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Abstract

Recent results of Zlobin and Cresson–Fischler–Rivoal allow one to decompose any suitable p-uple se-
ries of hypergeometric type into a linear combination (over the rationals) of multiple zeta values of depth
at most p; in some cases, only the multiple zeta values with 2’s and 3’s are involved (as in Hoffman’s
conjecture). In this text, we study the depth p part of this linear combination, namely the contribution of
the multiple zeta values of depth exactly p. We prove that it satisfies some symmetry property as soon as
the p-uple series does, and make some conjectures on the depth p − 1 part of the linear combination when
p = 3. Our result generalizes the property that (very) well-poised univariate hypergeometric series involve
only zeta values of a given parity, which is crucial in the proof by Rivoal and Ball–Rivoal that ζ(2n + 1)

is irrational for infinitely many n � 1. The main feature of the proof is an algebraic approach, based on
representations of (Z/2Z)p � Sp .
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The multiple zeta values (also called multiple harmonic series) are defined, for integers s1 � 2
and s2, . . . , sp � 1 (with p � 0), by
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ζ(s1, . . . , sp) =
∑

k1>···>kp�1

1

k
s1
1 . . . k

sp
p

.

The integer p is called the depth, and s1 + · · · + sp the weight. They appear in many areas of
mathematics, and are related to motives, knots, renormalization, . . . . Many linear or algebraic
relations (over Q) are known between these numbers (see for instance [12] or [16] for a survey),
so that it is not easy to find a basis for the vector space Z spanned over Q by the multiple zeta
values. Hoffman has made the following conjecture [7], which seems to be completely out of
reach nowadays:

Conjecture 1.1. The multiple zeta values ζ(s1, . . . , sp), with p � 0 and si ∈ {2,3} for any i ∈
{1, . . . , p}, make up a basis of Z .

The following (apparently weaker) conjecture is actually equivalent to Hoffman’s:

Conjecture 1.2. The multiple zeta values ζ(s1, . . . , sp), with p � 0 and si ∈ {2,3} for any i ∈
{1, . . . , p}, are linearly independent over Q.

Indeed, assume that Conjecture 1.2 holds. For any n � 0, let Zn be the subspace of Z spanned
by the multiple zeta values of weight n, An be the set of all sequences (s1, . . . , sp) ∈ {2,3}p
with p � 0 and s1 + · · · + sp = n, and A = ⋃

n�0 An. For instance, Z0 = Q (since ζ(∅) = 1),

Z1 = {0}, Z2 = Qζ(2) = Qπ2 (since ζ(2) = π2/6), Z3 = Qζ(3) (since ζ(2,1) = ζ(3));
A0 = {∅}, A1 = ∅, A2 = {(2)}, A3 = {(3)}.

The upper bound dimQ Zn � #An has been proved for any n � 0 ([11], see also [6]). Now
Conjecture 1.2 implies the converse inequality, so that equality holds (as conjectured by Zagier),
and the ζ(s1, . . . , sp), for (s1, . . . , sp) ∈ An, make up a basis of Zn. Moreover, Conjecture 1.2
implies that Z is the direct sum of the Zn; this is enough to deduce Conjecture 1.1.

The goal of this paper is to provide tools (following from an algebraic point of view) for
proving partial results towards Conjecture 1.2 or other linear independence conjectures about
multiple zeta values. A usual way to prove that some numbers are linearly independent over Q is
to produce very small (but non-zero) linear forms, with not too big integer coefficients, in these
numbers. This allows one to apply a linear independence criterion, for instance Nesterenko’s [8].

If we restrict our attention to depth 1, that is values ζ(s) of Riemann ζ function at integers
s � 2, one conjectures that 1, ζ(2), ζ(3), ζ(4), . . . , are linearly independent over Q. One could
hope to prove this using the following fact, which can be proved easily using partial fraction
expansion and in which (k)α = k(k + 1) . . . (k + α − 1) denotes Pochhammer’s symbol:

(i) For any integers r, n � 0 and A � 2, and any polynomial P ∈ Q[k] of degree at most
A(n + 1) − 2, the real number

∑
k�1

P(k)

(k + r)An+1

(1)

is a linear combination, with rational coefficients, of 1, ζ(2), ζ(3), . . . , ζ(A).
Actually this hope is completely out of reach for the moment, and all one can hope for is

partial results towards the conjecture. Since ζ(2k) is a rational multiple of π2k for any k � 1,
the most interesting point concerns values ζ(s) for odd integers s. To obtain a diophantine result
about these values, one may use the following result due to Rivoal [9] and Ball and Rivoal [2]:
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(ii) With the notation of (i), if

P(−n − k) = (−1)A(n+1)+1P(k) (2)

then (1) is a linear combination, with rational coefficients, of 1 and the ζ(s) for odd values of s

with 3 � s � A.
Using appropriate choices of P satisfying (2), Rivoal [9] and Ball and Rivoal [2] were able to

deduce diophantine results from Nesterenko’s linear independence criterion [8], for instance:
(iii) The Q-vector space spanned by 1, ζ(3), ζ(5), ζ(7), . . . is infinite-dimensional.
Now let us come back to multiple zeta values of arbitrary depth. The aim we have in mind is

to prove diophantine results (in the style of (iii)) towards Conjecture 1.2 (though our results are
more general, and may be useful for other conjectures about multiple zeta values). The first step
in this direction (analogous to (i)) is the following theorem of Zlobin [13], which gives a large
family of series which are linear forms, with rational coefficients, in the multiple zeta values of
the conjecture.

