 0, and λi,m ∈ Z for 1 ≤ i ≤ N and 1 ≤ m ≤ M . For

each 1 ≤ m ≤ M , let Hm ≥ 1 be a real number such that
√∑N

i=1 λ
2
i,m ≤ Hm. For each m

such that M0 < m ≤M , let Gm ≥ 1 be a real number. Define

X =
√
N
(
H1 . . . HM0GM0+1 . . . GM

) 1
N−M0 .

Then there exists (x1, . . . , xN) ∈ ZN \ {(0, . . . , 0)} such that

N∑
i=1

λi,mxi = 0 for any m ∈ {1, . . . ,M0}, (2.1)

∣∣∣ N∑
i=1

λi,mxi

∣∣∣ ≤ HmX

Gm

for any m ∈ {M0 + 1, . . . ,M}, (2.2)

and √√√√ N∑
i=1

x2
i ≤ X. (2.3)

Inequality (2.2) means that the upper bound deduced from (2.3) using Cauchy-Schwarz
inequality is improved by a multiplicative factor 1/Gm.

In applying Lemma 1 we shall use the following consequence of (2.3):

|xi| ≤ X for any i ∈ {1, . . . , N}.

Proof of Lemma 1: Let F denote the set of all x = (x1, . . . , xN) ∈ RN such that (2.1) holds:

this is a Euclidean space of dimension D ≥ N −M0, with norm given by ‖x‖ =
√∑N

i=1 x
2
i .

It is rational, i.e. given by linear equations (2.1) with integer coefficients λi,m; this is
equivalent to the existence of a basis of F consisting in elements of QN . Then Λ = F ∩ZN
is a lattice in F , that is a discrete Z-module of rank D; we refer to [24, Chapter 1] for all
notions of geometry of numbers used in this proof. We point out that geometry of numbers
is considered, in [24] and in most references, in the Euclidean space RD. Since we need to
work in F , which is Euclidean with the scalar product induced from the canonical one on
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RN , we fix a linear isometric isomorphism F → RD and use it to carry all definitions and
properties.

The determinant of Λ, denoted by det Λ, is the absolute value of the determinant of any
Z-basis of Λ with respect to an orthonormal basis of F (because such an orthonormal basis
is mapped to the canonical basis of RD by the above-mentioned isometric isomorphism).
It is equal to the volume of the fundamental parallelepiped of Λ (see [24, Chapter 1, §2]).

The height of F , denoted by H(F ), is by definition det Λ (see [24, Chapter 1, §4] or
[25]). Now let F⊥ denote the orthogonal complement of F in RN , and consider the vector
um = (λ1,m, . . . , λN,m) ∈ ZN for any m ∈ {1, . . . ,M0}. The definition (2.1) of F implies
F⊥ = Span(u1, . . . , uM0). Reindexing u1, . . . , uM0 if necessary, we may assume that u1,
. . . , uN−D are linearly independent, so that F⊥ = Span(u1, . . . , uN−D). Denoting by U the
square matrix of size N − D of which the columns are the coordinates of u1, . . . , uN−D
in an orthonormal basis of F⊥, since F⊥ ∩ ZN contains the Z-module spanned by u1, . . . ,
uN−D we have

H(F⊥) = det(F⊥ ∩ ZN) ≤ | detU | ≤
N−D∏
m=1

‖um‖ ≤
N−D∏
m=1

Hm

using Hadamard’s inequality (as in [24, Chapter 1, §4, p. 11]). Since H(F ) = H(F⊥) (see
[24, Lemma 4C]) and Hm ≥ 1 for any m, we have

det Λ = H(F ) ≤
M0∏
m=1

Hm. (2.4)

Now let us denote by C the set of all x = (x1, . . . , xN) ∈ F such that Eqns. (2.2) and
(2.3) hold. We claim that

vol C ≥ (2X/
√
D)D∏M

m=M0+1 Gm

(2.5)

where vol C is the volume of C inside the Euclidean space F . Admitting this lower bound
for now, and comparing it with Eq. (2.4) and the definition of X, we obtain

vol C ≥ 2D
M0∏
m=1

Hm ≥ 2D det Λ

since N−M0 ≤ D ≤ N and Hm, Gm ≥ 1 for any m. Now C is a symmetric compact convex
body, so Minkowski’s first theorem asserts the existence of a non-zero x ∈ C ∩Λ = C ∩ZN .
This concludes the proof of Lemma 1, except for the claim (2.5) that we shall prove now.

Given an integer M ′ with M0 ≤M ′ ≤M and vectors vm ∈ F for m ∈ {M0+1, . . . ,M ′},
we denote by CM ′(vM0+1, . . . , vM ′) the set of all x ∈ F such that

|〈x, vm〉| ≤
‖vm‖X
Gm

for any m ∈ {M0 + 1, . . . ,M ′}
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and ‖x‖ ≤ X, where 〈·, ·〉 is the scalar product on F (obtained by restriction from the
canonical scalar product on RN). We shall prove by induction on M ′ that

∀vM0+1, . . . , vM ′ ∈ F vol CM ′(vM0+1, . . . , vM ′) ≥
(2X/

√
D)D∏M ′

m=M0+1Gm

. (2.6)

This implies the claim (2.5) by taking M ′ = M and vm = um = (λ1,m, . . . , λN,m) for any
m ∈ {M0 + 1, . . . ,M}, since CM(uM0+1, . . . , uM) ⊂ C because ‖um‖ ≤ Hm.

To begin with, let us prove (2.6) when M ′ = M0: then CM0() is the ball of radius X in F ,
centered at the origin. Let (e1, . . . , eD) denote an orthonormal basis of F , and B∞ the set of
all x = a1e1 + . . .+aDeD with a1, . . . , aD ∈ [−X/

√
D,X/

√
D]. Then volB∞ = (2X/

√
D)D,

and for any x ∈ B∞ we have ‖x‖2 =
∑D

i=1 a
2
i ≤ X2 so that B∞ ⊂ CM0(). This concludes

the proof of (2.6) when M ′ = M0.
Now let us assume that (2.6) holds for some M ′ ∈ {M0, . . . ,M − 1}, and prove it

for M ′ + 1. Let vM0+1, . . . , vM ′+1 ∈ F . If vM ′+1 = 0 then CM ′+1(vM0+1, . . . , vM ′+1) =
CM ′(vM0+1, . . . , vM ′) so the conclusion is trivial since GM ′+1 ≥ 1. Assuming from now on
that vM ′+1 6= 0, we consider the linear map ϕ : F → F such that ϕ(vM ′+1) = 1

GM′+1
vM ′+1,

and ϕ(x) = x for any x ∈ F orthogonal to vM ′+1. Since GM ′+1 ≥ 1 we have ‖ϕ(x)‖ ≤ ‖x‖
for any x ∈ F . Now let f1 = 1

‖vM′+1‖
vM ′+1. There exist f2, . . . , fD such that (f1, . . . , fD)

is an orthonormal basis of F . Then the matrix of ϕ in this basis is the diagonal matrix
Diag( 1

GM′+1
, 1, 1, . . . , 1): it is symmetric, so that

〈ϕ(x), y〉 = 〈x, ϕ(y)〉 for any x, y ∈ F.

We shall prove now that

ϕ(CM ′(ϕ(vM0+1), . . . , ϕ(vM ′))) ⊂ CM ′+1(vM0+1, . . . , vM ′ , vM ′+1). (2.7)

Indeed let x ∈ CM ′(ϕ(vM0+1), . . . , ϕ(vM ′)). For any m ∈ {M0 + 1, . . . ,M ′} we have

|〈ϕ(x), vm〉| = |〈x, ϕ(vm)〉| ≤ ‖ϕ(vm)‖X
Gm

≤ ‖vm‖X
Gm

.

On the other hand,

|〈ϕ(x), vM ′+1〉| = |〈x, ϕ(vM ′+1)〉| = |〈x, vM
′+1〉|

GM ′+1

≤ ‖vM
′+1‖ ‖x‖
GM ′+1

≤ ‖vM
′+1‖X

GM ′+1

.

Since ‖ϕ(x)‖ ≤ ‖x‖ ≤ X this concludes the proof of (2.7). This inclusion yields

vol CM ′+1(vM0+1, . . . , vM ′ , vM ′+1) ≥ 1

GM ′+1

vol CM ′(ϕ(vM0+1), . . . , ϕ(vM ′)) ≥
(2X/

√
D)D∏M ′+1

m=M0+1Gm

since ϕ has determinant 1
GM′+1

, using the induction hypothesis. This concludes the proof

of Lemma 1.
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2.2 Siegel’s linear independence criterion

The proof of Theorems 1 and 2 relies on the following criterion (see [14, Theorem 4] for a
proof), which is based on Siegel’s ideas (see for instance [11, p. 81–82 and 215–216], [19,
§3], [18, Proposition 4.1], or [12, Proposition 4.6]).

Let K be a number field embedded in C, and OK be its ring of integers. Let K∞ = R
if K ⊂ R, and K∞ = C otherwise. The house of ξ ∈ K, denoted by ξ , is the maximum
modulus of the Galois conjugates of ξ.

Proposition 1. Let θ0, . . . , θp be real numbers, not all zero. Let τ > 0, and (Qn) be a
sequence of real numbers with limit +∞. Let N be an infinite subset of N, and for any
n ∈ N let L(n) = [`

(n)
i,j ]0≤i,j≤p be a matrix with coefficients in OK and non-zero determinant,

such that as n→∞ with n ∈ N :

max
0≤i,j≤p

`
(n)
i,j ≤ Q1+o(1)

n

and max
0≤j≤p

|`(n)
0,j θ0 + . . .+ `

(n)
p,j θp| ≤ Q−τ+o(1)

n .

Then we have

dimK SpanK(θ0, . . . , θp) ≥
[K∞ : R]

[K : Q]
· (τ + 1).

In the proof of Theorem 1 we apply this proposition with K = Q, Qn = βn, and
τ = − logα

log β
(so that Q−τn = αn), where α and β will be defined in §4.6. The setting is

similar for Theorem 2, with K = Q(z) (see §4.7).

2.3 Multiplicity estimate

Let us state now the generalisation of Shidlovsky’s lemma we shall use, namely [12, The-
orem 3.1]. It is based on Fuchs’ global relation on exponents, following the approach
initiated by Chudnovsky [8, 6] in the fuchsian case and generalized by Bertrand-Beukers
[5] and Bertand [4] using differential Galois theory.

We consider a positive integer N and a matrix A ∈ MN(C(z)). We let S0, . . . , SN−1 ∈
C[X] with degSi ≤ m for any i. With each solution Y = t(y0, . . . , yN−1) of the differential
system Y ′ = AY is associated a remainder R(Y ) defined by

R(Y )(z) =
N−1∑
i=0

Si(z)yi(z).

Let Σ be a finite subset of P1(C) = C∪{∞}, with ∞ ∈ Σ. For each σ ∈ Σ, let (Yj)j∈Jσ be
a family of solutions of Y ′ = AY such that:

• For any j ∈ Jσ, the function R(Yj) belongs to the Nilsson class at σ (i.e., has moderate
growth at σ; see [14, §5.1] for a precise definition).
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• The functions R(Yj), for j ∈ Jσ, are linearly independent over C (as functions on a
small open disk centered at σ).

Theorem 3. Let µ denote the order of a non-zero differential operator L ∈ C(z)[ d
dz

] such
that L(R(Yj)) = 0 for any σ ∈ Σ and any j ∈ Jσ. Then∑

σ∈Σ

∑
j∈Jσ

ordσ(R(Yj)) ≤ (m+ 1)(µ− Card J∞) + c1

where c1 is a constant that depends only on A and Σ.

In this result we denote by ordσ the order of vanishing at σ (recall that logarithmic
factors may appear, but they have no influence on the order of vanishing; for instance,
ord0(ze(log z)i) is the real part of e, for e ∈ C and i ∈ N).

