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Abstract

Let f be an E-function (in Siegel’s sense) not of the form eβz, β ∈ Q, and let log
denote any fixed determination of the complex logarithm. We first prove that there
exists a finite set S(f) such that for all ξ ∈ Q \ S(f), log(f(ξ)) is a transcendental
number. We then quantify this result when f is an E-function in the strict sense with
rational coefficients, by proving an irrationality measure of ln(f(ξ)) when ξ ∈ Q\S(f)
and f(ξ) > 0. This measure implies that ln(f(ξ)) is not an ultra-Liouville number,
as defined by Marques and Moreira. The proof of our first result, which is in fact
more general, uses in particular a recent theorem of Delaygue. The proof of the
second result, which is independent of the first one, is a consequence of a new linear
independence measure for values of linearly independent E-functions in the strict
sense with rational coefficients, where emphasis is put on other parameters than on
the height, contrary to the case in Shidlovskii’s classical measure for instance.

1 Introduction

In this paper, we pursue our study of the properties of the values of E-functions at algebraic
points, and more specifically of the logarithms of these values. We recall the definition of
E-functions. As usual, we embed Q in C. A power series F (z) =

∑∞
n=0 anz

n/n! ∈ Q[[z]] is
said to be a strict E-function if

(i) F (z) is solution of a non-zero linear differential equation with coefficients in Q(z).

(ii) There exists C1 > 0 such that all Galois conjugates of an have modulus ≤ Cn+1
1 ,

for all n ≥ 0.

(iii) There exists C2 > 0 and a sequence of positive integers dn, with dn ≤ Cn+1
2 , such

that dnam are algebraic integers for all m ≤ n.
In fact, E-functions have been defined by Siegel [19] in 1929 in a more general way, ie the
two bounds (· · · ) ≤ Cn+1

i are replaced by: for all ε > 0, (· · · ) ≤ n!ε for all n ≥ N(ε). It
is believed that an E-function in Siegel’s sense is automatically a strict E-function; see [2,
p. 715] for a discussion. Unless otherwise specified, E-functions below will be understood
in Siegel’s sense. Note that if an ∈ Q, (ii) and (iii) read |an| ≤ Cn+1 and dnam ∈ Z; in (i),
there exists such a differential equation with coefficients in Q(z), and the normalized one
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of minimal order also has coefficients in Q(z). An E-function is either a polynomial or a
transcendental function.

Let f and g be two E-functions. If f is transcendental and g is a polynomial, then
f(Q) ∩ g(Q) is finite by [1]. If f and g are polynomials, two cases occur: if one of them is
a constant, f(Q) ∩ g(Q) is finite, while if none is a constant, f(Q) ∩ g(Q) is infinite. Our
first result completes the picture; it shows that a transcendental E-function is determined
by the set of values it takes at algebraic numbers.

Theorem 1. Let f, g be two transcendental E-functions such that f(z) is not of the form

g(βz), β ∈ Q. Then {(ξ, η) ∈ Q
2
: f(ξ) = g(η)} is a finite set. Equivalently, f(Q) ∩ g(Q)

is a finite set.

The equivalence is a consequence of Proposition 2 proved in §2. The assumption in
Theorem 1 is obviously also necessary to obtain finiteness when f and g are transcendental.

Applying Theorem 1 to f(z) transcendental and g(z) = ez, we deduce that the set

{(ξ, η) ∈ Q
2
: f(ξ) = eη} is finite when f(z) 6= eβz for all β ∈ Q. As {(ξ, η) ∈ Q

2
: f(ξ) =

eη} is also finite if f ∈ Q[z] by the Hermite-Lindemann Theorem, we obtain the following
result.

Corollary 1. Let f be an E-function not of the form eβz, β ∈ Q, and let log denote any

fixed determination of the complex logarithm. There exists a finite set S(f) such that for

all ξ ∈ Q \ S(f), log(f(ξ)) is a transcendental number.

As the proof shows, given ξ ∈ Q, there exists an algebraic determination of the loga-
rithm of f(ξ) if, and only if, either f(ξ) = 1 or the E-function f(z)− exp(z/̺) vanishes at
ξ for some ̺ in the finite set S(f) considered in §2.1, which determines S(f).

This corollary applies to any E-function with a minimal differential equation of order ≥
2, for example to Bessel’s function J0(z) :=

∑∞
n=0(−1)n(z/2)2n/n!2 whose minimal equation

is zy′′(z) + y′(z) + zy(z) = 0. But the property {(ξ, η) ∈ Q
2
: J0(ξ) = eη} = {(0, 0)} is

not a new result as it is a consequence of the much more general [18, p. 219, Theorem 4]:
for any ξ, η ∈ Q

∗
, the numbers J0(ξ), J

′
0(ξ) and eη are algebraically independent over Q.

Other examples of a similar flavor involving generalized hypergeometric series pFq[z
q−p+1]

with rational parameters satisfying certain arithmetic conditions can be deduced from the
very general algebraic independence result in [8, p. 300, Corollary 4.6]. However, these
conditions do not exhaust all such series with rational parameters. To the best of our
knowledge, Corollary 1 is new for f(z) := pFq[z

q−p+1] with 1 ≤ p ≤ q, 1/2 as a lower
parameter and no upper parameter equal to 1/2 mod Z, because neither assumption A)
nor assumption B) on page 280 of [8] is satisfied, for instance 1F1[1/3; 1/2; z].