Theorem 1.3. Let p � 1 and n1, . . . , np, r1, . . . , rp be non-negative integers such that

ri � ri+1 + ni+1 + 1 for any i ∈ {1, . . . , p − 1}. (3)

Let P(k1, . . . , kp) be any polynomial with rational coefficients such that degki
P � 3ni + 1 for

any i ∈ {1, . . . , p}. Then the series

∑
k1�···�kp�1

P(k1, . . . , kp)

(k1 + r1)
3
n1+1(k2 + r2)

3
n2+1 . . . (kp + rp)3

np+1

(4)

is a linear combination, with rational coefficients, of multiple zeta values ζ(s1, . . . , sq) with q ∈
{0, . . . , p} and si ∈ {2,3} for any i ∈ {1, . . . , q}.

However, Conjecture 1.2 is still out of reach. For a given integer p � 1, we are also very far
from knowing how to prove that δp = 2p+1 − 1, where δp is the dimension of the vector space
spanned (over Q) by the multiple zeta values ζ(s1, . . . , sq) with q ∈ {0, . . . , p} and si ∈ {2,3}
for any i ∈ {1, . . . , q}. Since ζ(2,2, . . . ,2) = π2q/(2q + 1)!, the transcendence of π2 yields
δp � p + 1. Any improvement in this lower bound seems out of reach for the moment, so it
might be useful to consider vector spaces spanned only by specific such multiple zeta values (see
however [14]). Proving lower bounds for the dimension of such Q-vector spaces seems to be the
only reasonable hope for obtaining new results towards Conjecture 1.2. For instance the linear
independence of 1, ζ(2), and ζ(3) is still an open question (eventhough Apéry [1] has proved in
1978 that ζ(3) is irrational). The following weaker statements already seem to be very difficult
conjectures:

Conjecture 1.4. Among the numbers 1, ζ(2), ζ(3), and ζ(2,3) − ζ(3,2), at least three are
linearly independent over Q.

Conjecture 1.5. Among the numbers 1, ζ(2), ζ(3), ζ(2,3), ζ(3,2), ζ(3,3), and ζ(3,2,3), at
least three are linearly independent over Q.
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These conjectures could play the role of assertion (iii) above. In this paper, we make a step
towards Conjecture 1.4 by proving the corresponding assertion (ii) (see Theorem 1.7 below). We
also state a conjectural assertion (ii) corresponding to Conjecture 1.5 (see Conjecture 1.8 below).
Of course Conjecture 1.5 is weaker than Conjecture 1.4; the crucial point in Conjecture 1.5 is
that ζ(2,2) is not involved (since 1, ζ(2) = π2/6 and ζ(4) = π4/90 are known to be linearly
independent).

More generally, in the present text we state and prove multivariate statements analogous to
assertion (ii), namely we refine a generalization of Theorem 1.3 so that (under suitable assump-
tions) only a restricted set of multiple zeta values appear in the linear combination. We mostly
achieve this goal with respect to the depth p part of this linear combination. Here and throughout
this text, the depth k part of a linear combination

p∑
j=0

∑
s1,...,sj

λ[s1, . . . , sj ]ζ(s1, . . . , sj )

is ∑
s1,...,sk

λ[s1, . . . , sk]ζ(s1, . . . , sk).

For instance, we prove the following result:

Theorem 1.6. In the setting of Theorem 1.3, let σ1, . . . , σp ∈ {2,3} and assume that

P(k1, . . . , ki−1,−ki − 2ri − ni, ki+1, . . . , kp) = (−1)ni+1+σi P (k1, . . . , kp)

for any i ∈ {1, . . . , p}. Then in the linear combination that represents (4), we may assume that
ζ(σ1, . . . , σp) is the only multiple zeta value of depth p that appears with a (possibly) non-zero
coefficient.

In this statement, the assumption on P means that P is a linear combination of shifted mono-
mials (

k1 + r1 + n1

2

)f1

. . .

(
kp + rp + np

2

)fp

with fi ≡ ni + 1 + σi mod 2 for any i ∈ {1, . . . , p}.
In fact our main result involves not only symmetry properties ki �→ −ki −2ri −ni (as in Ball–

Rivoal’s statement (ii)), but also permutations of the variables k1 + r1 + n1
2 , . . . , kp + rp + np

2 .
To state it, we define two actions of the group G = (Z/2Z)p � Sp: one on rational functions

R(k1, . . . , kp) = P(k1, . . . , kp)

(k1 + r1)
A1
n1+1 . . . (kp + rp)

Ap

np+1

, (5)

and the other one on symbols ζf(s1, . . . , sp) corresponding to multiple zeta values (but with no
linear relations between them). This algebraic approach is the main feature of this text. Our main
result (see Section 3.2) reads as follows: if a subgroup H of G acts on R(k1, . . . , kp) through a
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character χ , then it acts in the same way on the depth p part of the linear combination of multiple
zeta values that represents

∑
k1�···�kp�1

R(k1, . . . , kp). (6)

The relation with Hoffman’s conjecture appears only when A1 = · · · = Ap = 3, but we treat the
general situation (so that assertion (ii) above is a special case of our results, in the easy case
p = 1). The subgroup H = (Z/2Z)p × Id is used to deduce Theorem 1.6. When p = 2 and
H = {(1,1)} × S2, the following statement can be obtained (as a special case of Theorem 3.7
below):

Theorem 1.7. Let n, r1, r2 � 0 be integers such that r1 � r2 + n + 1. Let P ∈ Q[k1, k2] be any
polynomial, of degree at most 3n + 1 with respect to each variable, such that

P(k2 + r2 − r1, k1 + r1 − r2) = −P(k1, k2). (7)

Then the series

∑
k1�k2�1

P(k1, k2)

(k1 + r1)
3
n+1(k2 + r2)

3
n+1

(8)

is a linear combination over the rationals of 1, ζ(2), ζ(3) and ζ(2,3) − ζ(3,2).