3 A non-explicit rational function

In this section we construct the rational function Fn(X) that will be used in §4 to prove
Theorems 1 and 2. The output of this construction is stated as Theorem 4 in §3.1. Its proof,
based on Siegel’s lemma, is given in §3.5. It relies on a result of [13]: Fn(t) = O(|t|−ωn) as
|t| → ∞ if, and only if, Pk,1(1) = 0 for any k < ωn. These functions Pk,1(z) are related
to a differential system arising from polylogarithms. In §3.2 we define them, explain this
setting and state as Proposition 2 a technical result used in the proof of Theorem 4. We
prove Proposition 2 in §3.4, after dealing with a lemma of analytic number theory in §3.3.

3.1 Output of the construction

In this section we apply Siegel’s lemma (namely Lemma 1 stated in §2.1) to construct
integers ci,j ∈ Z, for 1 ≤ i ≤ a and 0 ≤ j ≤ n, such that the rational function

Fn(X) =
a∑
i=1

n∑
j=0

ci,j
(X + j)i

∈ Q(X) (3.1)

will be of interest to us. We denote by

Fn(t) =
∞∑
d=1

Ad

td

the expansion of Fn(t) as |t| → ∞.

Theorem 4. Let a ∈ N and ω,Ω, r ∈ Q be such that a > Ω ≥ ω > 0 and r ≥ 1. Then
for any n ≥ 0 such that rn, ωn,Ωn ∈ N there exist integers ci,j ∈ Z for 1 ≤ i ≤ a and
0 ≤ j ≤ n, not all zero, with the following properties:

(i) As |t| → ∞, we have Fn(t) = O(|t|−ωn).
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(ii) As n→∞, we have |ci,j| ≤ χn(1+o(1)) for any i, j, with

χ = exp
(ω log 2 + 3ω2 + ω2 log(a+ 1) + 1

2
Ω2 log r

a− ω

)
. (3.2)

(iii) For any d < Ωn we have |Ad| ≤ rd−Ωnnddaχn(1+o(1)).

Moreover in (ii) and (iii) the sequences denoted by o(1) do not depend on i, j, d, and tend
to 0 as n→∞.

The upper bound (iii) is interesting only when ωn ≤ d < Ωn, since part (i) means
Ad = 0 for any d < ωn. We also point out that, even if it is not explicit in the notation,
the integers ci,j depend on a, ω,Ω, r, n.

This section is devoted to the proof of Theorem 4; this proof will be completed in §3.5.

A rather easy construction of integers ci,j satisfying properties (i) and (iii) of Theorem 4
would be to apply Lemma 1, translating (i) as Ad = 0 for any d < ωn. However the explicit
expression of Ad (see Eq. (3.20) in §3.5) shows that for d close to ωn, the equation Ad = 0
is of the form

∑
i,j λi,jci,j = 0 with integers λi,j such that |λi,j| ≤ nωn(1+o(1)). Applying

Lemma 1 with such a huge bound would not give as n→∞ a geometric bound on |ci,j| in
(ii), and therefore it would not seem possible to derive any Diophantine application. On
the contrary, to prove Theorem 4 we translate assertion (i) as Pk,1(1) = 0 for any k < ωn
(see §3.5). We shall define these functions Pk,1(z) now.

3.2 Setting of the proof

Let a ≥ 1 and n ≥ 0. In this section we start with arbitrary real numbers ci,j, for 1 ≤ i ≤ a
and 0 ≤ j ≤ n, which may either be fixed or considered as unknowns. We point out that
the result of §§3.2 to 3.4, namely Proposition 2 below, will be used 3 times in this paper:
in §3.5 to prove Theorem 4, in §4.3 to prove Lemma 5, and in §4.7 for Theorem 2.

We let Pi(z) =
∑n

j=0 ci,jz
j for 1 ≤ i ≤ a, and P0(z) = 0. We define Pk,i(z) for 0 ≤ i ≤ a

and k ≥ 1 as follows: P1,i(z) = Pi(z) for any i, and for k ≥ 2:{
Pk,i(z) = P ′k−1,i(z)− 1

z
Pk−1,i+1(z) for 1 ≤ i ≤ a

Pk,0(z) = P ′k−1,0(z) + α1z+α0

z(1−z) Pk−1,1(z)
(3.3)

where Pk−1,a+1 is taken to be the zero polynomial; the motivation for this definition will
be given in §§3.5 and 4.1 (see Eqns. (3.23) and (4.8)). Here (α0, α1) ∈ Z2 is fixed; we shall
take (α0, α1) = (1, 1) in the proof of Theorem 1, and (α0, α1) = (1, 0) for Theorem 2. It is
not difficult (as in [12, proof of Proposition 4.4]) to prove that zk−1Pk,i(z) is a polynomial
of degree at most n for 1 ≤ i ≤ a, and that zk−1(1− z)k−1Pk,0(z) is a polynomial of degree
at most n + k − 1; this follows also from the proof of Proposition 2 below. We define the
coefficients pk,i,j by {

zk−1Pk,i(z) =
∑n

j=0 pk,i,jz
j if i ≥ 1,

zk−1(1− z)k−1Pk,0(z) =
∑n+k−1

j=0 pk,0,jz
j.

(3.4)
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It is clear that each coefficient pk,i,j is a Q-linear combination of the (fixed or unknown)
coefficients ci′,j′ we have started with to define P0, . . . , Pa. In other words, there exist
rational numbers ϑk,i,j,i′,j′ such that for any k, i, j:

pk,i,j =
a∑

i′=1

n∑
j′=0

ϑk,i,j,i′,j′ci′,j′ . (3.5)

The point of the next result, which is the main step in the proof of Theorem 4, is to provide
a common denominator (depending only on k) and an upper bound on these coefficients
ϑk,i,j,i′,j′ .

Proposition 2. For any k ≥ 1 there exists a positive integer δk, which depends only on k,
a, n, such that:

(i) We have δk ≤ (e3(a+ 1))max(n,k) provided n is large enough in terms of a.

(ii) For any i, j, i′, j′ we have δk
(k−1)!

ϑk,i,j,i′,j′ ∈ Z.

(iii) For any i, j, i′, j′ we have∣∣∣ δk
(k − 1)!

ϑk,i,j,i′,j′
∣∣∣ ≤ { ka2nδk if 1 ≤ i ≤ a,

max(α0, α1) ka+18max(n,k)δk if i = 0.

The first observation is that we have geometric bounds as n→∞ (with k < ωn): this
solves the problem raised at the end of §3.1. Another crucial remark is the dependence
with respect to a of the upper bound in (i): it is polynomial in a, whereas a direct approach
would lead to an exponential bound, thereby ruining the Diophantine application we have
in mind. Indeed we recall (see the end of the introduction, or §4.6 for details) that we
plan to construct a linear combination of odd zeta values, with coefficients bounded by
βn(1+o(1)) as n → ∞, where β is a polynomial in a. To achieve this, the bound in (i) has
to be polynomial in a. This property comes from Lemma 2 below.

In the proof of Theorem 4 we shall not use the case i = 0 of parts (ii) and (iii), but
they will be used in the proof of Lemma 5 in §4.3.

3.3 A lemma from analytic number theory

A crucial step in the proof of Proposition 2 is the use of the following lemma, which is of
independent interest.

Lemma 2. Let a,N ≥ 1. Denote by ∆a,N the least common multiple of all products
N1 . . . Nα where α ≤ a and N1, . . . , Nα are pairwise distinct integers between −N and N
such that maxNi −minNi ≤ N . Then as N →∞ (while a is fixed) we have:

∆a,N = exp
(
N(

a∑
j=1

1

j
+ o(1))

)
≤
(

(a+ 1)eγ+o(1)
)N

(3.6)

where γ is Euler’s constant.
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The naive version of this lemma would be to use the upper bound ∆a,N ≤ daN , where
dN = lcm(1, 2, . . . , N), leading to ∆a,N ≤ eNa+o(N). The dependence in a is much better in
Lemma 2 because we use the assumption that N1, . . . , Nα are pairwise distinct.

Proof of Lemma 2: For any prime power pe we let fa,N(pe) = min(a, bN
pe
c) and we consider

∆ =
∏
pe≤N

pfa,N (pe)

where the product is taken over all pairs (p, e) such that p is a prime number, e ≥ 1, and
pe ≤ N . Our goal is to prove that ∆a,N = ∆. To begin with, we compute for any prime
p ≤ N the p-adic valuation of ∆ as follows:

vp(∆) =

b logN
log p

c∑
e=1

fa,N(pe) = a
⌊ log(N/a)

log p

⌋
+

b logN
log p

c∑
e=b log(N/a)

log p
c+1

⌊N
pe

⌋
. (3.7)

Now let us prove that ∆a,N divides ∆. Let p be a prime number; we shall prove that
vp(N1 . . . Nα) ≤ vp(∆) for any non-zero pairwise distinct integers N1, . . . , Nα between −N
and N , with α ≤ a and maxNi −minNi ≤ N . Since |Ni| ≤ N for each i, we have

vp(N1 . . . Nα) =
α∑
i=1

vp(Ni) =

b logN
log p

c∑
e=1

CardSp,e (3.8)

where Sp,e = {i ∈ {1, . . . , α}, vp(Ni) ≥ e}. Obviously we have CardSp,e ≤ α ≤ a, and

CardSp,e ≤
⌊maxiNi −miniNi

pe

⌋
+ 1 ≤

⌊N
pe

⌋
+ 1.

Moreover if CardSp,e = bN
pe
c+ 1 then miniNi = upe and maxiNi = vpe with u, v ∈ Z such

that v−u = bN
pe
c. If u ≥ 1 then v ≥ 1+bN

pe
c > N/pe so that vpe > N , which is impossible.

The same contradiction holds if v ≤ −1 because in this case −u ≥ 1 + bN
pe
c > N/pe.

Therefore we have u ≤ 0 ≤ v; since all Ni are non-zero, we obtain CardSp,e ≤ bNpe c and

finally CardSp,e ≤ fa,N(pe). Combining Eqns. (3.8) and (3.7) concludes the proof that
∆a,N divides ∆.

Let us prove now1 that ∆ divides ∆a,N . Let p be a prime number; we shall construct
pairwise distinct integers Ni between 1 and N such that vp(N1 . . . Na) = vp(∆). We write

e = b log(N/a)
log p

c + 1, so that pe−1 ≤ N/a < pe, and k = bN
pe
c. If b logN

log p
c = b log(N/a)

log p
c the sum

in Eq. (3.7) is empty, so that letting Ni = ipe−1 for 1 ≤ i ≤ a we have vp(N1 . . . Na) =

1For the application we have in mind, an upper bound on ∆a,N is enough. We provide its exact
asymptotics for the sake of completeness.
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a(e − 1) = vp(∆). Assume now, on the contrary, that b logN
log p
c ≥ e. Then we have pe ≤ N

and k ≥ 1; we let Ni = ipe for 1 ≤ i ≤ k, and we pick up Nk+1, . . . , Na among the
b N
pe−1 c−bNpe c ≥ a−k integers between pe−1 and N with p-adic valuation equal to e−1. Then

for any i ∈ {1, . . . , a} we have e − 1 ≤ vp(Ni) ≤ b logN
log p
c, and for any e′ ∈ {e, . . . , b logN

log p
c}

the number of indices i such that vp(Ni) ≥ e′ is equal to b N
pe
′ c. Therefore we have

vp(N1 . . . Na) = a(e− 1) +

b logN
log p

c∑
e′=e

⌊N
pe′

⌋
= vp(∆)

using Eq. (3.7). Finally, for any prime p we have found pairwise distinct integers Ni

between 1 and N such that vp(∆) = vp(N1 . . . Na). Therefore ∆ divides ∆a,N , and equality
holds: ∆ = ∆a,N .

To conclude the proof of Lemma 2, we use this explicit expression of ∆ to compute
it asymptotically. In what follows we denote by o(1) any quantity that tends to 0 as
N →∞, with a fixed. Recall that letting ψ(x) =

∑
pe≤x log p (where the sum is over prime

numbers p and positive integers e such that pe ≤ x), the prime number theorem yields
ψ(N) = N(1 + o(1)). Therefore we have

log ∆ =
∑
pe≤N

fa,N(pe) log p

=
∑

pe≤N/a

a log p+
a−1∑
k=1

∑
N
k+1

<pe≤N
k

k log p

= aψ(N/a) +
a−1∑
k=1

k
(
ψ(N/k)− ψ(N/(k + 1))

)
= aψ(N/a) +

a−1∑
k=1

kψ(N/k)−
a∑
k=2

(k − 1)ψ(N/k)

= aψ(N/a) + ψ(N)− (a− 1)ψ(N/a) +
a−1∑
k=2

ψ(N/k)

=
a∑
k=1

ψ(N/k) = N
( a∑
k=1

1/k + o(1)
)
.