Corollary 1 can be quantified in the rational and strict case. Our method to prove
Theorem 2 is independent though of that of Theorem 1 (based on a recent result of Delaygue
[12]), as it uses a new linear independence measure for values of E-functions (Proposition 2
stated in §3.1); see below for more details. When x is a positive real number, we denote
by ln(x) its napierian logarithm.
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Theorem 2. Let f ∈ Q[[z]] be a strict E-function, and ξ ∈ Q∗ be such that f(ξ) > 0 and

ln(f(ξ)) 6∈ Q. Then there exist c, d > 0 such that, for all (a, b) ∈ Z× N∗,

∣∣∣ln(f(ξ))−
a

b

∣∣∣ ≥
1

exp(cbd)
. (1.1)

In particular, this result implies that ln(f(ξ)) is not an ultra-Liouville number (as
defined in [17]).

Theorem 2 applies to any ξ ∈ Q∗ such that J0(ξ) > 0 because ln(J0(ξ)) is then a tran-
scendental number by the above mentioned result; the irrationality measure for ln(J0(ξ))
is new to our knowledge. Note that Theorem 2 can also be applied to any f ∈ Q[z] \ {0},
but in this case the lower bound can be much improved because it is known that for any
α ∈ Q>0, α 6= 1, the number ln(α) is an irrational number and not a Liouville number; see
[15, p. 150, Satz 5]. If f(ξ) < 0, the same result holds for −f(ξ) instead of f(ξ).

The constants c, d in (1.1) depend on f and ξ; they are effective but we did not try to
compute them (this could be done in principle) because it is likely that the lower bound in
(1.1) is not optimal and could be replaced by c/bd for some other effective constants c, d > 0,
proving that ln(f(ξ)) is not a Liouville number. It does not seem that this improvement
could be obtained with our method, which relies on the following observation:

ln(f(ξ)) is close to a/b if, and only if, f(ξ)− exp(a/b) is small.

Considering the latter as a linear combination (with coefficients 1 and −1) of values of
E-functions, one may try to apply linear independence measures due to Shidlovskii [18].
A first problem is that such measures are optimized for linear forms with very large co-
efficients, which is not the case here. But another more important problem arises: the
constants in such measures depend (usually in a non-explicit way) on the functions in-
volved, and in our setting exp(az/b) is amongst them. For this reason we need a linear
independence measure in which the dependencies of the constants in terms of the functions
are explicit. We prove such a result, namely Proposition 3, in §3.

We note that using instead Brownawell’s more general algebraic independence mea-
sure (1) in [11] (and making explicit in it the dependence on the parameters we need, as
with Shidlovskii’s measure), we only found a lower bound of the form 1/exp(exp(cbd)) on
the right-hand side of (1.1), provided that f, f ′, . . . , f (η−1) are algebraically independent
(where η is the minimal order of a non-trivial differential equation satisfied by a strict
E-function f ∈ Q[[z]]).

The structure of this paper is the following. In Section 2 we prove Theorem 1 using
Delaygue’s analogue of the Lindemann-Weierstrass theorem. Then we state and prove
in Section 3 the linear independence measure that we shall use in Section 4 to prove
Theorem 2.

1Brownawell’s measure is slightly ineffective because of the ineffectivity of Shidlovskii’s constant n0,
that will also be used in the present paper. As we shall explain, n0 can now be bounded effectively,
removing any form of ineffectivity in Shidlovskii’s and Brownawell’s measures.
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2 Proof of Theorem 1

2.1 Delaygue’s analogue of the Lindemann-Weierstrass theorem

Given an E-function f(z) =
∑∞

n=0
an
n!
zn, let S(f) ⊂ Q

∗
denote the set of finite singularities

of the G-function
∑∞

n=0 anz
n.

We shall derive Theorem 1 from the following special case of Delaygue’s analogue of
the linear version of the Lindemann-Weierstrass theorem (see [12, Corollary 2.2]).

Proposition 1. Let f1, f2 be E-functions and z1, z2 be non-zero algebraic numbers such

that f1(z1) = f2(z2) is transcendental. Then z1/z2 can be written as ̺1/̺2 with ̺1 ∈ S(f1)
and ̺2 ∈ S(f2).

The important point for us, in the conclusion of Proposition 1, is that z1/z2 belongs to
a finite set determined by f1 and f2.

Remark 1. Proposition 1 is proved in [12] for E-functions in the strict sense. However,
it also holds for E-functions in the large sense (and so does the general result [12, The-
orem 2.1]) because only the following properties are used in the proof, and they hold for
G-functions and E-functions in the large sense by the results proved in [4, 14]:

(1) The point at infinity is regular or a regular singularity of any G-function, because it
is solution of a fuchsian differential operator.

(2) A G-function without finite singularity is a polynomial. Indeed such a function is
entire, and has moderate growth at infinity by (1). By Liouville’s theorem, it is a
polynomial.

(3) Any E-function is annihilated by an E-operator, without non-zero finite singularity.

(4) Beukers’ refined version of the Siegel-Shidlovskii theorem (i.e. [9, Theorem 1.3]) holds.