Assumption (7) means that P is a linear combination of products (k1 + k2)
f1(k1 − k2 + r1 −

r2)
f2 with odd f2.
This theorem could be a tool to prove Conjecture 1.4. It would be sufficient to construct poly-

nomials P such that (8) is very small but non-zero, and the coefficients of the linear combination
are not too big. Then Nesterenko’s linear independence criterion [8] would give the result. How-
ever, we have no idea of appropriate choices for P .

Our results enable us to construct linear combinations of multiple zeta values of depth at
most p, with a good control upon the depth p part. In some cases, we can even make it vanish
(see Remark 5 in Section 3.5). But the main drawback is that we describe only the depth p part
of the linear combination arising from a p-uple series. However, we are confident that they can
be extended in some way to the depth p − 1 part (and maybe further?), at least when p = 3.
This has been done in a special case in [4] (see Example 1 in Section 3.2), but the proof is very
complicated and does not use any algebraic structure. An interesting challenge would be to prove
the result of [4] with the same kind of algebraic methods as the ones introduced here.

As far as extensions to the depth p − 1 part when p = 3 are concerned, we have checked the
following conjecture (using the algorithm [5]) for n � 2.

Conjecture 1.8. Let n be a non-negative integer. Denote by σ the element of {2,3} such that
σ ≡ n mod 2, and by σ̃ the other element of {2,3}. Let P(k1, k2, k3) be a polynomial, with
rational coefficients, such that

{
P(−k1 − 5n − 4, k2, k3) = −P(k1, k2, k3),

P (k1,−k2 − 3n − 2, k3) = +P(k1, k2, k3),
P(k1, k2,−k3 − n) = −P(k1, k2, k3)
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and degki
P � 3n + 1 for any i ∈ {1,2,3}. Then the series

∑
k1�k2�k3�1

P(k1, k2, k3)

(k1 + 2n + 2)3
n+1(k2 + n + 1)3

n+1(k3)
3
n+1

is a linear combination (over the rationals) of 1, ζ(2), ζ(3), ζ(2,3), ζ(3,2), ζ(3,3), and
ζ(σ, σ̃ , σ ).

In this assertion, the depth 1 part of the linear combination follows from Theorem 1.3 and the
depth 3 part from Theorem 1.6, so that the only conjectural aspect is the shape of the depth 2
part, namely the fact that ζ(2,2) does not appear in it.

Proving this conjecture and finding good choices for P could lead to a proof of Conjecture 1.5,
in the same way as Theorem 1.7 could be used to prove Conjecture 1.4.

The structure of this text is as follows. We state in Section 2 the known results about the
expansion of a multiple series (6) as a linear form in multiple zeta values, in a general setting of
which Theorem 1.3 is only a special case. We also refine these results and state consequences on
the so-called “derivation procedure.” Section 3 is devoted to the statement and proof of our main
result, together with corollaries obtained in special cases. At last, Section 4 deals with conjectures
and open questions.

2. General results

In this section, we first summarize in Theorem 2.1 (Section 2.1) the known results about
multiple series of hypergeometric type, proved in [13] and [3]. Then we prove (Section 2.2) a
refinement concerning the depth p part in this theorem, and an easy consequence of it (namely a
generalization of the derivation procedure used classically in depth 1, see Section 2.3).

2.1. Decomposition of a multiple series

Let p � 1 and A1, . . . ,Ap,n1, . . . , np, r1, . . . , rp be non-negative integers. Let P(k1, . . . , kp)

be any polynomial. We let for j ∈ {1, . . . , p}:

Dj =
(

j∑
i=1

Ai(ni + 1)

)
− j − 1,

and we assume

j∑
i=1

degki
P � Dj for any j ∈ {1, . . . , p}. (9)

This condition is necessary and sufficient for the series (10) below to converge (see [3], §8.4).
Let K be a subfield of C. The important case is K = Q, since the general case follows from it

by linearity (considering monomials P ). Other fields K will be used in Section 3.6.
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Theorem 2.1. Let p � 1 and A1, . . . ,Ap,n1, . . . , np, r1, . . . , rp be non-negative integers. Let
P(k1, . . . , kp) be any polynomial with coefficients in K, such that the conditions (9) hold. Then
the series

∑
k1�···�kp�1

P(k1, . . . , kp)

(k1 + r1)
A1
n1+1(k2 + r2)

A2
n2+1 . . . (kp + rp)

Ap

np+1

(10)

is a linear combination (over K) of multiple zeta values ζ(s1, . . . , sq) with 0 � q � p, s1 � 2,
and

∑q

j=1 sj �
∑p

j=1 Aj . More precisely, we may assume that if ζ(s1, . . . , sq) appears with a
non-zero coefficient then there exist 1 = 	0 < 	1 < · · · < 	q = p + 1 such that sj � A	j−1 +
A	j−1+1 + · · · + A	j −1 for any j ∈ {1, . . . , q}.

If we assume also

ri � ri+1 + ni+1 + 1 for any i ∈ {1, . . . , p − 1}, (11)

then (10) is a linear combination (over K) of multiple zeta values ζ(s1, . . . , sq) with:

• 0 � q � p,
• s1 � 2,
• there exist 1 � i1 < · · · < iq � p with 1 � s	 � Ai	 for any 	 ∈ {1, . . . , q},
• #{	 ∈ {1, . . . , q}, s	 = 1} � #{i ∈ {1, . . . , p}, degki

P � Ai(ni + 1) − 1}.

As a corollary, if (11) holds and

degki
P � Ai(ni + 1) − 2 for any i ∈ {1, . . . , p}, (12)

then (10) is a linear combination (over K) of ζ(s1, . . . , sq) with 0 � q � p for which there exist
1 � i1 < · · · < iq � p with 2 � s	 � Ai	 for any 	 ∈ {1, . . . , q}.

The first part of this theorem was proved independently in [13] (Theorem 1) and [3]
(Théorème 3); the second part (in which (11) is assumed to hold) follows from the proof of [13]
(Theorem 5).