At last,
∑a

k=1
1
k
− log(a+ 1) is non-decreasing with respect to a, and tends to γ as a→∞,

so that
∑a

k=1 1/k ≤ γ + log(a+ 1) for any a. This concludes the proof of Lemma 2.

3.4 Proof of Proposition 2

In this section we prove Proposition 2 by computing explicitly the coefficients ϑk,i,j,i′,j′ . We
shall use the following lemma, proved in [10] using Kummer’s theorem on p-adic valuations
of binomial coefficients.
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Lemma 3. Let N be a positive integer. The least common multiple of the binomial coeffi-
cients

(
N
i

)
, 0 ≤ i ≤ N , is equal to dN+1

N+1
where dN+1 = lcm(1, 2, . . . , N + 1).

We shall use also the following notation. Given integers 0 ≤ ` < k, we denote by H`,k

the set of all h = (h0, . . . , h`) ∈ (N∗)`+1 such that h0 + . . .+h` = k; we let H`,k = ∅ if ` ≥ k
or ` < 0. In particular we have H0,k = {h} with h = h0 = k.

For h ∈ H`,k and T ∈ Z, we let

κ(T, k, h) =
T (T − 1) . . . (T − k + 2)∏`−1

i=0(T + 1−
∑i

j=0 hj)

where empty products are taken equal to 1; notice that all factors in the denominator
appear also in the numerator, so that κ(T, k, h) ∈ Z. Here and below we agree that if
T =

∑i0
j=0 hj − 1 for some i0 ∈ {0, . . . , `− 1} (which is then unique), then the zero factor

T + 1 −
∑i0

j=0 hj has to be omitted from both products, in the numerator and in the
denominator. In precise terms, we then have T + 2 ≤ k and

κ(T, k, h) = (−1)k−T
T !(k − T − 2)!∏

0≤i≤`−1
i 6=i0

(T + 1−
∑i

j=0 hj)
.

The proof of Proposition 2 falls into 4 steps.

Step 1: Computation of ϑk,i,j,i′,j′ for i ≥ 1.

The goal of this step is to prove by induction on k ≥ 1 that for any 1 ≤ I ≤ a and any
0 ≤ T ≤ n we have

ϑk,i,T,I,T = (−1)I−i
∑

h∈HI−i,k

κ(T, k, h) if max(1, I − k + 1) ≤ i ≤ I (3.9)

and ϑk,i,j,I,T = 0 otherwise (with i ≥ 1), namely

ϑk,i,j,I,T = 0 if (i ≥ 1 and j 6= T ) or (i ≥ I + 1) or (1 ≤ i ≤ I − k). (3.10)

The value of ϑk,0,j,i′,j′ , namely with i = 0, will be computed in Step 2 below.

An equivalent form of Eqns. (3.9) and (3.10) is the following: for any 1 ≤ i ≤ a and
any k ≥ 1, we have

Pk,i(z) =
n+1−k∑
t=1−k

zt
(min(a,i+k−1)∑

I=i

cI,t+k−1(−1)I−i
∑

h∈HI−i,k

κ(t+ k − 1, k, h)
)
. (3.11)

We shall now prove Eq. (3.11) by induction on k ≥ 1.
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For k = 1, Eq. (3.11) holds trivially; indeed it reads P1,i(z) =
∑n

t=0 ci,tz
t since H0,1 =

{(1)} and κ(t, 1, (1)) = 1. Let us assume that Eq. (3.11) holds for k − 1, with k ≥ 2. We
recall that

Pk,i(z) = P ′k−1,i(z)− 1

z
Pk−1,i+1(z) for 1 ≤ i ≤ a

with Pk−1,a+1(z) = 0. Using Eq. (3.11) twice (since it reduces to 0 = 0 if i = a + 1) we
obtain:

Pk,i(z) =
n+2−k∑
t=2−k

tzt−1
(min(a,i+k−2)∑

I=i

cI,t+k−2(−1)I−i
∑

h∈HI−i,k−1

κ(t+ k − 2, k − 1, h)
)

−zt−1
(min(a,i+k−1)∑

I=i+1

cI,t+k−2(−1)I−i−1
∑

h∈HI−i−1,k−1

κ(t+ k − 2, k − 1, h)
)
.

Letting t′ = t− 1 yields

Pk,i(z) =
n+1−k∑
t′=1−k

zt
′

min(a,i+k−1)∑
I=i

cI,t′+k−1(−1)I−i(
(t′ + 1)

∑
h∈HI−i,k−1

κ(t′ + k − 1, k − 1, h) +
∑

h∈HI−i−1,k−1

κ(t′ + k − 1, k − 1, h)
)

;

here zero terms have been added (namely I = i+k−1 in the first sum, if i+k−1 ≤ a, and
I = i in the second term; notice that Hk−1,k−1 = H−1,k−1 = ∅). To conclude it is enough
to check that for any t, I such that 1 − k ≤ t ≤ n + 1 − k and i ≤ I ≤ min(a, i + k − 1)
we have

(t+ 1)
∑

h′∈HI−i,k−1

κ(t+ k − 1, k − 1, h′) +
∑

h′′∈HI−i−1,k−1

κ(t+ k − 1, k − 1, h′′) (3.12)

=
∑

h∈HI−i,k

κ(t+ k − 1, k, h).

Indeed let h = (h0, . . . , hI−i) ∈ HI−i,k, so that h0 + . . .+ hI−i = k. If hI−i ≥ 2 then

κ(t+ k − 1, k, h) =
(t+ k − 1)(t+ k − 2) . . . (t+ 1)∏I−i−1

λ=0 (t+ k −
∑λ

j=0 hj)
= (t+ 1)κ(t+ k − 1, k − 1, h′)

where h′ = (h0, . . . , hI−i−1, hI−i − 1) ∈ HI−i,k−1. On the other hand, if hI−i = 1 then for

λ = I − i− 1 we have t+ k −
∑λ

j=0 hj = t+ 1 so that

κ(t+ k − 1, k, h) =
(t+ k − 1)(t+ k − 2) . . . (t+ 2)∏I−i−2

λ=0 (t+ k −
∑λ

j=0 hj)
= κ(t+ k − 1, k − 1, h′′)
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where h′′ = (h0, . . . , hI−i−1) ∈ HI−i−1,k−1. This concludes the proof of Eq. (3.12), and by
induction that of Eq. (3.11).

Step 2: Computation of ϑk,i,j,i′,j′ for i = 0.

In this step we shall prove that for any k ≥ 1, any 0 ≤ j ≤ n + k − 1, any 1 ≤ I ≤ a
and any 0 ≤ T ≤ n we have

ϑk,0,j,I,T =

min(1,j)∑
ε=max(0,j+2−n−k)

αε

−1∑
s′=1−k

n−s′−k+ε∑
t′=−s′−k+ε

(−1)j−t
′−k+1 (3.13)

·
(

s′ + k − 1

j − t′ − k + 1

) k−2∑
α=−1−s′

(t′ + 1)s′+α+1(s′ + α + 2)−s′−1ϑk−α−1,1,t′+s′−ε+k,I,T

where the coefficients ϑk−α−1,1,t′+s′−ε+k,I,T have been computed in Step 1, and αε comes
from Eq. (3.3). With this aim in mind we define functions ψk,ε(z) for k ≥ 1 and ε ∈ {0, 1}
by letting ψ1,ε(z) = 0 and

ψk,ε(z) = ψ′k−1,ε(z) + zε−1(1− z)−1Pk−1,1(z) (3.14)

for any k ≥ 2. Indeed the recurrence relation

Pk,0(z) = P ′k−1,0(z) +
α1z + α0

z(1− z)
Pk−1,1(z)

with P1,0(z) = 0 yields immediately, by induction:

Pk,0(z) =
1∑
ε=0

αεψk,ε(z) for any k ≥ 1. (3.15)

Let us fix ε ∈ {0, 1}. Then Eq. (3.14) implies, by induction,

ψk,ε(z) =
k−2∑
α=0

( d
dz

)α(
zε−1(1− z)−1Pk−α−1,1(z)

)
for any k ≥ 1. Recall that

Pk−α−1,1(z) =
n+α+2−k∑
t=α+2−k

pk−α−1,1,t+k−α−2z
t,

so that Leibniz’ formula yields

ψk,ε(z) =
k−2∑
α=0

n+α+2−k∑
t=α+2−k

pk−α−1,1,t+k−α−2

α∑
β=0

(
α

β

)
(t+ ε− β)βz

t+ε−β−1(α− β)!(1− z)−1−α+β.
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Letting t′ = t+ ε− β − 1 and s′ = −1− α + β we obtain

ψk,ε(z) =
−1∑

s′=1−k

n−s′−k+ε∑
t′=−s′−k+ε

zt
′
(1− z)s

′
k−2∑

α=−1−s′
pk−α−1,1,t′+s′+k−ε(t

′ + 1)s′+α+1(s′ + α+ 2)−s′−1.

Now writing

(1− z)s
′
= (1− z)1−k

s′+k−1∑
σ=0

(−1)σzσ
(
s′ + k − 1

σ

)
and letting j = t′ + σ + k − 1 yields

ψk,ε(z) = (1− z)1−k
n+k+ε−2∑

j=ε

zj+1−k
−1∑

s′=1−k

n−s′−k+ε∑
t′=−s′−k+ε

(−1)j−t
′−k+1

·
(

s′ + k − 1

j − t′ − k + 1

) k−2∑
α=−1−s′

pk−α−1,1,t′+s′+k−ε(t
′ + 1)s′+α+1(s′ + α + 2)−s′−1.

Using Eqns. (3.5) and (3.15) this concludes the proof of Eq. (3.13).

Step 3: Denominators.

In this step we prove that assertion (ii) of Proposition 2 holds with

δk = d2
k∆a,max(k,n)

where ∆a,max(k,n) is defined in Lemma 2. Since γ ≤ 1, the upper bound (i) on δk in
Proposition 2 follows immediately from Lemma 2 and the prime number theorem (namely,
dk = exp(k(1 + o(1)))).

Let us start with the case i ≥ 1. We shall prove that

dk∆a,max(k,n)

(k − 1)!
κ(T, k, h) ∈ Z (3.16)

for any k ≥ 1, 1 ≤ I ≤ a, 0 ≤ T ≤ n, max(1, I−k+1) ≤ i ≤ I and any h = (h0, . . . , hI−i) ∈
(N∗)I−i+1 such that h0 + . . .+ hI−i = k. Using Eq. (3.11) proved in Step 1 and Eq. (3.5),
this is enough to prove assertion (ii) of Proposition 2 for i ≥ 1.

To prove (3.16), we recall that

κ(T, k, h) =
T (T − 1) . . . (T − k + 2)∏I−i−1
λ=0 (T + 1−

∑λ
j=0 hj)

. (3.17)

If T − k + 2 ≥ 0 then

dk∆a,max(k,n)

(k − 1)!
κ(T, k, h) = dk

(
T

k − 1

)
∆a,max(k,n)∏I−i−1

λ=0 (T + 1−
∑λ

j=0 hj)
∈ Z
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using Lemma 2, since the T + 1 −
∑λ

j=0 hj are I − i ≤ a − 1 pairwise distinct integers
between 0 and T ≤ n ≤ max(k, n).

If T − k + 2 < 0 then a factor vanishes in the numerator of Eq. (3.17). In proving
Eq. (3.16) we may assume that a factor vanishes in the denominator too, namely T + 1−∑λ0

j=0 hj, and in this case these factors have to be omitted in Eq. (3.17); we then have

dk∆a,max(k,n)

(k − 1)!
κ(T, k, h)

= (−1)T−k+2 dk

(k − 1)

(
k − 2
T

) ∆a,max(k,n)∏
0≤λ≤I−i−1

λ 6=λ0
(T + 1−

∑λ
j=0 hj)

∈ Z

using Lemmas 2 and 3, since the T +1−
∑λ

j=0 hj with λ 6= λ0 are I− i−1 ≤ a−2 pairwise
distinct integers between T − k+ 2 ≥ −k+ 2 and T ≤ n, with distance at most k− 2 from
one another.