2.2 Application to Theorem 1

We first prove

Proposition 2. Let f be a non-constant E-function and χ ∈ C. Then the set {α ∈ Q :
f(α) = χ} is finite.

Proof of Proposition 2. If χ ∈ Q, this is a consequence of the main result in [1]. Otherwise,
let us fix α0 ∈ Q such that f(α0) = χ; if there is no such α0, the corresponding set is empty
and therefore finite. For any α ∈ Q such that f(α) = χ, Proposition 1 implies that α/α0

belongs to a finite set determined by f . This concludes the proof of Proposition 2.
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Proof of Theorem 1. First of all, let us consider the set of pairs (ξ, η) ∈ Q
2
such that

f(ξ) = g(η) is algebraic. Recall from [1] that a transcendental E-function takes algebraic
values at only finitely many algebraic points. Therefore each of ξ, η belongs to a finite set
determined by f and g: so does the pair (ξ, η).

Now let us move to pairs (ξ, η) ∈ Q
2
such that f(ξ) = g(η) is transcendental; this implies

ξ, η 6= 0. Then Proposition 1 provides a finite set (determined by f and g) that contains
all quotients η/ξ. For each value β of the quotient, the E-function f(z) − g(βz) vanishes
at ξ. Since this E-function is not identically zero by hypothesis, ξ belongs to a finite set

determined by β. So does η, and this concludes the proof that {(ξ, η) ∈ Q
2
: f(ξ) = g(η)}

is a finite set. This is equivalent to the fact that I := f(Q) ∩ g(Q) is a finite set. Indeed,

if {(ξ, η) ∈ Q
2
: f(ξ) = g(η)} is finite, then obviously I is finite. Conversely, if I is finite,

then for any χ ∈ I, there are only finitely many (ξ, η) ∈ Q
2
such that f(ξ) = χ = g(η) by

Proposition 2. This completes the proof of Theorem 1.

3 An explicit version of Shidlovskii’s linear indepen-

dence measure

In this section, we prove a linear independence measure of values of E-functions, namely
Proposition 3 stated in §3.1. The important point for our application to Theorem 2 is that
when the last function is exp(βz), the constants are controlled in terms of β: this special
case is studied in Corollary 2.

The structure of proof is similar to that of Shidlovskii’s measure, so we recall it in §3.2.
We proceed to the proof in §3.3.

3.1 Statement of the measure

Assume Y := t(f1, . . . , fm) is a vector of strict E-functions inQ[[z]], solution of a differential
system Y ′ = AY with A ∈ Mm(Q(z)); assume moreover that f1, . . . , fm are Q(z)-linearly
independent. Let T ∈ Z[z]\{0} be a common denominator of minimal degree of the entries
of A := (Ai,j)1≤i,j≤m. Let ξ ∈ Q be such that ξT (ξ) 6= 0. We consider any integer H ≥ 1
and any vector (a1, . . . , am) ∈ Zm \ {0} such that max |ak| ≤ H .

As a special case K = Q of [18, p. 357, Theorem 1], Shidlovskii proved that for any
ε > 0, there exists an ineffective constant c > 0 such that, in the above situation, we have

∣∣∣∣
m∑

j=1

ajfj(ξ)

∣∣∣∣ >
c

Hm−1+ε
. (3.1)

This constant c is now effective (because the integer n0 in Shidlovskii’s multiplicity estimate
can be bounded, see below). However it depends on f1, . . . , fm in a way which is not made
explicit by Shidlovskii. This is a problem to prove Theorem 2, since in our setting fm will
be exp(βz) and we need constants that we control explicitly in terms of β.
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We shall prove a linear independence measure, namely Proposition 3, in which the
dependencies of the constants on certain parameters important for us are made explicit,
unlike the classical measures in the same context. With this aim in mind, we define as in
[18, p. 93]:

p := min
1≤j≤m

ordz=0fj(z) and q := max(deg T,max
i,j

deg(TAi,j)). (3.2)

Since the fi =
∑∞

k=0
ϕk,i

k!
zk, i = 1, . . . , m, are E-functions in the strict sense, there

exists a constant C > 0 such |ϕk,i| ≤ Ck+1 for all k ≥ 0, i ∈ {1, . . . , m}, and there exists
a constant D > 0 such the common denominator dk,i of ϕ0,i, . . . , ϕk,i satisfies dk,i ≤ Dk+1

for all k ≥ 0, i ∈ {1, . . . , m}.
We also denote by E the maximum modulus of the coefficients of the polynomial T (z)

and of all the polynomials T (z)Ai,j(z).
We denote by n0 ≥ 0 the constant in Shidlovskii’s zero estimate. Shidlovskii’s proof of

the existence of n0 is not effective (see the proof of [18, p. 93, Lemma 8] and the definition
of n0 in [18, p. 99, Eq. (83)]). However, following the works of Bertrand, Beukers, Chirskii
and Yebbou [5, 7], it is now known that the integer n0 can be bounded above using
explicit quantities that depend on the matrix A of the differential system. Certain of
these quantities are themselves bounded by means of the generalized local exponents at
the singularities of A and the point at infinity (for their definition, see [6, Appendix] or
[10, §2.3.4]). More precisely, from the discussion in [7, p. 252] we have that

n0 ≤ 2(q + 1)m2(E + (q + 1)m+ 1), (3.3)

where E is the maximum of all the modulus of the generalized local exponents at the infinite
point and at the finite singularities of A.