Remark 1. Since there are many linear relations over Q among multiple zeta values, the lin-
ear combination in Theorem 2.1 is not unique. However, the proof produces a specific one; so
does1 the algorithm [5]. Throughout this text, when we claim that “the” linear combination in
Theorem 2.1 satisfies some additional property, we refer to the one constructed from the proof.
The important point, in general, is merely the existence of such a linear combination with the
additional property.

It should be possible to prove a general statement, assuming that ri � ri+1 + ni+1 + 1 for any
i in a subset I of {1, . . . , p − 1}, such that the cases I = ∅ and I = {1, . . . , p − 1} give the two
parts of Theorem 2.1.

In the statement of Theorem 2.1, the multiple zeta value 1 appears as ζ(s1, . . . , sq) with q = 0.

1 But it is not clear to us whether both ways produce the same linear combination.
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When (11) and (12) hold, K = Q, and Ai = 3 for any i, Theorem 2.1 reduces to Theorem 1.3
stated in the Introduction. In the case where K = Q, (11) holds, ri = ri+1 + ni+1 + 1 and neither
ni nor Ai depend on i, we obtain for instance the following corollary.

Corollary 2.2. Let p � 1, A � 0, n � 0 be integers. Let P(k1, . . . , kp) be any polynomial with
rational coefficients such that the conditions (9) hold. Then the series

∑
k1�···�kp�1

P(k1, . . . , kp)

(k1 + (p − 1)(n + 1))An+1(k2 + (p − 2)(n + 1))An+1 . . . (kp)An+1

(13)

is a linear combination, with rational coefficients, of multiple zeta values ζ(s1, . . . , sq) with 0 �
q � p, s1 � 2, 1 � si � A for any i ∈ {1, . . . , q}, such that the number of i with si = 1 is not
greater than the number of i with degki

P � A(n + 1) − 1.
Accordingly, if degki

P � A(n+1)−2 for any i ∈ {1, . . . , p} then (13) is a linear combination,
with rational coefficients, of ζ(s1, . . . , sq) with 0 � q � p and 2 � si � A for any i ∈ {1, . . . , q}.

2.2. A refinement of the depth p part

In one variable, for integers e,A,n, r � 0, we have the partial fraction expansion

ke

(k + r)An+1

=
e−A(n+1)∑

f =0

Df kf +
n∑

j=0

A∑
s=1

Cj,s

(k + r + j)s

with rational numbers Df and Cj,s (the first sum does not appear if e −A(n+ 1) < 0). Applying
this identity with respect to k1, . . . , kp , we obtain the following partial fraction expansion:

P(k1, . . . , kp)

(k1 + r1)
A1
n1+1 . . . (kp + rp)

Ap

np+1

=
∑



C[
 ]
∏

i∈I k
fi

i∏
i∈I c(ki + ri + ji)si

. (14)

In this formula, we denote by J the set of all indices i such that degki
P � Ai(ni + 1); I is

a subset of J , I c = {1, . . . , p} \ I , (fi)i∈I is a family of non-negative integers such that fi �
degki

P −Ai(ni + 1) for any i ∈ I , and (si)i∈I c and (ji)i∈I c are families of non-negative integers
such that 1 � si � Ai and 0 � ji � ni for any i ∈ I c. At last, we denote by 
 the 4-tuple
(I, (fi)i∈I , (si)i∈I c, (ji)i∈I c), and C[
 ] is a rational number (see [3], §4.1).

By convention, we let C[
 ] = 0 if 
 = (I, (fi)i∈I , (si)i∈I c , (ji)i∈I c) but at least one among
the fi , si , ji does not lie in the above-mentioned range (for instance if si > Ai for some i). This
allows us to forget about the exact range of summation in (14).

Theorem 2.3. In Theorem 2.1, for any s1, . . . , sp the coefficient of ζ(s1, . . . , sp) in the linear
combination of multiple zeta values that represents (10) is equal to

n1∑
j1=0

. . .

np∑
jp=0

C
[∅,∅, (s1, . . . , sp), (j1, . . . , jp)

]
.
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Remark 2. If s1 = 1, Theorem 2.1 asserts that ζ(s1, . . . , sp) appears with a zero coefficient. This
is consistent with Theorem 2.3, since the assumption degk1

P � A1(n1 + 1) − 2 yields for any
s2, . . . , sp , j2, . . . , jp (as in [4], §4.4):

n1∑
j1=0

C
[∅,∅, (1, s2, . . . , sp), (j1, j2, . . . , jp)

] = 0.

Proof of Theorem 2.3. We follow the proof [13] of Theorem 2.1. Let z ∈ C be such that |z| < 1.
For any 
 , let

S
 (z) =
∑

k1�···�kp�1

∏
i∈I k

fi

i∏
i∈I c(ki + ri + ji)si

zk1 ,

so that (10) is the limit of
∑


 C[
 ]S
 (z) as z tends to 1. Of course, for some 
 the function
S
 (z) may be divergent at z = 1, but this linear combination does have a limit thanks to (9).

For any 
 , we have an equality [13]

S
 (z) =
∑

(σ1,...,σq )

D[
,σ1, . . . , σq; z]Laσ1,...,σq (z)

where Laσ1,...,σq (z) = ∑
k1�···�kq�1

zk1

k
σ1
1 ...k

σq
q

and D[
,σ1, . . . , σq; z] is a rational function of z.

The new point is that when q = p we have D[
,σ1, . . . , σq; z] = 0 except when I = ∅
and σ1 = s1, . . . , σp = sp (where 
 = (I, (fi)i∈I , (si)i∈I c, (ji)i∈I c)); and in this case
D[
,σ1, . . . , σq; z] = z−r1−j1 . This remark follows from the proof of [13] (see also Théorème 5
of [3]).