This concludes the proof of assertion (ii) of Proposition 2 for i ≥ 1; let us study the
case i = 0 now. Using Eq. (3.13) (see Step 2) it is enough to prove that

d2
k∆a,max(k,n)

(k − 1)!
(t′ + 1)s′+α+1(s′ + α + 2)−s′−1pk−α−1,1,t′+s′−ε+k ∈ Z

for any k ≥ 1, 0 ≤ ε ≤ 1, 1 − k ≤ s′ ≤ −1, −s′ − k + ε ≤ t′ ≤ n − s′ − k + ε,
−1− s′ ≤ α ≤ k − 2. It follows from Eq. (3.16) that

dk∆a,max(k,n)

(k − 1− α)!
pk−α−1,1,t′+s′−ε+k ∈ Z.

Since we have

dk
(k − 1− α)!

(k − 1)!
(t′ + 1)s′+α+1(s′ + α + 2)−s′−1 =

dk(
k − 1
α

)( s′ + α + 1 + t′

t′

)
∈ Z

using Lemma 3, this concludes the proof of assertion (ii) of Proposition 2.

Step 4: Absolute values.

To conclude the proof of Proposition 2, let us prove part (iii). To bound | δk
(k−1)!

ϑk,i,j,I,T |
from above, we begin with the case where i ≥ 1 and use Eqns. (3.9) and (3.10) proved in
Step 1. Whenever 1 ≤ I ≤ a and 0 ≤ T ≤ n we have CardHI−i,k ≤ kI−i ≤ ka and, for any
h ∈ HI−i,k: ∣∣∣κ(T, k, h)

(k − 1)!

∣∣∣ ≤ ( T

k − 1

)
≤ 2T ≤ 2n if T ≥ k − 2,
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whereas ∣∣∣κ(T, k, h)

(k − 1)!

∣∣∣ ≤ 1

(k − 1)
(
k−2
T

) ≤ 1 if T < k − 2.

Therefore we obtain ∣∣∣ δk
(k − 1)!

ϑk,i,j,I,T

∣∣∣ ≤ ka2nδk if i ≥ 1. (3.18)

Let us deal now with the case i = 0, using Eq. (3.13) proved in Step 2. In this sum
there are at most 2k(k− 1) values of the triple (ε, s′, α). For each value, the sum over t′ of(
s′+k−1
j−t′−k+1

)
is bounded by 2s

′+k−1 ≤ 2k−1, and we have

∣∣∣(t′ + 1)s′+α+1(s′ + α + 2)−s′−1

∣∣∣ =


α!
(
t′+s′+α+1

t′

)
≤ α! 2n if t′ ≥ 0,

0 if t′ < 0 ≤ t′ + s′ + α + 1,

α!
( −t′−1
s′+α+1

)
≤ α! 2−t

′ ≤ α! 2k if t′ + s′ + α + 1 < 0.

Therefore Eqns. (3.13) and (3.18) yield∣∣∣ δk
(k − 1)!

ϑk,0,j,I,T

∣∣∣ ≤ max(α0, α1) ka+1 2n+k+max(n,k) δk.

This concludes the proof of Proposition 2.

3.5 Application of Siegel’s lemma

In this section we use Proposition 2 to conclude the proof of Theorem 4. The notation
is the one of §§3.1 and 3.2; the coefficients ci,j are related to the function Fn(X) we are
trying to construct by Eq. (3.1).

The asymptotic expansion of Fn(t) at infinity reads

Fn(t) =
∞∑
d=1

Ad

td
for any t such that |t| > n, (3.19)

where the coefficients Ad are given explicitly (see [13, Eq. (17)]) by

Ad = (−1)d
min(a,d)∑
i=1

n∑
j=0

(−1)i
(
d− 1

i− 1

)
jd−ici,j for any d ≥ 1. (3.20)

The important point here is that we have also [13, Proposition 2]

Rn(z) =
∞∑
d=1

Ad(−1)d−1 (log z)d−1

(d− 1)!
for any z ∈ C such that |z − 1| < 1 (3.21)
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where

Rn(z) =
a∑
i=1

Pi(z)(−1)i−1 (log z)i−1

(i− 1)!
. (3.22)

As in §3.2 we consider the rational functions Pk,i(z) defined by P1,i(z) = Pi(z) and, for any
k ≥ 2,

Pk,i(z) = P ′k−1,i(z)− 1

z
Pk−1,i+1(z) for 1 ≤ i ≤ a (3.23)

where Pk−1,a+1 is understood as 0; however we are not interested in Pk,0(z) here. Since the

derivative of (−1)i−1 (log z)i−1

(i−1)!
is −1

z
(−1)i−2 (log z)i−2

(i−2)!
if i ≥ 2, and 0 if i = 1, we have

R(k−1)
n (z) =

a∑
i=1

Pk,i(z)(−1)i−1 (log z)i−1

(i− 1)!
for any k ≥ 1

and in particular
R(k−1)
n (1) = Pk,1(1). (3.24)

Using Eqns. (3.19), (3.21) and (3.24) we see that the following assertions are equivalent:

(i) As |t| → ∞, Fn(t) = O(|t|−ωn).

(ii) For any d ∈ {1, . . . , ωn− 1}, Ad = 0.

(iii) As z → 1, Rn(z) = O((z − 1)ωn−1).

(iv) For any k ∈ {1, . . . , ωn− 1}, R(k−1)
n (1) = 0.

(v) For any k ∈ {1, . . . , ωn− 1}, Pk,1(1) = 0.

Using the notation of §3.2, the last assertion reads
∑n

j=0 pk,1,j = 0, or equivalently

δk
(k − 1)!

a∑
i′=1

n∑
j′=0

( n∑
j=0

ϑk,1,j,i′,j′
)
ci′,j′ = 0 for any k ∈ {1, . . . , ωn− 1} (3.25)

using the integer δk (which depends also on a and n) provided by Proposition 2. This
result asserts that (3.25) is a linear system of M0 = ωn − 1 equations in N = a(n + 1)
unknowns ci′,j′ , with integer coefficients bounded by∣∣∣ δk

(k − 1)!

n∑
j=0

ϑk,1,j,i′,j′
∣∣∣ ≤ (n+ 1)ka2nδk ≤

(
2(a+ 1)ωe3ω

)n(1+o(1))

(3.26)

as n→∞, since k ≤ ωn− 1 and ω ≥ 1.

In applying Lemma 1, for any k ∈ {ωn, . . . ,Ωn−1} we consider Ak given by Eq. (3.20)
as a linear combination of the unknowns ci′,j′ , with integer coefficients bounded in absolute
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value by kank. We take M = Ωn− 1 and for each k such that M0 = ωn− 1 < k ≤ M we
let Gk = rΩn−k and Hk =

√
a(n+ 1)kank. Then Lemma 1 applies, and with its notation

we have

X ≤
√
N
[(

2(a+ 1)ωe3ω
)(ωn−1)n(1+o(1))

Ωn−1∏
k=ωn

rΩn−k
] 1
N−M0

using Eq. (3.26), so that

logX ≤ n(1 + o(1))

a− ω

(
ω log 2 + 3ω2 + ω2 log(a+ 1) +

1

n2

Ωn−1∑
k=ωn

(Ωn− k) log r
)

≤ n(1 + o(1))

a− ω

(
ω log 2 + 3ω2 + ω2 log(a+ 1) +

1

2
Ω2 log r

)
.

This concludes the proof of Theorem 4.

4 Main part of the proof

In this section we prove Theorem 1 stated in the introduction; we explain in §4.7 how to
modify this proof and deduce Theorem 2. We explain the notation and sketch the proof
in §4.1. We obtain an expansion in polylogarithms in §4.2. Then we study the resulting
linear forms: their coefficients (§4.3) and their asymptotic behavior (§4.4). We apply a
multiplicity estimate in §4.5, and conclude the proof in §4.6.

4.1 Setting, notation and sketch of the proof

Let a, r, ω,Ω ≥ 1 and n ≥ 2, with a, n ∈ Z, r, ω,Ω ∈ Q, and 1 ≤ ω ≤ Ω < a; we assume
rn, ωn and Ωn to be integers. In our application, a, r, ω, Ω will be fixed and n will tend
to ∞. We refer to the end of this section (and to §4.6) for the choice of parameters.

Using Siegel’s lemma we have constructed in Theorem 4 (see §3.1) integers ci,j ∈ Z, for
1 ≤ i ≤ a and 0 ≤ j ≤ n, such that

Fn(X) =
a∑
i=1

n∑
j=0

ci,j
(X + j)i

∈ Q(X)

satisfies Fn(t) = O(|t|−ωn) as |t| → ∞, with |ci,j| ≤ χn(1+o(1)) as n→∞, where

χ = exp
(ω log 2 + 3ω2 + ω2 log(a+ 1) + 1

2
Ω2 log r

a− ω

)
. (4.1)

We have also
|Ad| ≤ rd−Ωnnddaχn(1+o(1)) (4.2)
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for any d < Ωn, where Ad is defined by

Fn(t) =
∞∑
d=1

Ad

td
if |t| is sufficiently large; (4.3)

notice that the upper bound (4.2) is interesting only when ωn ≤ d < Ωn since Ad = 0 for
any d < ωn.

For any p ≥ 0, the p-th derivative of Fn is

F (p)
n (X) =

a∑
i=1

n∑
j=0

ci,j(−1)p(i)p
(X + j)i+p

with (i)p = i(i + 1) . . . (i + p− 1). We fix an additional parameter h ≥ 0 with h ≤ a. For
any z ∈ C such that |z| = 1 and any p ∈ {0, . . . , h} we consider

Sn,p(z) = zrn
∞∑

t=rn+1

(
F (p)
n (t)z−t − F (p)

n (−t)zt
)

which is convergent since Fn(t) = O(|t|−2) as |t| → ∞. The point here is that even zeta
values should not appear in the linear combination we are trying to construct. A symmetry
phenomenon (related to well-poised hypergeometric series) is used in general to obtain this
property. However we have to consider derivatives of Sn,p(z) to apply the multiplicity
estimate, and this property is not transfered to derivatives. We overcome this difficulty as
in [12], by considering the functions Lii(1/z) − (−1)iLii(z) instead of just Lii(1/z). This

leads to the definition above of Sn,p(z), instead of simply zrn
∑∞

t=rn+1 F
(p)
n (t)z−t.

We let also

Pi(z) =
n∑
j=0

ci,jz
j for 1 ≤ i ≤ a (4.4)

and we shall prove in Lemma 4 that, if z 6= 1,

Sn,p(z) = Vp(z) +
a∑
i=1

zrnPi(z)(−1)p(i)p

(
Lii+p(1/z)− (−1)i+pLii+p(z)

)
(4.5)

for some polynomial Vp ∈ Q[X] of degree at most 2rn. For k ≥ 1 we shall consider the

(k − 1)-th derivative S
(k−1)
n,p (z) of Sn,p(z). Since the coefficients of the polynomial Vp have

large denominators (that would ruin our Diophantine application), we shall be interested

only in integers k such that k − 1 ≥ 2rn+ 1 > deg Vp, so that V
(k−1)
p = 0.