At last we denote by κ any real number such that

0 < κ ≤ max
1≤j≤m

|fj(ξ)|.

Proposition 3. There exists an effective constant c, which depends on m, p, q, ξ, T (z), κ
and polynomially on C, D and E, such that if H ≥ max(3, nn0

0 ) then

∣∣∣∣
m∑

j=1

ajfj(ξ)

∣∣∣∣ >
1

Hc
.

Using Eq. (3.3), the lower bound on H can be replaced by an explicit lower bound in
terms of m, q, E .

The important point in Proposition 3 is that c depends on f1, . . . , fm only through a
given set of parameters, and also that the dependence on C, D, E is polynomial.

The constant c is effective because the only potential source of ineffectivity of the proof,
i.e. n0, is now known to be effective. In principle it would be possible to make c completely
explicit, but this would make the statement of our results much more complicated for no
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immediate application better than those we present here. Moreover such explicit formulas
are not sharp in general.

In this proposition, and throughout this section, the polynomial dependence of c with
respect to C,D,E means that there exists a polynomial P ∈ R[X, Y, Z] with non-negative
coefficients and degree depending only on m, p, q, ξ, T (z), κ, such that one may choose
c = P (C,D,E).

To prove Theorem 2 we shall be interested in the following situation:

fm(z) = exp(βz) and f1, . . . , fm−1 are independent from β. (3.4)

In precise terms, when we refer to (3.4) we shall assume that Z = t(f1, . . . , fm−1) is a vector
of E-functions with rational coefficients, solution of a differential system Z ′ = BZ with
B ∈ Mm−1(Q(z)). Then Y = t(f1, . . . , fm) is solution of Y ′ = AY where A ∈ Mm(Q(z)) is
blockwise diagonal, with diagonal blocks B and β. The important point is that f1, . . . , fm−1

and B are independent from β. In this setting we have the following special case of
Proposition 3. For a given rational number r 6= 0, we set den(r) the positive denominator
of r written in reduced form.

Corollary 2. In the situation (3.4), there exists an effective constant c, which depends

only on f1, . . . , fm−1, ξ and polynomially on |β| and den(β), such that if H ≥ max(3, nn0

0 )
then ∣∣∣∣

m∑

j=1

ajfj(ξ)

∣∣∣∣ >
1

Hc
.

Moreover the assumption on H may be stated as a lower bound in terms of f1, . . . , fm−1

only, independently of β.

Proof. In the setting of (3.4), recall that Z = t(f1, . . . , fm−1) is a solution of Z ′ = BZ
with B ∈ Mm−1(Q(z)), and Y = t(f1, . . . , fm) of Y ′ = AY . The matrix A ∈ Mm(Q(z))
is blockwise diagonal, with diagonal blocks B and β. Therefore T (z) is independent of
β; so are m, p, q, and also E because the function exp(βz) has null generalized exponents
everywhere. Hence, Eq. (3.3) shows that n0 can be bounded independently of β.

Moreover at least one of f1, . . . , fm−1 does not vanish at ξ, because ξ is not a singularity
of the differential system Z ′ = BZ (indeed it is not a pole of a coefficient of B, because
all these coefficients are coefficients of A); of course the functions f1, . . . , fm−1 are not
identically zero because they are linearly independent over Q(z). Therefore we may choose
κ = max1≤j≤m−1 |fj(ξ)|.

Since Am,m = β, we may take C = max(C̃, |β|), D = den(β)D̃ and E ≤ |β|Ẽ, where

C̃, D̃ and Ẽ are quantities analogous to C, D and E when we consider only f1, . . . , fm−1.
Therefore C, D, E depend linearly on |β| and den(β). Applying Proposition 3 concludes
the proof of Corollary 2.
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Remark 2. In [18, p. 421, Theorem 2], Shidlovskii also proved for E-functions in the strict
sense an effective (2) refinement of (3.1) in which he replaced the exponent m−1+ε by m−
1+γm7/2(ln ln(H))−1/2 where ln ln(H) ≥ γ2max(m2, ln(n0)) and γ is a constant. However
the dependence of γ with respect to f1, . . . , fm is unknown while to prove Theorem 2, it
is necessary to know how the constants depend on β in the setting of (3.4).

3.2 Shidlovskii’s measure (3.1): sketch of proof

We first recall the statement of [18, p. 107, Lemma 14] when the number field K = Q.
Assume Y := t(f1, . . . , fm) is a vector of E-functions in Siegel’s sense (3) in Q[[z]] solution
of a differential system Y ′ = AY with A ∈ Mm(Q(z)). Let n ∈ N and ε1 ∈ (0, 1

2m−1
); the

reason of this technical assumption on ε1 will appear in §3.3.3. There exist P1, . . . , Pm ∈
Z[z] of degree at most n and not all zero such that:

bi,ν = O(n(1+ε1)n), i = 1, . . . , m, ν = 0, . . . , n,

where bi,ν is the coefficient of zν in Pi(z) and the symbol O is uniform in i and ν, and such
that the function

R :=
m∑

i=1

Pi(z)fi(z) =
∞∑

ν=τ

aν
ν!
zν

satisfies ordz=0R(z) ≥ τ with

τ = m(n + 1)− ⌊ε1n⌋ − 1,

and aν = νε1nO(nn) for ν ≥ τ .