Ending the proof as in [13], we deduce Theorem 2.1 with the additional property stated in
Theorem 2.3. �
2.3. A consequence: the derivation procedure

Let us recall the classical “derivation procedure” in depth 1 (used for instance in [10]
and [15]). Let R(k) = P(k)/(k)An+1 be a rational fraction, with P ∈ Q[k] of degree at most
A(n + 1) − 1, and 	 � 1. Then

∑
k�1 R(	)(k) is a linear form (over Q) in 1, ζ(1 + 	), ζ(2 + 	),

. . . , ζ(A + 	). The proof of this fact is easy, by differentiating 	 times the partial fraction expan-
sion of R(k).

Thanks to Theorem 2.3, this fact generalizes easily to the depth p part of the linear combina-
tion that represents (10). Namely, let

R(k1, . . . , kp) = P(k1, . . . , kp)

(k1 + r1)
A1 . . . (kp + rp)

Ap
=

∑



C[
 ]
∏

i∈I k
fi

i∏
i∈I c(ki + ri + ji)si

,

n1+1 np+1
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and 	1, . . . , 	p � 0 be integers. Then applying ( ∂
∂k1

)	1 . . . ( ∂
∂kp

)	p yields the partial fraction ex-

pansion of ( ∂
∂k1

)	1 . . . ( ∂
∂kp

)	pR(k1, . . . , kp), in which the polar part

1

(k1 + r1 + j1)s1 . . . (kp + rp + jp)sp

appears with a non-zero coefficient only if 1 + 	i � si � Ai + 	i for any i ∈ {1, . . . , p}. Theo-
rem 2.3 implies that ζ(s1, . . . , sp) may appear only for these values of s1, . . . , sp in the linear
combination of Theorem 2.1 that represents

∑
k1�···�kp�1

(
∂

∂k1

)	1

. . .

(
∂

∂kp

)	p

R(k1, . . . , kp),

assuming that it converges. However, the argument does not easily generalize to ζ(s1, . . . , sq)

with q � p − 1. It would be interesting to investigate in this direction.

3. Symmetry properties of the depth p part

This section is the heart of the present paper. We recall the symmetry property in depth 1
connected to (very) well-poised hypergeometric series (Section 3.1), which is the origin of this
work. Then we define (Section 3.2) two linear representations of the group G = (Z/2Z)p � Sp:
one involves rational functions in p variables, and the other one formal symbols corresponding
to multiple zeta values. These representations allow us to state our main result (Theorem 3.1),
namely: if R(k1, . . . , kp) satisfies some symmetry property, then the depth p part of the linear
combination in Theorem 2.1 satisfies a corresponding symmetry property. We prove this result
in Section 3.3, and derive several consequences of it in Sections 3.4 to 3.6, namely special cases
which yield concrete statements.

3.1. The case of depth 1

Let us recall the symmetry property used by Rivoal [9] and Ball and Rivoal [2] to prove that
ζ(2n + 1) is irrational for infinitely many integers n. When e = 1, this is Assertion (ii) in the
Introduction.

Let A,n � 0, e ∈ {0,1}, P ∈ Q[k] and R(k) = P(k)/(k)An+1. Then the following three asser-
tions are equivalent:

• R(−k − n) = (−1)eR(k),
• P(−k − n) = (−1)A(n+1)+eP (k),
• P is a linear combination (over Q) of (k + n

2 )f with f ≡ A(n + 1) + e mod 2.

If they are satisfied and degP � A(n + 1) − 2, then
∑

k�1 R(k) is a linear combination, with
rational coefficients, of 1 and ζ(s) with 2 � s � A and s ≡ e mod 2.

In the next section, we generalize this symmetry property to the case of p variables k1, . . . , kp .
It involves a more complicated group action, since once may permute these variables and/or make
a change similar to k �→ −n − k with respect to some of them.
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3.2. Notation and statement of the main result

Throughout this section, we fix integers p � 1 and A1, . . . ,Ap,n1, . . . , np, r1, . . . , rp � 0.
For any i ∈ {1, . . . , p}, we let

Ki = ki + ri + ni

2

(though ni is not assumed to be even), so that

(ki + ri)ni+1 =
(

Ki − ni

2

)
ni+1

=
(

Ki − ni

2

)(
Ki − ni

2
+ 1

)
. . .

(
Ki + ni

2
− 1

)(
Ki + ni

2

)

is an even (resp. odd) function of Ki if ni is odd (resp. even).
We now consider permutations2 of the variables K1, . . . ,Kp , and changes of signs Ki �→ −Ki .

We assume neither n1 = · · · = np nor A1 = · · · = Ap , though when a permutation Ki �→ Kj

comes really into the play, the most interesting case is ni = nj and Ai = Aj (so that (Ki − ni

2 )
Ai

ni+1

maps to (Kj − nj

2 )
Aj

nj +1 and the symmetry property of the rational function R(k1, . . . , kp) defined
in (5) can be easily stated in terms of P ).

We shall denote by the same letter (e.g., P ) a function of k1, . . . , kp and the correspond-
ing function of K1, . . . ,Kp . For instance, if P(k1, k2) = (k1 + r1 + n1

2 )(k2 + r2 + n2
2 ) then we

let P(K1,K2) = K1K2. The symmetry properties are more easily written in terms of the vari-
ables Ki , but we shall often translate them in terms of ki . For instance, for i ∈ {1, . . . , p} and
ε ∈ {−1,1}, the relation

P(K1, . . . ,Ki−1,−Ki,Ki+1, . . . ,Kp) = εP (K1, . . . ,Kp)

is equivalent to

P(k1, . . . , ki−1,−ki − 2ri − ni, ki+1, . . . , kp) = εP (k1, . . . , kp).