For 0 ≤ p ≤ h and 1 ≤ i ≤ a we let

Q
[p]
i+p(z) = zrnPi(z)(−1)p(i)p (4.6)
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and also Q
[p]
i (z) = 0 for i ∈ {1, . . . , p} ∪ {a+ p+ 1, . . . , a+ h}. Then Eq. (4.5) reads

Sn,p(z) = Vp(z) +
a+h∑
i=1

Q
[p]
i (z)

(
Lii(1/z)− (−1)iLii(z)

)
. (4.7)

Now let Q
[p]
1,0(z) = 0, Q

[p]
1,i(z) = Q

[p]
i (z) for any i ∈ {1, . . . , a+ h}, and for k ≥ 2:{

Q
[p]
k,i(z) = Q

[p]′
k−1,i(z)− 1

z
Q

[p]
k−1,i+1(z) for 1 ≤ i ≤ a+ h

Q
[p]
k,0(z) = Q

[p]′
k−1,0(z) + z+1

z(1−z)Q
[p]
k−1,1(z)

(4.8)

where Q
[p]
k−1,a+h+1 is taken to be the zero polynomial. In particular we have Q

[p]
k,i(z) = 0 for

any i ∈ {a + p + 1, . . . , a + h}, but not (in general) for 0 ≤ i ≤ p. Since the derivative of

Lii(1/z)− (−1)iLii(z) is z+1
z(1−z) for i = 1, and −1

z

(
Lii−1(1/z)− (−1)i−1Lii−1(z)

)
for i ≥ 2,

we have

S(k−1)
n,p (z) = Q

[p]
k,0(z) +

a+h∑
i=1

Q
[p]
k,i(z)

(
Lii(1/z)− (−1)iLii(z)

)
for any k ≥ 2rn+ 2 (4.9)

since deg Vp ≤ 2rn; when 1 ≤ k ≤ 2rn + 1 an additional term V
(k−1)
p (z) appears on the

right hand side. The point is that we have now many linear forms for each value of n, as
k and p vary. This is necessary to apply the multiplicity estimate, and then Siegel’s linear
independence criterion.

For any k ≥ 2rn+ 2 we let

`
(n)
p,k,i = (−2)k−1 δk

(k − 1)!
Q

[p]
k,i(−1) for 0 ≤ i ≤ a+ h (4.10)

where δk is given by Proposition 2 in §3.2 with a replaced by a+h and n by (r+ 1)n; then
Eq. (4.9) yields

(−2)k−1 δk
(k − 1)!

S(k−1)
n,p (−1) = `

(n)
p,k,0 +

a+h∑
i=1

`
(n)
p,k,i(1− (−1)i)Lii(−1). (4.11)

These are the linear forms we are interested in, with 0 ≤ p ≤ h and 2rn + 2 ≤ k ≤ κn
(where κ ∈ Q is a fixed parameter such that 2r < κ ≤ ω). We shall prove in Lemma 5

that their coefficients are not too large integers, namely `
(n)
p,k,i ∈ Z and

|`(n)
p,k,i| ≤ βn(1+o(1)) with β = χ

(
e3(2a+ 1)

)κ
· 4κ+r+1.

Then in Lemma 6 we shall prove that these linear forms are small :∣∣∣`(n)
p,k,0 +

a+h∑
i=1

`
(n)
p,k,i

(
1− (−1)i

)
Lii(−1)

∣∣∣ ≤ αn(1+o(1)) with α = χr−Ω(2e4(2a+ 1))κ.
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Assume that (h + 1)(κ − 2r) + ω > a, and that n is sufficiently large. Then using the
generalization of Shidlovsky’s lemma stated in §2.3 we prove in §4.5 that there are suffi-
ciently many linearly independent linear forms among them; this allows us in §4.6 to apply
Siegel’s linear independence criterion (recalled in §2.2) and deduce that

dimQ SpanQ({1} ∪ {(1− (−1)i)Lii(−1), 1 ≤ i ≤ a+ h}) ≥ 1− logα

log β
.

Choosing appropriate parameters (namely r = 3.9, κ = 10.58, ω = 11.58, Ω ∈ Q sufficiently
close to 3.9

√
a log a, and h = 0.36 a) enables one to conclude the proof of Theorem 1 (see

§4.6 for details); recall that (1 − (−1)i)Lii(−1) vanishes when i is even, and is equal to
2(21−i − 1)ζ(i) when i ≥ 3 is odd.

4.2 Expansion in polylogarithms

Lemma 4. For any p ∈ {0, . . . , h} there exists a polynomial Vp ∈ Q[X] of degree at most
2rn such that, for any z ∈ C with |z| = 1 and z 6= 1,

Sn,p(z) = Vp(z) +
a∑
i=1

zrnPi(z)(−1)p(i)p

(
Lii+p(1/z)− (−1)i+pLii+p(z)

)
.

Proof of Lemma 4: To begin with, we let

S[∞]
n,p (z) = zrn

∞∑
t=rn+1

F (p)
n (t)z−t (4.12)

for z ∈ C, |z| ≥ 1, z 6= 1. We have

S[∞]
n,p (z) =

∞∑
t=rn+1

a∑
i=1

n∑
j=0

ci,j(−1)p(i)p
(t+ j)i+p

zrn−t

=
a∑
i=1

n∑
j=0

ci,j(−1)p(i)p

∞∑
`=rn+1+j

zrn−`+j

`i+p

since this series is convergent (because |z| ≥ 1 and z 6= 1)

=
a∑
i=1

n∑
j=0

ci,j(−1)p(i)p

(
zrn+jLii+p(1/z)−

rn+j∑
`=1

zrn−`+j

`i+p

)
so that

S[∞]
n,p (z) = V [∞]

p (z) +
a∑
i=1

zrnPi(z)(−1)p(i)pLii+p(1/z)

where (as defined above)

Pi(z) =
n∑
j=0

ci,jz
j for 1 ≤ i ≤ a
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and

V [∞]
p (z) = −

a∑
i=1

n∑
j=0

ci,j(−1)p(i)p

rn+j−1∑
t=0

zt

(rn+ j − t)i+p
∈ Q[z]. (4.13)

Observe that the polynomials Pi have degree at most n, and do not depend on p, whereas
V

[∞]
p depends on p and has degree at most (r + 1)n− 1.

On the other hand we consider, for z ∈ C with |z| ≤ 1 and z 6= 1,

S[0]
n,p(z) = zrn

∞∑
t=rn+1

F (p)
n (−t)zt

=
∞∑

t=rn+1

a∑
i=1

n∑
j=0

ci,j(−1)p(i)p
(−t+ j)i+p

zrn+t

=
a∑
i=1

n∑
j=0

ci,j(−1)p(i)p(−1)i+p
∞∑

`=rn+1−j

zrn+`+j

`i+p

=
a∑
i=1

n∑
j=0

ci,j(−1)p(i)p(−1)i+p
(
zrn+jLii+p(z)−

rn−j∑
`=1

zrn+`+j

`i+p

)
so that

S[0]
n,p(z) = V [0]

p (z) +
a∑
i=1

zrnPi(z)(−1)p(i)p(−1)i+pLii+p(z)

with the same polynomials Pi, and

V [0]
p (z) = −

a∑
i=1

n∑
j=0

ci,j(−1)i(i)p

2rn∑
t=rn+j+1

zt

(t− rn− j)i+p
∈ Q[z]. (4.14)

Observe that V
[0]
p has degree at most 2rn and is a multiple of zrn+1. Since Sn,p(z) =

S
[∞]
n,p (z)− S[0]

n,p(z), we let Vp(z) = V
[∞]
p (z)− V [0]

p (z); this concludes the proof of Lemma 4.

4.3 Coefficients of the linear forms

For any algebraic number ξ, we denote by ξ its house, i.e. the maximum modulus of its
Galois conjugates. To prepare the proof of Theorem 2 (see §4.7) we shall estimate the
coefficients of the linear forms in a slightly more general setting than what is needed in the
proof of Theorem 1.

Let z0 ∈ Q be such that |z0| ≥ 1 and z0 6= 1; denote by q ∈ N∗ a denominator of z0, i.e.
such that qz0 ∈ OQ(z0) where OQ(z0) is the ring of integers of Q(z0). For any k ≥ 1 we let

`
(n)
p,k,i(z0) = q(r+1)n+k−1zk−1

0 (1− z0)k−1 δk
(k − 1)!

Q
[p]
k,i(z0) for 0 ≤ i ≤ a+ h (4.15)
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where δk is given by Proposition 2 in §3.2 with a replaced by a+ h and n by (r+ 1)n, and

the rational functions .Q
[p]
k,i(z) are defined by Eq. (4.8). The special case needed in the

proof of Theorem 1 is z0 = −1, q = 1; then Q(z0) = Q and OQ(z0) = Z, and `
(n)
p,k,i(z0) = `

(n)
p,k,i

(see Eq. (4.10)).

Lemma 5. We have `
(n)
p,k,i(z0) ∈ OQ(z0) for any p ∈ {0, . . . , h}, any i ∈ {0, . . . , a + h} and

any k ≥ 1. Moreover, provided k ≤ κn with a fixed κ ≥ r + 1 (independent from n), we
have as n→∞:

`
(n)
p,k,i(z0) ≤ βn(1+o(1)) with β = χ

(
8e3(2a+ 1)

)κ
·
(
qmax(1, z0 , 1− z0 )

)κ+r+1

where χ is defined by Eq. (4.1).

Proof of Lemma 5: We fix p and apply the results of §3.2. With respect to the notation
of that section, Pi(z) is replaced with Q

[p]
i (z), a with a+h and n with (r+ 1)n; recall that

degQ
[p]
i ≤ (r + 1)n for any i ∈ {1, . . . , a+ h} (see Eq. (4.6) and the line following it). We

take α0 = α1 = 1 in the notation of §3.2, so that Eqns. (3.3) and (4.8) are consistent. We
write {

zk−1Q
[p]
k,i(z) =

∑(r+1)n
j=0 qk,i,jz

j if i ≥ 1,

zk−1(1− z)k−1Q
[p]
k,0(z) =

∑(r+1)n+k−1
j=0 qk,0,jz

j.

Then Eq. (4.15) reads

`
(n)
p,k,i(z0) = qk−1(1− z0)k−1

(r+1)n∑
j=0

δk
(k − 1)!

qk,i,jq
(r+1)nzj0 for 1 ≤ i ≤ a+ h, (4.16)

and

`
(n)
p,k,0(z0) =

(r+1)n+k−1∑
j=0

δk
(k − 1)!

qk,0,jq
(r+1)n+k−1zj0. (4.17)

To fit the notation of §3.2 we write also Q
[p]
i (z) =

∑(r+1)n
j=0 c′i,jz

j for 1 ≤ i ≤ a + h.

Combining Eq. (3.5) with part (ii) of Proposition 2, we deduce that δk
(k−1)!

qk,i,j ∈ Z for any

k, i, j, since c′i′,j′ ∈ Z for any i′, j′. Moreover, part (iii) of Proposition 2 and Eq. (3.5)
yield ∣∣∣ δk

(k − 1)!
qk,i,j

∣∣∣ ≤ k2a+18max(k,(r+1)n)δka((r + 1)n+ 1) max
i′,j′
|c′i′,j′|

for any k, i, j, with δk ≤ (e3(2a + 1))max(k,(r+1)n) according to part (i) – recall that
Proposition 2 is applied with a+ h ≤ 2a and (r+ 1)n instead of a and n, respectively. We
deduce that∣∣∣ δk

(k − 1)!
qk,i,j

∣∣∣ ≤ k2a+1(8e3(2a+ 1))max(k,(r+1)n)a((r + 1)n+ 1) max
i′,j′
|c′i′,j′|.
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Using Eqns. (4.16) and (4.17) we obtain `
(n)
p,k,i(z0) ∈ OQ(z0) for any i ∈ {0, . . . , 2a}, any

k ≥ 1 and any p ∈ {0, . . . , h}, and

|`(n)
p,k,i(z0)| ≤ k2a+1(8e3(2a+ 1))max(k,(r+1)n)a((r + 1)n+ k)2 max

i′,j′
|c′i′,j′ |

· q(r+1)n+k−1 max(1, z0
(r+1)n) max(1, 1− z0

k−1
, z0

k−1).

Now Eq. (4.6) and Theorem 4 yield maxi′,j′ |c′i′,j′| ≤ (a)aχ
n(1+o(1)) since h ≤ a. Using the

assumption k ≤ κn with κ ≥ r + 1, this concludes the proof of Lemma 5.

4.4 Asymptotic estimate of the linear forms

Let z0 ∈ Q be such that |z0| = 1; we shall take z0 = −1 in the proof of Theorem 1, and
adapt the proof of Lemma 6 below in §4.7 to prove Theorem 2. Recall that δk ∈ N∗ has
been defined in Proposition 2 (in which a should be replaced with a+h and n by (r+1)n),
and χ in Theorem 4.

Lemma 6. Assume that r ≥ 2, 0 ≤ p ≤ h, and 2rn + 2 ≤ k ≤ κn, with κ < ω. Then we
have ∣∣∣ δk

(k − 1)!
S(k−1)
n,p (z0)

∣∣∣ ≤ α
n(1+o(1))
0 with α0 = χr−Ω(e4(2a+ 1))κ.