In the same setting, define

Rk :=

m∑

i=1

Pk,i(z)fi(z)

with Pk,i ∈ Z[z] by R1 = R and Rk+1 = T (z)R′
k(z); recall that T ∈ Z[z] \ {0} is a common

denominator of minimal degree of the entries of A.
From now on, we assume that f1, . . . , fm are Q(z)-linearly independent, and that n ≥ n0

where n0 was introduced in §3.1.
Then by Lemma 10 of [18, p. 101], for any ξ ∈ C such ξT (ξ) 6= 0, the linear forms

Rk(ξ), k = 1, . . . , m+ t1, include m linearly independent forms, where

t1 := q
(m− 1)m

2
+ ⌊ε1n⌋ + p; (3.5)

2Again, strictly speaking, it was ineffective when Shidlovskii proved it because of the presence of n0,
but it is now effective.

3However, we shall make this proof explicit only for E-functions in the strict sense, otherwise it would
be difficult to obtain a good control on the quantities we are interested in, as for instance the parameters
C and D do not exist for E-functions in Siegel’s sense.
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we recall from §3.1 (and [18, p. 93]) that

p := min
1≤i≤m

ordz=0fi(z) and q := max(deg T,max
i,j

deg(TAi,j))

with A := (Ai,j)1≤i,j≤m. Now Lemma 15 in [18, p. 110] says the following. Suppose that
ε1 = ε/(6(m+ 1)) for some ε ∈ (0, 1). Then for any ξ ∈ Q such that ξT (ξ) 6= 0, we have

Rk(ξ) = O(n−(m−1−ε/2)n), k ≤ m+ t1,

and
Pk,i(ξ) = O(n(1+ε/2)n), k ≤ m+ t1, i = 1, . . . , m.

From these estimates, Shidlovskii deduces [18, p. 357, Theorem 1], ie (3.1) for E-functions
in Siegel’s sense.

With Shidlovskii’s original method, the constant c in (3.1) was ineffective because of
the ineffectivity of the integer n0. As we have explained before, this is no longer the case.
For our purpose, we need a different version of the measure (3.1), with a control of the
dependencies of the constants on the parameters.

3.3 Proof of Proposition 3

In this section we shall prove Proposition 3.
In all what follows, as in §3.1, when we say that a constant c depends polynomially on a

parameter k we mean that there exists a polynomial p with positive coefficients such that
|c| ≤ p(|k|). The polynomial p, including its degree, may depend on all other parameters
c depends on.

We shall follow now the sketch of proof given in the previous section; at each step we
shall make all bounds explicit (to be precise, we shall make the dependencies in terms of
the parameters explicit).

As in §3.1 we consider a vector Y = t(f1, . . . , fm) of strict E-functions in Q[[z]], solution
of a differential system Y ′ = AY with A ∈ Mm(Q(z)). We assume that f1, . . . , fm are Q(z)-
linearly independent, and denote by T ∈ Z[z] \ {0} a common denominator of minimal
degree of the entries of A. We fix ξ ∈ Q be such that ξT (ξ) 6= 0. As in §3.2 we consider
also ε1 > 0 such that ε1 <

1
2m−1

.

3.3.1 Construction of the polynomials

Following the proof of [18, p. 107, Lemma 14] and using Siegel’s lemma, we find that for
any 1 ≤ i ≤ m and any 0 ≤ ν ≤ n,

|bi,ν | ≤ n!2
(
m(n+ 1)CD

)2m/ε1(2CD)4m
2n/ε1

and for any ν ≥ τ ,

|aν | ≤ n!m2ν+1
(
m(n + 1)CD

)2m/ε1
(2CD)4m

2n/ε1Cν+1.
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Since

R(z) =
∞∑

ν=τ

aν
ν!
zν ,

we deduce that

|R(z)| ≤ n!m
(
m(n + 1)CD

)2m/ε1(2CD)4m
2n/ε12C

∞∑

ν=τ

(2C|z|)ν

ν!
.

As
∞∑

ν=τ

tν

ν!
=

1

(τ − 1)!

∫ t

0

(t− x)τ−1exdx ≤
tτ−1et

(τ − 1)!
for any t ≥ 0,

it follows that

|R(z)| ≤ C1(2CD)6m
2n/ε1e2C|z| n!(

m(n + 1)− ⌊ε1n⌋
)
!
(2C|z|)m(n+1)−⌊ε1n⌋−2

where C1 > 0 depends on ε1, m, polynomially on n, not on z and not on the Taylor
coefficients of the fj’s. This constant C1 also satisfies

|aν | ≤ n!C1 (2CD)6m
2n/ε1 (2C)ν+1 for any ν ≥ τ (3.6)

and
|bi,ν | ≤ n!C1 (2CD)6m

2n/ε1 for any 1 ≤ i ≤ m and any 0 ≤ ν ≤ n. (3.7)

3.3.2 Upper bounds on the linear forms

By a similar analysis of the proof of [18, p. 110, Lemma 15], using Eq. (3.6) we see that

|Rk(z)| ≤ C2(2CD)6m
2n/ε1

n!k!(2q)ke2C|z|(1 + |z|)(k−1)q

(
m(n + 1)− ⌊ε1n⌋ − k − 2

)
!
(2C|z|)m(n+1)−⌊ε1n⌋−k−2

for all n ≥ n0 and all k ∈ {1, . . . , m + t1}, where C2 > 0 depends on ε1, m, p, q, polyno-
mially on n, linearly on the k-th power of the maximum modulus of the coefficients of the
polynomial T (z), and not on z.