In the same way, when p = 2, the assumption P(K2,K1) = −P(K1,K2) is equivalent to Eq. (7).
The permutation group Sp acts on (Z/2Z)p by

γ · (ε1, . . . , εp) = (εγ −1(1), . . . , εγ −1(p))

for γ ∈ Sp and (ε1, . . . , εp) ∈ (Z/2Z)p . This is a left action, that is γ · (γ ′ · (ε1, . . . , εp)) =
(γ γ ′) · (ε1, . . . , εp); all group actions we consider throughout this text are left actions. This
allows one to define the semi-direct product G = (Z/2Z)p � Sp as the set-theoretic cartesian
product (Z/2Z)p × Sp equipped with the law

(ε1, . . . , εp, γ )
(
ε′

1, . . . , ε
′
p, γ ′) = (

ε1ε
′
γ −1(1)

, . . . , εpε′
γ −1(p)

, γ γ ′)
where all group laws (including the one of Z/2Z) are written multiplicatively. A generic element
of G is denoted by either (ε1, . . . , εp, γ ) or (ε, γ ), where ε ∈ (Z/2Z)p stands for (ε1, . . . , εp).

2 It should be noticed that we permute the variables Ki ; this reduces to permuting the variables ki if, and only if,
ri + ni/2 is independent from i.
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Let K be any subfield of C. We let VK be the K-vector space of all rational functions
R(k1, . . . , kp) that can be written as

R(k1, . . . , kp) = P(k1, . . . , kp)

(k1 + r ′
1)

A′
1

n′
1+1 . . . (kp + r ′

p)
A′

p

n′
p+1

with P ∈ K[k1, . . . , kp] and A′
1, . . . ,A

′
p,n′

1, . . . , n
′
p, r ′

1, . . . , r
′
p � 0.

Recalling that A1, . . . ,Ap,n1, . . . , np, r1, . . . , rp � 0 are fixed throughout this section, we let
V ′

K
be the subspace of VK consisting in all rational fractions

R(k1, . . . , kp) = P(k1, . . . , kp)

(k1 + r1)
A1
n1+1 . . . (kp + rp)

Ap

np+1

with P ∈ K[k1, . . . , kp] such that (9) holds; this assumption on the degrees of P can be stated,
equivalently, as

j∑
i=1

degki
R � −j − 1 for any j ∈ {1, . . . , p}.

We define a group homomorphism � :G → GL(VK) (that is, a K-linear representation of G)
as follows:

�(ε1, . . . , εp, γ )
(
R(K1, . . . ,Kp)

) = R(εγ (1)Kγ (1), . . . , εγ (p)Kγ (p))

where Z/2Z is seen as {−1,1} (and we keep this convention throughout this text). Let us check
that � is indeed a group homomorphism:

�
(
(ε, γ )(ε′, γ ′)

)
(R) = �

(
ε1ε

′
γ −1(1)

, . . . , εpε′
γ −1(p)

, γ γ ′)(R)

= R
(
εγ γ ′(1)ε

′
γ ′(1)Kγγ ′(1), . . . , εγ γ ′(p)ε

′
γ ′(p)Kγγ ′(p)

)
= �(ε, γ )

(
R

(
ε′
γ ′(1)Kγ ′(1), . . . , ε

′
γ ′(p)Kγ ′(p)

))
= �(ε, γ )

(
�(ε′, γ ′)(R)

)
.

We define now another representation of G. Let WK be the K-vector space generated by
the formal symbols ζf(s1, . . . , sp) for positive integers s1, . . . , sp (recall that p is fixed); these
symbols are assumed to be linearly independent over K, so that they make up a basis of WK. Let
W ′

K
be the K-vector subspace of WK generated by the symbols ζf(s1, . . . , sp) with s1 � 2.

We have a specialization map ϕ :W ′
K

→ C, which is K-linear and maps the “formal” multiple
zeta value ζf(s1, . . . , sp) to the usual one ζ(s1, . . . , sp) (which exists since s1 � 2). This map ϕ

is not injective (if p � 2), since linear relations do exist between multiple zeta values of a given
depth p (for instance 4ζ(2,4) + 13ζ(4,2) − 18ζ(3,3) = 0).

Let us define a representation �̃ :G → GL(WK) by linearity as follows:

�̃(ε1, . . . , εp, γ )
(
ζf(s1, . . . , sp)

) = ε
s
γ−1(1)

. . . ε
s
γ−1(p)

p ζf(sγ −1(1), . . . , sγ −1(p)).
1
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It might be useful to notice that sγ −1(1), . . . , sγ −1(p) appear here (as in the action of Sp on
(Z/2Z)p) since ζf(s1, . . . , sp) behaves like a point in Np; on the contrary, Kγ(1), . . . ,Kγ (p) are
used in the definition of � since R is a function on Cp .

Let us check that �̃ is a representation:

�̃
(
(ε, γ )(ε′, γ ′)

)(
ζf(s1, . . . , sp)

)
= �̃

(
ε1ε

′
γ −1(1)

, . . . , εpε′
γ −1(p)

, γ γ ′)(ζf(s1, . . . , sp)
)

= ε
s
γ ′−1γ−1(1)

1 ε′sγ ′−1γ−1(1)

γ −1(1)
. . . ε

s
γ ′−1γ−1(p)

p ε′sγ ′−1γ−1(p)

γ −1(p)
ζf(sγ ′−1γ −1(1)

, . . . , s
γ ′−1γ −1(p)

)

=
(

p∏
j=1

ε′sγ ′−1(j)

j

)
ε
s
γ ′−1γ−1(1)

1 . . . ε
s
γ ′−1γ−1(p)

p ζf(sγ ′−1γ −1(1)
, . . . , s

γ ′−1γ −1(p)
)

= �̃(ε, γ )
(
ε′sγ ′−1(1)

1 . . . ε′sγ ′−1(p)
p ζf(sγ ′−1(1)

, . . . , s
γ ′−1(p)

)
)

= �̃(ε, γ )
(
�̃(ε′, γ ′)

(
ζf(s1, . . . , sp)

))
.