Proof of Lemma 6: Recall that Sn,p(z) = S
[∞]
n,p (z) − S[0]

n,p(z) with the notation introduced

in the proof of Lemma 4. Taking the p-th derivative of Eq. (4.3) (see §4.1) yields F
(p)
n (t) =∑∞

d=1
Ad(−1)d(d)p

td+p
for |t| > n. By definition of S

[∞]
n,p (z) (see Eq. (4.12) in §4.2) we obtain

S[∞]
n,p (z) =

∞∑
t=rn+1

∞∑
d=1

Ad(−1)d(d)p
td+p

zrn−t for |z| ≥ 1, z 6= 1. (4.18)

Now Theorem 4 asserts that Fn(t) = O(|t|−ωn) as |t| → ∞, so that Ad = 0 for any
d ∈ {1, . . . , ωn− 1}: the sum on d in Eq. (4.18) starts only at d = ωn. Therefore we have
for any k ≥ 1:

δk
(k − 1)!

S[∞](k−1)
n,p (z) = (−1)k−1δk

∞∑
t=rn+1

∞∑
d=ωn

Ad(−1)d(d)p
td+p

(
t− rn+ k − 2

k − 1

)
zrn−t−k+1.

Since |z| ≥ 1 and tp ≥ 1 we obtain∣∣∣ δk
(k − 1)!

S[∞](k−1)
n,p (z)

∣∣∣ ≤ δk

∞∑
t=rn+1

(
t− rn+ k − 2

k − 1

)(n
t

)ωn ∞∑
d=ωn

|Ad|(d)p
td−ωn

n−ωn.

We bound |Ad| trivially (using Eq. (3.20)) for d ≥ Ωn, and we use assertion (iii) of
Theorem 4 for d such that ωn ≤ d < Ωn. Therefore we have∣∣∣ δk

(k − 1)!
S[∞](k−1)
n,p (z)

∣∣∣ ≤ δk

∞∑
t=rn+1

(
t− rn+ k − 2

k − 1

)(n
t

)ωn ∞∑
d=ωn

ut,d (4.19)
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where
ut,d = (d)pd

a(n/t)d−ωn max
i,j
|ci,j| for d ≥ Ωn

and
ut,d = rd−Ωn(d)pd

a(n/t)d−ωn max
i,j
|ci,j| for ωn ≤ d < Ωn.

Let us bound the term
∑∞

d=ωn ut,d in Eq. (4.19). For any d ≥ Ωn we have ut,d+1/ut,d ≤
(1+ p

d
)·(1+ 1

d
)a · 1

r
≤ 3

2r
for any t ≥ rn+1, provided n is large enough (using the assumption

that Ω > 0). Since r ≥ 2 we obtain

∞∑
d=Ωn

ut,d ≤ ut,Ωn

∞∑
d=Ωn

(3

4

)d−Ωn

≤ 4r(ω−Ω)n(Ωn)p(Ωn)a max
i,j
|ci,j| (4.20)

for any t ≥ rn+ 1. On the other hand, for ωn ≤ d < Ωn we have

ut,d = r(ω−Ω)n(d)pd
a(rn/t)d−ωn max

i,j
|ci,j| ≤ r(ω−Ω)n(Ωn)p(Ωn)a max

i,j
|ci,j|.

Combining this upper bound with Eq. (4.20) yields

∞∑
d=ωn

ut,d ≤ (4 + (Ω− ω)n)r(ω−Ω)n(Ωn)p(Ωn)a max
i,j
|ci,j| ≤ r(ω−Ω)n(Ωn+ p)a+p+1 max

i,j
|ci,j|

so that Eq. (4.19) implies∣∣∣ δk
(k − 1)!

S[∞](k−1)
n,p (z)

∣∣∣ ≤ r−Ωn(Ωn+ p)a+p+1δk

(
max
i,j
|ci,j|

) ∞∑
t=rn+1

(
t− rn+ k − 2

k − 1

)(rn
t

)ωn
.

(4.21)
We let σ = k−1

rn
so that σ > 1. Let t > rn; then we have t− rn+k−2 ≤ t+ (σ−1)rn < σt

so that(
t− rn+ k − 2

k − 1

)(rn
t

)ωn−2

≤ (σt)k−1

(k − 1)!

(rn
t

)ωn−2

≤ σk−1(rn)k−1

(k − 1)k−1e−k+1

(rn
t

)ωn−k−1

≤ ek−1

since rn
t
≤ 1 and k + 1 ≤ κn + 1 ≤ ωn; recall that (k − 1)! ≥ (k−1

e
)k−1, and σrn = k − 1

by definition of σ. This proves that

∞∑
t=rn+1

(
t− rn+ k − 2

k − 1

)(rn
t

)ωn
≤ r2n2ek−1π2/6. (4.22)

Using Eq. (4.21), Theorem 4 and assertion (i) of Proposition 2 (where a is replaced with
a+ h ≤ 2a and n with (r + 1)n), we obtain∣∣∣ δk

(k − 1)!
S[∞](k−1)
n,p (z)

∣∣∣ ≤ α
n(1+o(1))
0 .
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We now turn to S
[0](k−1)
n,p (z) (recall that Sn,p(z) = S

[∞]
n,p (z)−S[0]

n,p(z)). As for S
[∞]
n,p above,

we have

S[0]
n,p(z) =

∞∑
t=rn+1

∞∑
d=ωn

Ad(−1)d(d)p
(−t)d+p

zrn+t for |z| ≤ 1, z 6= 1,

so that, for any k ≥ 2rn+ 2,

δk
(k − 1)!

S[0](k−1)
n,p (z) = δk

∞∑
t=k−1−rn

∞∑
d=ωn

Ad(−1)p(d)p
td+p

(
rn+ t

k − 1

)
zrn+t−k+1.

We have ∣∣∣ δk
(k − 1)!

S[0](k−1)
n,p (z)

∣∣∣ ≤ δk

∞∑
t=k−1−rn

(
rn+ t

k − 1

)(n
t

)ωn ∞∑
d=ωn

ut,d

with the same ut,d as above, so that∣∣∣ δk
(k − 1)!

S[0](k−1)
n,p (z)

∣∣∣ ≤ δkr
−Ωn(Ωn+ p)a+p+1

(
max
i,j
|ci,j|

) ∞∑
t=k−1−rn

(
rn+ t

k − 1

)(rn
t

)ωn
.

(4.23)
As above let σ = k−1

rn
≥ 2; then for any t ≥ k − 1 − rn we have t ≥ (σ − 1)rn so that

rn+ t ≤ σ
σ−1

t, and(
rn+ t

k − 1

)(rn
t

)ωn−2

≤
( σ

σ − 1

)k−1

tk−1 ek−1

(k − 1)k−1

(rn
t

)ωn−2

≤
( e

σ − 1

)k−1(rn
t

)ωn−1−k
≤ ek−1

since σrn = k − 1, rn
t
≤ 1, k + 1 ≤ ωn, and σ ≥ 2. Using Eq. (4.23), Theorem 4 and

assertion (i) of Proposition 2 as above, we obtain in the same way∣∣∣ δk
(k − 1)!

S[0](k−1)
n,p (z)

∣∣∣ ≤ α
n(1+o(1))
0 .

Since S
(k−1)
n,p (z) = S

[∞](k−1)
n,p (z)− S[0](k−1)

n,p (z), this concludes the proof of Lemma 6.

4.5 Multiplicity estimate

In this section we apply the multiplicity estimate stated in §2.3 to prove Proposition 3
below, which provides sufficiently many linearly independent linear forms to apply Siegel’s
linear independence criterion.

To state Proposition 3, recall that Pi(z) =
∑n

j=0 ci,jz
j for 1 ≤ i ≤ a. Since the integers

ci,j are not all zero, we may consider

b = max{i ∈ {1, . . . , a}, ∃j ∈ {0, . . . , n}, ci,j 6= 0}.
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Then we have 1 ≤ b ≤ a, Pb 6= 0, and Pb+1 = . . . = Pa = 0. Eqns. (4.6), (4.8) and (4.10)

show that Q
[p]
i (z), Q

[p]
k,i(z) and `

(n)
p,k,i all vanish when b + p + 1 ≤ i ≤ a + h: Eq. (4.11)

becomes a linear form in 1 and the numbers (1− (−1)i)Lii(−1) for 1 ≤ i ≤ b+ h, namely

(−2)k−1 δk
(k − 1)!

S(k−1)
n,p (−1) = `

(n)
p,k,0 +

b+h∑
i=1

`
(n)
p,k,i(1− (−1)i)Lii(−1) (4.24)

with 2rn + 2 ≤ k ≤ κn and 0 ≤ p ≤ h. The following multiplicity estimate provides
b+ h+ 1 linearly independent linear forms among them.

Proposition 3. Assume that (h+1)(κ−2r)+ω > a, and that n is sufficiently large. Then
there exist integers k0, . . . , kb+h ∈ {2rn+2, . . . , κn} and p0, . . . , pb+h ∈ {0, . . . , h} such that

the matrix [`
(n)
pj ,kj ,i

]0≤i,j≤b+h is invertible.

In this result, the pairs (pj, kj) are obviously pairwise distinct but the integers pj (and
possibly also kj) are repeated.

Remark 1. Let us comment on the assumption (h + 1)(κ − 2r) + ω > a. To explain
how necessary it is, we claim that if (h + 1)(κ − 2r) + ω < a then our approach cannot
even exclude the case where (1 − (−1)i)Lii(−1) ∈ Q for any 1 ≤ i ≤ a + h. The point
is that the coefficients ci,j are provided by Siegel’s lemma: they are not explicit, and the
only property we can reasonably use in a multiplicity estimate is that Fn(t) = O(t−ωn) as
|t| → ∞ (see Theorem 4). This amounts to ωn + O(1) linear equations in the unknowns
ci,j, where O(1) denotes a term that is bounded uniformly with respect to n. Assuming that
(1 − (−1)i)Lii(−1) ∈ Q for any 1 ≤ i ≤ a + h, we claim that all linear forms (4.24) may
vanish, for any 2rn + 2 ≤ k ≤ κn and any 0 ≤ p ≤ h. Indeed this would mean that the
integers ci,j are solution of a linear system of (h+1)(κ−2r)n+ωn+O(1) linear equations
with rational coefficients (see Eqns. (4.10), (4.6) and (4.4)). If (h + 1)(κ − 2r) + ω < a
and n is sufficiently large, this system has fewer equations that the number of unknowns
ci,j (namely, a(n + 1)): there is a family of integers ci,j, not all zero, that satisfy these
equations. We see no reasonable way to prove that Theorem 4 does not provide this family;
and if it does, all linear forms we are interested in vanish. Therefore we cannot hope to
reach any contradiction if (h+ 1)(κ− 2r) + ω < a.

In this section we prove Proposition 3. To get ready for §4.7 (where the proof of
Theorem 1 is adapted to prove Theorem 2), we let z0 = −1 in this section. The proof
works with any z0 ∈ Q, provided z0 6∈ {0, 1}.

Proposition 3 means that the matrix [`
(n)
p,k,i], with rows indexed by i and columns indexed

by (p, k), has rank equal to b + h + 1. Assume on the contrary that it has rank at most

b + h. Then there exist x0, . . . , xb+h, not all zero, such that
∑b+h

i=0 `
(n)
p,k,ixi = 0 for any

p ∈ {0, . . . , h} and any k ∈ {2rn + 2, . . . , κn}, with x0, . . . , xb+h ∈ Q because the matrix
has coefficients in Q. Using Eq. (4.10) we obtain

b+h∑
i=0

Q
[p]
k,i(z0)xi = 0 for any k ∈ {2rn+ 2, . . . , κn} and any p ∈ {0, . . . , h}. (4.25)
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Throughout the proof of Proposition 3 we fix a small open disk centered at z0, contained
in C \ {0, 1}; all functions of z we consider will be holomorphic on this disk. We define
functions g0(z), . . . , gb+h(z) inductively as follows: g0(z) is the constant function equal to
x0; g1(z) is defined by g1(z0) = x1 and g′1(z) = z+1

z(1−z) ; and for 2 ≤ i ≤ b+ h,

gi(z0) = xi and g′i(z) = −1

z
gi−1(z).