Moreover, the degree of each Pk,i is less than n + (k − 1)q by [18, p. 115] and using
Eq. (3.7) we have

|Pk,i(z)| ≤ C3(2CD)6m
2n/ε1(1 + |z|)n+(k−1)q(m+ n)kn!k!qk, k ≤ m+ t1, i = 1, . . . , m

where C3 depends on ε,m, p, q, polynomially on n and z, and linearly on Ek. As a poly-
nomial in n and z, the degree of C3 depends only on ε1, m, p, q.

In the above upper bounds for Rk and Pk,i, we now use the fact that k ≤ m + t1 ≤
⌊ε1n⌋+C4, where C4 depends only on m, p, q (by Eq. (3.5)), but not on n or z. As in [18]
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we take z = ξ and multiply by a common denominator. After some simplifications, the
situation can now be summarized as follows (this makes explicit [18, p. 114, Lemma 16]):
for every ξ ∈ Q such that ξT (ξ) 6= 0 and for all n ≥ n0, there exist m linearly independent
linear forms

Lj :=
m∑

i=1

aj,ifi(ξ), aj,i ∈ Z, j = 1, . . . , m,

(that depend on n) such that for any 1 ≤ j ≤ m,

|Lj| ≤ C5(2CD)6m
2n/ε1e2C|ξ|(2qmax(ε1, C4))

ε1n

× (1 + |ξ|)qε1nden(ξ)(1+qε1)n
nn+ε1n(2C|ξ|)mn−2ε1n

(mn− 2⌊ε1n⌋)!
, (3.8)

where the factor C5 depends on ε1, m, p, q, ξ, polynomially in n and linearly on the (m+t1)-
th power of the maximum modulus of the coefficients of the polynomial T (z). Since this
exponent is ≤ ε1n + C4 we have C5 ≤ c̃5

n where c̃5 depends on ε1, m, p, q, ξ, T (z) but not
on n. Moreover, for any 1 ≤ i, j ≤ m,

|aj,i| ≤ C6(2CD)6m
2n/ε1(2qmax(ε1, C4))

ε1n
(
(1 + |ξ|)den(ξ)

)(1+qε1)nnn+2ε1n, (3.9)

where C6 depends on ε1, m, p, q, ξ, polynomially in n and linearly in Em+t1 . As a polynomial
in n, the degree of C6 depends only on ε1, m, p, q.

3.3.3 Conclusion

We are now ready to analyze the proof of [18, p. 357, Theorem 1] in the case K = Q in
order to make Shidlovskii’s measure explicit. Shidlovskii proves that for any ε ∈ (0, 1), any
integer H ≥ 1 and any vector (a1, . . . , am) ∈ Zm \ {0} such that max |ai| ≤ H , we have

∣∣∣∣
m∑

i=1

aifi(ξ)

∣∣∣∣ ≥ b4n
−(m−1+ε)n

(
1− b5Hn−(1−ε)n

)
,

where b4, b5 > 0 are not computed but are known to be independent of H . He then chooses
the smallest n such that n ≥ n0 and n(1−ε)n > 2b5H (such an n obviously exists) to deduce
the expected linear independence measure:

∣∣∣∣
m∑

i=1

aifi(ξ)

∣∣∣∣ ≥
b7

Hm−1+2mε

for a constant b7 > 0 which is again not computed but is known to be independent of H .

In the proof of [18, p. 357, Theorem 1] in the case K = Q, we have i = h = 1. Shidlovskii
defines the determinant ∆ whose entries are the coefficients (in Z) of the m linear forms
L1, . . . , Lm−1, L0 :=

∑m
i=1 aifi(ξ) (which up to reordering can be assumed to be linearly

independent without loss of generality when n ≥ n0), and the determinant ∆j,ℓ which is
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the cofactor of the entry in the j-th row and ℓ-column of ∆. (Each line corresponds to a
linear form, with L1 at the top and L0 at the bottom of the determinant.) In [18, p. 358,
Eq. (41)], each occurence of i(= 1) can be deleted and we have

|∆m,ℓ| · |L0| ≥ |fℓ(ξ)| · |∆| − (m− 1) max
1≤j≤m−1

|∆j,ℓ| · max
1≤j≤m−1

|Lj |. (3.10)

This inequality holds for any ℓ ∈ {1, . . . , m} such that fℓ(ξ) 6= 0; such an ℓ exists because
ξT (ξ) 6= 0. We have |∆| ≥ 1 when n ≥ n0. Then using (3.8) and (3.9), for any n ≥ n0, we
can replace the three bounds in [18, p. 359, Eq. (42)] by

max
1≤j≤m−1

|Lj | ≤ C5(2CD)6m
2n/ε1e2C|ξ|(2qmax(ε1, C4))