It should be noticed that �̃ cannot induce (via ϕ) a representation of G on the vector
space generated by the usual multiple zeta values of depth p, since �̃ does not preserve Q-
linear relations between them. For instance, we have 4ζ(2,4) + 13ζ(4,2) − 18ζ(3,3) = 0 but
4ζ(4,2) + 13ζ(2,4) − 18ζ(3,3) �= 0.

Recall that a character of a group H is a group homomorphism from H to the multiplicative
group C∗ of non-zero complex numbers. We can now state our main result, which is a comple-
ment to Theorem 2.1.

Theorem 3.1. Let H be a subgroup of G, and χ be a character of H . In Theorem 2.1, assume
that

R(k1, . . . , kp) = P(k1, . . . , kp)

(k1 + r1)
A1
n1+1 . . . (kp + rp)

Ap

np+1

satisfies

�(g)(R) = χ(g)R

for any g ∈ H . Then in the linear combination that represents (10), we may assume that the depth
p part can be written as ϕ(x) for some x ∈ W ′

K
such that

�̃(g)(x) = χ(g)x

for any g ∈ H .

One may notice that the assumption on R implies χ(H) ⊂ K∗, since R ∈ K(k1, . . . , kp).

Example 1. Let us consider the case K = Q, n1 = · · · = np = n, A1 = · · · = Ap = A, H = G

and χ(ε1, . . . , εp, γ ) = ε1 . . . εpεγ where εγ is the signature of γ . Then �(g)(R) = χ(g)R for
any g ∈ H if, and only if, P(k1, . . . , kp) belongs to the set denoted by Ap in [4] (§2.2). The
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conclusion of Theorem 3.1 is equivalent (proceeding as in the proof of Theorems 3.3, 3.4 and 3.7
below) to the fact that the depth p part of the linear combination of Theorem 2.1 is a linear
combination over Q of “antisymmetric multiple zeta values” (as defined in [4])

ζ as(s1, . . . , sp) =
∑

γ∈Sp

εγ ζ(sγ (1), . . . , sγ (p)),

in which s1, . . . , sp � 3 are odd. Actually this property follows from Théorème 4 of [4], which
provides much more information. It would be very interesting, for other pairs (H,χ), to gen-
eralize Theorem 3.1 and obtain some information about the whole linear combination of Theo-
rem 2.1, and not only its depth p part. This would be specially interesting from the diophantine
point of view, since the main drawback of Théorème 4 of [4] is that H is too big (therefore a lot
of constraints have to be imposed on P ).

3.3. Proof of the main result

In this paragraph, we prove Theorem 3.1 by connecting the two group actions defined in
Section 3.2 thanks to an equivariant linear map f (see Proposition 3.2 below). Let us define
f :VK → WK now. Let R ∈ VK, and (C[
 ]) be the family of coefficients defined by

R(k1, . . . , kp) =
∑



C[
 ]
∏

i∈I k
fi

i∏
i∈I c(ki + ri + ji)si

, (15)

with 
 = (I, (fi)i∈I , (si)i∈I c , (ji)i∈I c) as in Eq. (14). Then we let

f (R) =
∑

s1,...,sp

(
n1∑

j1=0

. . .

np∑
jp=0

C
[∅,∅, (s1, . . . , sp), (j1, . . . , jp)

])
ζf(s1, . . . , sp)

where in the sum, si ranges from 1 to Ai ; but this range is not very important, since
C[∅,∅, (s1, . . . , sp), (j1, . . . , jp)] is zero otherwise.

Remark 2 proves that f (R) ∈ W ′
K

as soon as R ∈ V ′
K

(which is the case in Theorem 3.1).
When R ∈ V ′

K
, Theorem 2.3 asserts that ϕ(f (R)) is the depth p part of the linear combination

constructed in Theorem 2.1. Now the key point in the proof of Theorem 3.1 is the following
result:

Proposition 3.2. The K-linear map f :VK → WK is equivariant with respect to the actions of G,
that is

f ◦ �(g) = �̃(g) ◦ f

holds for any g ∈ G.

To deduce Theorem 3.1 from this proposition, let R ∈ V ′
K

be such that �(g)(R) = χ(g)R for
any g ∈ H . Since χ(H) ⊂ K∗ (as noticed after the statement of Theorem 3.1), Proposition 3.2
yields �̃(g)(f (R)) = χ(g)f (R) for any g ∈ H , by K-linearity. Letting x = f (R) ∈ W ′

K
con-

cludes the proof of Theorem 3.1.
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Proof of Proposition 3.2. Let g = (ε1, . . . , εp, γ ) ∈ G, R ∈ V ′
K

and consider R′ = �(g)(R).
Denote by (C′[
 ]) the family of coefficients associated with R′ as in Eq. (15). By definition of
� we have

R′(K1, . . . ,Kp) = R(εγ (1)Kγ (1), . . . , εγ (p)Kγ (p)).

Expanding both sides into partial fractions as in (15) yields

∑



C′[
 ]
∏

i∈I (Ki − ri − ni

2 )fi∏
i∈I c(Ki − ni

2 + ji)si
=

∑



C[
 ]
∏

i∈I (εγ (i)Kγ (i) − ri − ni

2 )fi∏
i∈I c(εγ (i)Kγ (i) − ni

2 + ji)si
. (16)

Now we let Z/2Z = {−1,1} act on {0, . . . , n} by

{
ε · j = j for ε = 1,

ε · j = n − j for ε = −1,

in such a way that

(
−n

2
+ j

)
ε = −n

2
+ ε · j (17)

for any ε ∈ {−1,1} and j ∈ {0, . . . , n}. Of course this action depends on n, but it is clear from
the context that ε · ji refers to the case n = ni (even if ε is denoted by ε	 for some 	).