In other words, the functions g0(z), . . . , gb+h(z) obey the same differentiation rules as the
functions 1 and Lii(1/z) − (−1)iLii(z), 1 ≤ i ≤ b + h: the corresponding vectors Y are
solutions of the same underlying differential system Y ′ = A0Y with A0 ∈ Mb+h+1(Q(z)).
Since z0 6∈ {0, 1}, the point z0 is not a singularity of this system.

We consider, for any p ∈ {0, . . . , h}, the function

fp(z) = Tp(z) +
b+h∑
i=0

Q
[p]
i (z)gi(z) (4.26)

where Tp(z) ∈ Q[z]≤2rn is chosen so that fp(z) = O((z − z0)2rn+1) as z → z0 (namely,

−Tp(z) is the Taylor approximation polynomial of degree at most 2rn of
∑b+h

i=0 Q
[p]
i (z)gi(z)

around z0).

Step 1: Vanishing of fp(z) with order at least κn at z0.
We claim that for any p ∈ {0, . . . , h} we have

fp(z) = O((z − z0)κn) as z → z0. (4.27)

Indeed the definition of Q
[p]
k,i(z) in Eq. (4.8), intended to compute derivatives of linear

forms in the functions 1 and Lii(1/z) − (−1)iLii(z), 1 ≤ i ≤ b + h (see Eq. (4.7)), can
also be used for linear forms in g0(z), . . . , gb+h(z) because they satisfy the same rules of
differentiation. Therefore we have

f (k−1)
p (z) = T (k−1)

p (z) +
b+h∑
i=0

Q
[p]
k,i(z)gi(z) for any k ≥ 1.

For any k ∈ {2rn + 2, . . . , κn}, Eq. (4.25) yields f
(k−1)
p (z0) = 0 since gi(z0) = xi and

deg Tp ≤ 2rn. This concludes the proof of Eq. (4.27).

Step 2: Defining new polynomials and functions.
The strategy of the proof of Proposition 3 is to apply Shidlovsky’s lemma. The problem

for now is that the functions fp are not ready for this: the polynomials Q
[p]
i (z) in Eq. (4.26)

should be independent from p. Their dependence in p is rather weak (see Eq. (4.6)), and
we shall overcome this difficulty now (see Eqns. (4.31) and (4.32)).
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We consider the functions %q(z) defined by:

%q(z) =

q∑
p=0

(
q

p

)
(− log z)q−pfp(z) for q ∈ {0, . . . , h}; (4.28)

here and throughout §4.5, log z can be seen formally. We define also y0,q, . . . , yb+h,q for
q ∈ {0, . . . , h} by:

yi,q(z) = 0 for 0 ≤ i ≤ h− q − 1

yi,q(z) = q!
(i+q−h)!

(− log z)i+q−h for h− q ≤ i ≤ h

yi,q(z) =
∑q

p=0

(
q
p

)
(− log z)q−p(−1)p(i− h)pgi−h+p(z) for h+ 1 ≤ i ≤ b+ h

(4.29)

and the following polynomials S0, . . . , Sb+h ∈ Q[z]≤2rn:
Si(z) = 1

(h−i)!Th−i(z) for 0 ≤ i ≤ h

Si(z) = zrnPi−h(z) for h+ 1 ≤ i ≤ b+ h.

(4.30)

Then we have for any q ∈ {0, . . . , h}:

%q(z) =

q∑
p=0

(
q

p

)
(− log z)q−p

(
Tp(z) +

p+b∑
i=p+1

Q
[p]
i (z)gi(z)

)
using Eqns. (4.26) and (4.28), since Q

[p]
i (z) = 0 if i ≤ p or i ≥ b+ p+ 1

=

q∑
p=0

(
q

p

)
(− log z)q−pTp(z) +

q∑
p=0

(
q

p

)
(− log z)q−p

b∑
i=1

zrnPi(z)(−1)p(i)pgi+p(z)

using Eq. (4.6)

=
h∑

i=h−q

1

(h− i)!
Th−i(z)

q!

(i+ q − h)!
(− log z)i+q−h

+
b+h∑
i=h+1

zrnPi−h(z)

q∑
p=0

(
q

p

)
(− log z)q−p(−1)p(i− h)pgi−h+p(z)

so that

%q(z) =
b+h∑
i=0

Si(z)yi,q(z) (4.31)

by definition of Si(z) and yi,q(z). The point in writing %q(z) in this way is that the
polynomials Si(z) are independent from p (or q).

31



Step 3: A differential system independent from p (or q).
The construction in Step 2 has an important feature: the vectors Yq = t(y0,q, . . . , yb+h,q)

are solutions of the same differential system, independent from q. This is what we shall
prove now.

In precise terms, we claim that for any q ∈ {0, . . . , h} we have:
y′i,q(z) = −1

z
yi−1,q(z) for 1 ≤ i ≤ b+ h such that i 6= h+ 1

y′h+1,q(z) = z+1
z(1−z)yh,q(z)

y′0,q(z) = 0.

(4.32)

We shall check this property now by considering successively various ranges for i. If i = 0,
we have y0,q(z) = 0 if q ≤ h − 1 and y0,h(z) = h!. If 1 ≤ i ≤ h − q − 1 we have
yi,q(z) = yi−1,q(z) = 0. If i = h − q then yi,q(z) = q! and yi−1,q(z) = 0. In the case
where h − q + 1 ≤ i ≤ h, the derivative of yi,q(z) = q!

(i+q−h)!
(− log z)i+q−h is equal to

−1
z

q!
(i+q−h−1)!

(− log z)i+q−h−1 = −1
z
yi−1,q(z). When i = h + 1 the derivative of yi,q(z) can

be computed as follows:

y′h+1,q(z) =

q∑
p=0

(
q

p

)
(−1)pp!

(
− 1

z
(q − p)(− log z)q−p−1gp+1(z) + (− log z)q−pg′p+1(z)

)
= −1

z

( q−1∑
p=0

q!

(q − p− 1)!
(−1)p(− log z)q−p−1gp+1(z)

+

q∑
p=1

q!

(q − p)!
(−1)p(− log z)q−pgp(z)

)
+ (− log z)q · z + 1

z(1− z)

since g′p+1(z) = −1
z
gp(z) for p ≥ 1, and g′1(z) = z+1

z(1−z)

=
z + 1

z(1− z)
yh,q(z)

since the two sums inside the bracket are opposite of each other. At last, for h+2 ≤ i ≤ b+h
we have a similar computation:

y′i,q(z) = −1

z

( q−1∑
p=0

q!

(q − p− 1)!
(−1)p

(i− h)p
p!

(− log z)q−p−1gi−h+p(z)

+

q∑
p=0

q!

(q − p)!
(−1)p

(i− h)p
p!

(− log z)q−pgi−h+p−1(z)
)

= −1

z

q∑
p=0

q!

(q − p)!
(−1)p(− log z)q−pgi−h+p−1(z)

(
− (i− h)p−1

(p− 1)!
+

(i− h)p
p!

)
where (i−h)p−1

(p−1)!
should be understood as 0 for p = 0. Now − (i−h)p−1

(p−1)!
+ (i−h)p

p!
= (i−h−1)p

p!
for

any p ≥ 0, so that y′i,q(z) = −1
z
yi−1,q(z). This concludes the proof of the claim.
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Step 4: Linear independence of the functions %0, . . . , %h.
Recall that %q was been defined in Step 1 by Eq. (4.28), for q ∈ {0, . . . , h}. Let us

prove that these functions are linearly independent over C. Let λ0, . . . , λh ∈ C be such
that

∑h
q=0 λq%q(z) = 0. Then Eq. (4.31) yields

b+h∑
i=0

Si(z)
h∑
q=0

λqyi,q(z) = 0. (4.33)

Now let yi(z) =
∑h

q=0 λqyi,q(z) for 0 ≤ i ≤ b + h. Then Eqns. (4.32) yield y′0(z) = 0,

y′h+1(z) = z+1
z(1−z)yh(z), and y′i(z) = −1

z
yi−1(z) for any i ∈ {1, . . . , b+ h} \ {h+ 1}.

Assume that λ0, . . . , λh are not all zero. Let q0 be the maximal index q ∈ {0, . . . , h}
such that λq 6= 0. Then Eqns. (4.29) yield yh−q0(z) =

∑q0
q=0 λqyh−q0,q(z) = λq0q0! 6= 0 and

yi(z) = 0 for 0 ≤ i ≤ h − q0 − 1. We write i0 = h − q0, so that yi0(z) = λq0q0! 6= 0 and
yi(z) = 0 for i < i0.

We shall prove by decreasing induction on α ∈ {i0, . . . , b+ h} that there exist polyno-
mials Uα,i0 , . . . , Uα,α such that

Uα,α is not the zero polynomial and
α∑
i=i0

Uα,i(z)yi(z) = 0 for any z ∈ D, (4.34)

where D is the open disk we have chosen around z0. This is true for α = b + h by
definition of i0, upon letting Ub+h,i(z) = Si(z): recall that Sb+h(z) = zrnPb(z) is not the
zero polynomial (by definition of b at the beginning of §4.5), and that (4.33) holds. Assume
that (4.34) holds for some α ∈ {i0 +1, . . . , b+h} and denote by d the degree of Uα,α. Then
the (d+ 1)-th derivative of the zero function can be written as

zd+1(1− z)d+1(
d

dz
)d+1

( α∑
i=i0

Uα,i(z)yi(z)
)

=
α−1∑
i=i0

Uα−1,i(z)yi(z)

for some polynomials Uα−1,i, using the expression of y′i(z) in terms of yi−1(z) deduced above

from Eqns. (4.32); notice that yα(z) does not appear any more since U
(d+1)
α,α = 0. Moreover,

if α 6= a + 1 then Uα−1,α−1(z) = zd+1(1 − z)d+1(U
(d+1)
α,α−1(z) − U

(d)
α,α

z
(d + 1)) is not the zero

polynomial because U
(d)
α,α is a non-zero constant; if α = h + 1 then y′α(z) = z+1

z(1−z)yα−1(z)

so that −U
(d)
α,α

z
has to be replaced with

(z+1)U
(d)
α,α

z(1−z) in the previous formula. In both cases this

concludes the inductive proof of (4.34) for all α ∈ {i0, . . . , b+ h}.
Now for α = i0 we obtain Ui0,i0(z)yi0(z) = 0 for any z ∈ D, where Ui0,i0 is not the zero

polynomial and yi0(z) = λq0q0! 6= 0. This contradiction concludes the proof of the claim.

Step 5: Defining linearly independent functions %̃1, . . . , %̃b.
Consider, for β ∈ {1, . . . , b}, the functions ỹi,β defined by{

ỹi,β(z) = 0 for 0 ≤ i ≤ h+ β − 1

ỹi,β(z) = (− log z)i−h−β

(i−h−β)!
for h+ β ≤ i ≤ b+ h

(4.35)
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They satisfy the differential system (4.32); we define

%̃β(z) =
b+h∑
i=0

Si(z)ỹi,β(z) =
b+h∑
i=h+β

zrnPi−h(z)
(− log z)i−h−β

(i− h− β)!
=

b∑
i=β

zrnPi(z)
(− log z)i−β

(i− β)!
.

(4.36)
Let us prove that the functions %̃1, . . . , %̃b are linearly independent over C. Let λ1, . . . ,
λb be complex numbers, not all zero, such that

∑b
β=1 λβ %̃β(z) = 0. Denote by β0 the least

index β such that λβ 6= 0. Then we have the following C[z]-linear relation between powers
of log z:

b∑
β=β0

b∑
i=β

λβz
rnPi(z)

(− log z)i−β

(i− β)!
= 0.

Since log z is transcendental over C[z], the coefficient of (log z)b−β0 has to be zero: λβ0Pb(z) =
0. Since λβ0 6= 0 and Pb is not the zero polynomial (by definition of b, see the beginning
of §4.5), this is a contradiction. This concludes the proof that %̃1, . . . , %̃b are linearly
independent over C.

Step 6: Application of Shidlovsky’s lemma.
Let us apply the general version of Shidlovsky’s lemma stated as Theorem 3 in §2.3.