ε1n

× (1 + |ξ|)qε1nden(ξ)(1+qε1)n
nn+ε1n(2C|ξ|)mn−2ε1n

(mn− 2⌊ε1n⌋)!
,

|∆m,ℓ| ≤ C7

(
(2CD)6m

2n/ε1(2qmax(ε1, C4))
ε1n

(
(1 + |ξ|)den(ξ)

)(1+qε1)n
nn+2ε1n

)m−1

and

max
1≤j≤m−1

|∆j,ℓ| ≤ C8H
(
(2CD)6m

2n/ε1(2qmax(ε1, C4))
ε1n

(
(1+|ξ|)den(ξ)

)(1+qε1)nnn+2ε1n
)m−2

,

where C7, C8 > 0 have the same dependencies as Cm
6 , where C6 is considered in (3.9), and

both can be bounded accordingly. We recall from §3.3.2 that:

• C4 depends only on m, p, q, but not on n, ξ.

• C5 ≤ c̃5
n where c̃5 depends on ε1, m, p, q, ξ, T (z) but not on n.

• C6 ≤ c̃6
n where c̃6 depends on ε1, m, p, q, ξ, and polynomially on E, but is independent

of n. All polynomials involved here have degrees bounded in terms of ε1, m, p, q.

Now the three bounds obtained above yield, for any n ≥ n0,

max
1≤j≤m−1

|Lj| ≤ C9e
2C|ξ|nC10Cn

11n
−n(m−1−3ε1)

|∆m,ℓ| ≤ C9n
C10Cn

11n
n(m−1)(1+2ε1),

and
max

1≤j≤m−1
|∆j,ℓ| ≤ C9HnC10Cn

11n
n(m−2)(1+2ε1),

where :

• C9 ≥ 1 depends on ε1, m, p, q, ξ, polynomially on C and D but not on n.

• C10 ≥ 0 depends on ε1, m, p, q, ξ, not on n and not on the Taylor coefficients of the
fj’s.
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• C11 ≥ 1 depends on ε1, m, p, q, ξ, T (z), polynomially on C, D and E but not on n.

• The degree of C9 as a polynomial in C and D, and the one of C11 in C, D and E,
are bounded in terms of ε1, m, p, q.

Now we choose ℓ such that

|fℓ(ξ)| = max
1≤j≤m

|fj(ξ)| ≥ κ

and we deduce from (3.10) that, for n ≥ n0,

|L0| ≥
κ

C9nC10Cn
11n

n(m−1)(1+2ε1)

(
1− unvwnn−δnH

)
(3.11)

where
u := max

(
1, (m− 1)C2

9e
2C|ξ|/κ

)
, v := 2C10, w := C2

11,

and δ := 1 − (2m− 1)ε1 ∈ (0, 1) by the assumption made on ε1 at the beginning of §3.3.
This implies

|L0| ≥
κ

2C9nC10Cn
11n

n(m−1)(1+2ε1)

provided
n ≥ n0 and 2uH ≤ w−nnδn−v. (3.12)

Since u ≥ 1 and we assume H ≥ max(3, nn0

0 ) in Proposition 3, we have 2uH ≥ nn0

0 .
Accordingly for any n < n0 we have 2uH > nn ≥ w−nnδn−v, so that the minimal value of
n (denoted by N from now on) that satisfies 2uH ≤ w−nnδn−v is automatically ≥ n0: it
satisfies the assumptions (3.12).

We want to find an upper bound for N in terms of 2uH,w, v, δ. An equivalent definition
of N is that it is the largest integer such that

(N − 1)N−1 < (2uH)1/δ(w1/δ)N−1(N − 1)v/δ. (3.13)

For any X ≥ 1 we have the following lower bounds:

XX

(2uH)1/δwX/δXv/δ
≥

XX

(2uH)1/δXX/4Xv/δ
assuming that X ≥ w4/δ,

=
X3X/4

(2uH)1/δXv/δ

≥
XX/4

(2uH)1/δ
assuming that X ≥

2v

δ

=

(
XX

(2uH)4/δ

)1/4

≥ 1 assuming that X ≥
8 ln(2uH)

δ ln ln((2uH)4/δ)
,

13



where in the last line we use the elementary fact that for any y > e, if x ≥ 2 ln(y)
ln ln(y)

, then

xx ≥ y. Note that H ≥ 3 and u ≥ 1 so that (2uH)4/δ ≥ 64/δ > e because δ ∈ (0, 1) and
thus we can use this fact with y := (2uH)4/δ. All assumptions in the lower bound above
are satisfied for instance for any

X ≥ 1 + w4/δ +
2v

δ
+

8 ln(2uH)

δ ln ln((2uH)4/δ)
.

Since for X = N − 1 the lower bound XX

(2uH)1/δwX/δXv/δ ≥ 1 does not hold, we deduce that

N ≤ 1 + w4/δ +
2v

δ
+

8 ln(2uH)

δ ln ln((2uH)4/δ)
=: Φ. (3.14)

Hence, since (3.12) holds with n := N , we have

|L0| ≥
κ

2C9NC10CN
11N

N(m−1)(1+2ε1)

=
κ

2C9eC10 ln(N)+ln(C11)N+(m−1)(1+2ε1)N ln(N)

≥
1

Hc

because
N ln(N) ≤ Φ ln(Φ) ≤ C12 ln(H) and H ≥ 3,

where c and C12 depend on ε1, m, p, q, ξ, κ, T (z), and polynomially on C, D and E. The
degree of these polynomials are bounded in terms of ε1, m, p, q. To conclude the proof of
Proposition 3, we choose ε1 =

1
2m

.