We let N = b + h + 1 and consider the matrix A ∈ MN(Q(z)) that corresponds to the
differential system (4.32). The polynomials S0, . . . , Sb+h are defined by Eq. (4.30); we
have degSi ≤ m with m = 2rn (recall that r ≥ 1, deg Tp ≤ 2rn and degPi ≤ n). We let
Σ = {0, 1,∞, z0}; recall that z0 6∈ {0, 1}. Let us start with the vanishing conditions at z0.

Eq. (4.31) readsR(Yq)(z) = %q(z) for any q ∈ {0, . . . , h}, where Yq = t(y0,q(z), . . . , yb+h,q(z))
is a solution of Y ′ = AY . The functions yi,q(z) are analytic at z0 (since z0 6∈ {0, 1}), and
the remainders R(Yq)(z) = %q(z), for q ∈ Jz0 = {0, . . . , h}, are linearly independent over C
(as proved in Step 4). Moreover we have proved in Step 1 that fp(z) = O((z − z0)κn) as
z → z0, so that R(Yq)(z) = O((z − z0)κn) for any q using Eq. (4.28). Therefore we have∑

j∈Jz0

ordz0(R(Yj)) ≥ (h+ 1)κn. (4.37)

Let us consider now the points 0 and∞. We let J0 = J∞ = {1, . . . , b}, and for β in this

set we let Ỹβ = t(ỹ0,β(z), . . . , ỹb+h,β(z)) where the functions ỹi,β(z) have been defined in

Step 5. Then R(Ỹβ)(z) = %̃β(z) is given by Eq. (4.36); as proved in Step 5, the functions

R(Ỹ1), . . . , R(Ỹb) are C-linearly independent. Recall from Eq. (4.30) that Si(z) = O(zrn)
as z → 0, and degSi ≤ (r+ 1)n, for any i ∈ {h+ 1, . . . , b+h}. Therefore Eqns. (4.35) and
(4.36) yield %̃β(z) = O(zrn(log z)b−1) as z → 0, and %̃β(z) = O((1/z)−(r+1)n(log(1/z))b−1)
as z →∞, so that ∑

σ∈{0,∞}

∑
β∈Jσ

ordσ(R(Ỹβ)) ≥ brn− b(r + 1)n = −bn; (4.38)

34



recall that logarithmic factors have no influence on the order of vanishing, e.g. ord0(ze(log z)i) =
Re(e) for e ∈ C and i ∈ N.

At last, we let J1 = 1 and notice that R(Ỹ1)(z) = %̃1(z) defined by Eq. (4.36) is equal
to zrnRn(z), where Rn(z) is defined in Eq. (3.22) (recall that Pb+1(z) = . . . = Pa(z) = 0).
The proof of Theorem 4 (namely (iii) in §3.5) shows that Rn(z) = O((z−1)ωn−1) as z → 1;
therefore we have

ord1(R(Y1)) ≥ ωn− 1 (4.39)

where R(Y1) is not the zero function (see Step 5).
Combining Eqns. (4.37), (4.38) and (4.39), Theorem 3 yields(

(h+ 1)κ− b+ ω
)
n− 1 ≤ (2rn+ 1)(µ− b) + c1

where c1 depends only on b, h, z0 (but not on n), and µ is the minimal order of a non-
zero differential operator L such that L(R(Y )) = 0 for any solution Y of the differential
system Y ′ = AY . Now as in [26] we have µ ≤ b + h + 1. Since n is assumed to be
sufficiently large (in terms of b, h, ω, r, z0 and κ, and also therefore in terms of c1), we
obtain (h+ 1)(κ− 2r) + ω ≤ b. Since b ≤ a, ω > 0 and (h+ 1)(κ− 2r) + ω > a, this is a
contradiction.

4.6 End of the proof

Let a be sufficiently large. In Theorem 1 the numerical constant 0.21 can be replaced
(as the proof will show) by a slightly larger real number. Therefore in the proof we may
assume that a is a multiple of 100. Then we choose r = 3.9, κ = 10.58, ω = 11.58, Ω ∈ Q
sufficiently close to 3.9

√
a log a, and h = 0.36 a ∈ N, so that (h+ 1)(κ− 2r) +ω > a. Here

and below all numerical constants are rounded with precision 0.01.
We consider z0 = −1 and choose q = 1, so that qz0 ∈ Z. We denote by N the set of all

sufficiently large integers n such that rn, κn, ωn and Ωn are integers. For any n ∈ N we
consider the integers ci,j provided by Theorem 4, and we define b as in §4.5, namely

b = max{i ∈ {1, . . . , a}, ∃j ∈ {0, . . . , n}, ci,j 6= 0}.

Proposition 3 provides integers k0, . . . , kb+h ∈ {2rn+2, . . . , κn} and p0, . . . , pb+h ∈ {0, . . . , h}
such that the matrix [`

(n)
pj ,kj ,i

]0≤i,j≤b+h is invertible. Lemma 5 asserts that `
(n)
pj ,kj ,i

∈ Z for
any i, j, and

`
(n)
pj ,kj ,i

≤ βn(1+o(1)) with β = χ
(

8e3(2a+ 1)
)κ
· 2κ+r+1

where χ is defined by Eq. (3.2) in Theorem 4, namely

χ = exp
(ω log 2 + 3ω2 + ω2 log(a+ 1) + 1

2
Ω2 log r

a− ω

)
.

Now we have (using Eq. (4.11) and the definition of b, see the beginning of §4.5)

`
(n)
pj ,kj ,0

+
b+h∑
i=1

`
(n)
pj ,kj ,i

(
1− (−1)i

)
Lii(−1) = (−2)kj−1 δkj

(kj − 1)!
S(kj−1)
n,p (−1).

35



Since kj ≤ κn for any j, we may apply Lemma 6 and deduce that

∣∣∣`(n)
pj ,kj ,0

+
b+h∑
i=1

`
(n)
pj ,kj ,i

(
1− (−1)i

)
Lii(−1)

∣∣∣ ≤ αn(1+o(1)) with α = 2κα0 = χr−Ω(2e4(2a+ 1))κ.

Finally, Siegel’s linear independence criterion (see §2.2) applies to the `
(n)
pj ,kj ,i

for n ∈ N ,

with Qn = βn and τ = − logα
log β

(so that Q−τn = αn), and yields

dimQ SpanQ({1, log 2} ∪ {ζ(i), 3 ≤ i ≤ a+ h, i odd}) ≥ 1− logα

log β
. (4.40)

Now recall that a is large enough, r = 3.9, κ = 10.58, ω = 11.58, Ω ∈ Q is close to
3.9
√
a log a, and h = 0.36 a. As a→∞ the formulas above yield2

logχ ∼ Ω2 log r

2a
∼ 10.35 log a,

log β ∼ logχ+ κ log a ∼ 20.93 log a, logα ∼ −Ω log r ∼ −5.31
√
a log a

so that

1− logα

log β
∼ 0.25

√
a

log a
.

Now we have
√

a
log a
∼ 0.86

√
a+h

log(a+h)
so that

1− logα

log β
≥ 1 + 0.21

√
a+ h

log(a+ h)

provided a is large enough; here the additional 1 in the right hand side accounts for the
number log 2 in the left hand side of (4.40), that we want to get rid of. Taking s = a + h
this concludes the proof of Theorem 1.

Remark 2. It follows from the computations above that, as s = a+ h tends to ∞,

logα ∼ −4.55
√
s log s and log β ∼ 20.93 log s.

Remark 3. The proof allows one to compute effectively an integer s0 such that the con-
clusion of Theorem 1 holds for any s ≥ s0.

2In the first estimate, the real number 10.35 should be understood as an abbreviation for 3.92 log(3.9)
2 =

10.3502 . . .. The same remark applies to the following estimates, and in similar situations below and in
§4.7.
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4.7 The case of polylogarithms: proof of Theorem 2

To prove Theorem 2, we follow the proof of Theorem 1 except that we consider S
[∞]
n,p (z)

(defined in Eq. (4.12)) instead of Sn,p(z). Therefore Eq. (4.9) becomes

S[∞]
n,p

(k−1)
(z) = Q

[p]
k,0(z) +

a+h∑
i=1

Q
[p]
k,i(z)Lii(1/z) for any k ≥ (r + 1)n+ 1. (4.41)

The point here is that (with the notation of the proof of Lemma 4 in §4.2) we have

deg V
[∞]
p ≤ (r+1)n−1 and deg V

[0]
p ≤ 2rn. In the proof of Theorem 1 we had to restrict to

integers k ≥ 2rn+ 2 so that (V
[∞]
p − V [0]

p )(k−1) = 0, whereas to prove Theorem 2 assuming

k ≥ (r + 1)n+ 1 is enough to ensure that V
[∞]
p

(k−1)
= 0.

Let z0 ∈ Q be such that |z0| ≥ 1 and z0 6= 1; denote by q ∈ N∗ be a denominator
of z0, i.e. such that qz0 ∈ OQ(z0) where OQ(z0) is the ring of integers of Q(z0). For any
k ≥ (r + 1)n+ 1 we let

`
(n)
p,k,i(z0) = q(r+1)n+k−1zk−1

0 (1− z0)k−1 δk
(k − 1)!

Q
[p]
k,i(z0) for 0 ≤ i ≤ a+ h

where δk is given by Proposition 2 in §3.2 with a replaced by a + h and n by (r + 1)n;
in the setting of §3.2 we take α1 = 0 and α0 = 1 in the recurrence relation (3.3), to
fit the differential system satisfied by the functions 1 and Lii(1/z). Then following the
proof of Lemma 5 (with only one difference: for i = 0, due to the value of (α0, α1)) yields

`
(n)
p,k,i(z0) ∈ OQ(z0) and

`
(n)
p,k,i(z0) ≤ β

n(1+o(1))
1 with β1 = χ

(
8e3(2a+ 1)

)κ
·
(
qmax(1, z0 , 1− z0 )

)κ+r+1

provided k ≤ κn and κ ≥ r + 1. Moreover Eq. (4.41) yields

q(r+1)n+k−1zk−1
0 (1− z0)k−1 δk

(k − 1)!
S[∞]
n,p

(k−1)
(z0) = `

(n)
p,k,0(z0) +

a+h∑
i=1

`
(n)
p,k,i(z0)Lii(1/z0)

for any k ≥ (r + 1)n+ 1. Following the proof of Lemma 6 we deduce that∣∣∣q(r+1)n+k−1zk−1
0 (1− z0)k−1 δk

(k − 1)!
S[∞]
n,p

(k−1)
(z0)

∣∣∣ ≤ α
n(1+o(1))
1

with
α1 = χr−Ωqr+1(e4(2a+ 1)q|z0(1− z0)|)κ.

Then we adapt Proposition 3, assuming that (h + 1)(κ − r − 1) + ω > a and considering
integers k such that (r + 1)n + 1 ≤ k ≤ κn. This enables us to apply Siegel’s linear
independence criterion and deduce that

dimQ(z0) SpanQ(z0)({1} ∪ {Lii(1/z0), 1 ≤ i ≤ a+ h}) ≥ 1

[Q(z0) : Q]

(
1− logα1

log β1

)
.
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Our choice of parameters is the same as in §4.6, except for numerical constants. The only
difference is that the assumptions κ > 2r and (h+ 1)(κ− 2r) +ω > a in §4.6 are weakened
here to κ > r+1 and (h+1)(κ−r−1)+ω > a. We choose r = 5.3, κ = 8.8343, ω = 9.8343,
Ω ∈ Q sufficiently close to 3.3

√
a log a, and h = 0.3946 a ∈ N (assuming that 104 divides

a), so that (h+ 1)(κ− r − 1) + ω > a. As in §4.6 we have, as a→∞:

logχ ∼ 9.0807 log a, log β1 ∼ 17.915 log a, logα1 ∼ −5.5034
√
a log a

so that

1− logα1

log β1

≥ 0.26

√
a+ h

log(a+ h)

provided a is large enough. This concludes the proof of Theorem 2.

Remark 4. If z 6∈ R then we have [K∞ : R] = 2 in the notation of Proposition 1, so that
the constant 0.26 may be replaced with 0.52 in Theorem 2.
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