4 Proof of Theorem 2

4.1 First reductions

Let f ∈ Q[[z]] be a strict E-function, and ξ ∈ Q∗ be such that f(ξ) > 0. Considering
f(ξz) instead of f , we may assume that ξ = 1. Recall that f(1) 6= 1, because ln(f(1)) /∈ Q

is an assumption of Theorem 2. Accordingly, if f(1) is algebraic then ln(f(1)) is not a
Liouville number by [16, p. 386, Theorem 3], and the conclusion of Theorem 2 follows
at once. Therefore we may assume that f(1) is transcendental and apply the following
consequence of [13, Proposition 2], which is a variant of Beukers’ desingularization lemma
[9, Theorem 1.5].

Proposition 4. Let g1, . . . , gk be E-functions with rational coefficients, such that 1, g1,
. . . , gk are linearly independent over Q(z) and g1(1) is transcendental. Assume also that

the vector t(1, g1, . . . , gk) is solution of a differential system Y ′ = AY with A ∈ Mk+1(Q(z)).
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Then there exist E-functions f1, . . . , fk with rational coefficients, such that 1, f1, . . . , fk
are linearly independent over Q(z), f1(1) = g1(1), and the vector t(1, f1, . . . , fk) is solution
of a differential system Y ′ = BY with B ∈ Mk+1(Q[z, 1

z
]).

Moreover, when the gj’s are strict E-functions, then the fj’s are strict E-functions as

well.

To apply Proposition 4, we consider the inhomogeneous differential equation of minimal
order satisfied by f . We denote its order by µ− 1, with µ ≥ 2 because f is transcendental
(since f(1) is). The functions 1, f, f ′, . . . , f (µ−2) are linearly independent over Q(z): Propo-
sition 4 provides E-functions f1, . . . , fµ−1 with rational coefficients such that f1(1) = f(1)
is the number we are interested in the logarithm of. Letting fµ = 1, the functions f1,
. . . , fµ are linearly independent over Q(z) and make up a vector solution of a differential
system without non-zero singularity; in particular 1 is not a singularity.

Now recall that the functions exp(βz), β ∈ Q, are linearly independent over Q(z).
Therefore at most µ of them belong to the Q(z)-vector space spanned by f1, . . . , fµ. Since
ln(f(1)) is irrational, we may exclude these finitely many values of β = a/b in proving the
lower bound (1.1) (up to changing the values of c and d). Therefore we may restrict to
rationals β such that f1, . . . , fµ, and exp(βz) are linearly independent over Q(z).

4.2 Application of the effective linear independence measure

As explained in the previous section, we are trying to bound

∣∣∣ln(f1(1))−
a

b

∣∣∣

from below, with a ∈ Z and b ∈ N∗. By the mean value theorem (see Eq. (4.2) below), it
is essentially equivalent to bounding below

|f1(1)− exp(a/b)| ,

which is a Z-linear combination of the values at 1 of the E-functions f1(z) and exp(βz),
with β := a/b. We point out that the coefficients of this linear combination are only 0,
1 and −1 whereas in general, we are always interested in linear combinations with large
coefficients.

As explained at the end of §4.1, we may assume that f1, . . . , fµ and fµ+1(z) = exp(βz)
are strict E-functions linearly independent over Q(z), solution of a first-order differential
system without non-zero singularity. Moreover f1, . . . , fµ are solution of a first-order dif-
ferential system without non-zero singularity, independent from β: we are in the setting of
(3.4).

Corollary 2 yields a constant c, which depends on f1, . . . , fm−1 and polynomially on |β|
and den(β), such that with H = max(3, nn0

0 ) we have

|f1(1)− exp(a/b)| >
1

Hc
.
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An important feature of this corollary is that this value of H depends only on f1, . . . , fm−1,
not on β.

If |f1(1)−exp(a/b)| ≥ f1(1)/2, the lower bound of Theorem 2 holds trivially. Therefore
we may assume that ∣∣f1(1)− exp(a/b)

∣∣ < f1(1)/2. (4.1)

Accordingly |β| is bounded in terms of f1(1) only, and there exists a polynomial Q ∈
R[X ] with positive coefficients such that c ≤ Q(b); this polynomial Q depends only on
f1, . . . , fm−1. Therefore

|f1(1)− exp(a/b)| >
1

HQ(b)

and this concludes the proof of Theorem 2. Indeed by the mean value theorem, for all
(a, b) ∈ Z∗ × N∗, a, b coprime, there exists ω > 0 in the interval with endpoints exp(a/b)
and f1(1) such that ∣∣∣ln(f1(1))−

a

b

∣∣∣ =
1

ω
|f1(1)− exp(a/b)| , (4.2)

and finally in this equality, the coefficient ω can be bounded above in terms of f1(1) only
due to Eq. (4.1).
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[19] C. Siegel, Über einige Anwendungen diophantischer Approximationen, vol. 1 S. Ab-
handlungen Akad., Berlin, 1929.
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