Now the uniqueness of the partial fraction expansion (16) yields, for any s = (s1, . . . , sp) and
j = (j1, . . . , jp) (using (17)):

C′[∅,∅, s, j ]∏p

i=1(Ki − ni

2 + ji)si
= C[∅,∅, (sγ (1), . . . , sγ (p)), (ε1 · jγ (1), . . . , εp · jγ (p))]∏p

	=1 ε
s	
	 (K	 − n	

2 + j	)s	
,

that is

C′[∅,∅, s, j ] = ε
s1
1 . . . ε

sp
p C

[∅,∅, (sγ (1), . . . , sγ (p)), (ε1 · jγ (1), . . . , εp · jγ (p))
]
. (18)

Now the equality

f
(
�(g)(R)

) = f (R′) =
∑

s1,...,sp�1

( ∑
j1,...,jp

C′[∅,∅, (s1, . . . , sp), (j1, . . . , jp)
])

ζf(s1, . . . , sp)

yields, thanks to (18):

f
(
�(g)(R)

) =
∑

s1,...,sp�1

( ∑
j1,...,jp

C
[∅,∅, (sγ (1), . . . , sγ (p)), (ε1 · jγ (1), . . . , εp · jγ (p))

])

× ε
s1
1 . . . ε

sp
p ζf(s1, . . . , sp).

Letting s′ = sγ (i) and j ′ = εi · jγ (i) for any i ∈ {1, . . . , p}, this equality reads
i i
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f
(
�(g)(R)

) =
∑

s′
1,...,s

′
p�1

( ∑
j ′

1,...,j
′
p

C
[∅,∅,

(
s′

1, . . . , s
′
p

)
,
(
j ′

1, . . . , j
′
p

)])

× ε
s′
γ−1(1)

1 . . . ε
s′
γ−1(p)

p ζf
(
s′
γ −1(1)

, . . . , s′
γ −1(p)

)
.

By definition of �̃ this means f (�(g)(R)) = �̃(g)(f (R)), thereby concluding the proof of Propo-
sition 3.2. �
3.4. A consequence involving the parity of si

Let us start with the following consequence of Theorem 3.1, in which no permutation of the
variables K1, . . . ,Kp is involved.

Theorem 3.3. In the situation of Theorem 2.1, assume that for some integers e1, . . . , ep we have

P(k1, . . . , ki−1,−ki − 2ri − ni, ki+1, . . . , kp) = (−1)Ai(ni+1)+ei P (k1, . . . , kp)

for any i ∈ {1, . . . , p}. Then in the linear combination that represents (10), any multiple zeta
value ζ(s1, . . . , sp) of depth p that appears with a non-zero coefficient satisfies

si ≡ ei mod 2 for any i ∈ {1, . . . , p}.

In this statement, the assumption means that P is a linear combination of shifted monomials

(
k1 + r1 + n1

2

)f1

. . .

(
kp + rp + np

2

)fp

with fi ≡ Ai(ni + 1) + ei mod 2 for any i ∈ {1, . . . , p}.
This result generalizes the symmetry phenomenon used by Rivoal [9] and Ball and Rivoal [2]

to prove that ζ(2n + 1) is irrational for infinitely many integers n; namely this property (recalled
in Section 3.1) is obtained for p = 1. However, Theorem 3.3 is not as powerful as the results
of [4], since it concerns only the depth p part of the linear combination (a good challenge is to
strengthen it: see Section 4).

For instance, when p = 2 and r1 � r2 + n2 + 1, Theorem 3.3 yields linear forms in 1, ζ(s)

with 2 � s � max(A1,A2), and ζ(s1, s2) with 1 � si � Ai (i ∈ {1,2}) and si of fixed parity. If in
addition A1 = A2 = 3 and degki

P � 3ni + 1, one obtains 1, ζ(2), ζ(3), and exactly one multi-
ple zeta value among ζ(2,2), ζ(2,3), ζ(3,2), ζ(3,3). More generally, plugging this symmetry
phenomenon into Theorem 1.3 enables one to get only one multiple zeta value of weight p: this
is Theorem 1.6 stated in the Introduction. It would be very interesting to obtain analogous sym-
metry properties on P that ensure that only some multiple zeta values of weights < p appear;
but this seems to be a difficult question. Some conjectures in this direction are made in the last
section of this paper.

Proof of Theorem 3.3. Let H = (Z/2Z)p × {Id} and χ(ε1, . . . , εp, Id) = ε
e1
1 . . . ε

ep
p . The as-

sumption on P means �(g)(R) = χ(g)R for any g ∈ H , so that Theorem 3.1 applies. To con-
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clude the proof, what remains is to understand which elements x ∈ W ′
K

satisfy �̃(g)(x) = χ(g)x

for any g ∈ H . Writing

x =
∑

s1,...,sp

λ[s1, . . . , sp]ζf(s1, . . . , sp)

with λ[s1, . . . , sp] ∈ K, this condition means

ε
s1
1 . . . ε

sp
p λ[s1, . . . , sp] = ε

e1
1 . . . ε

ep
p λ[s1, . . . , sp]

for any ε1, . . . , εp . This is equivalent to

λ[s1, . . . , sp] = 0 as soon as si �≡ ei mod 2 for some i ∈ {1, . . . , p},

thereby concluding the proof of Theorem 3.3. �
Remark 3. If the symmetry assumption on P in Theorem 3.3 is satisfied only for some values
of i ∈ {1, . . . , p}, then the conclusion on the parity of si holds for these values of i. This can
be proved in the same way, or deduced from Theorem 3.3 by decomposing P(K1, . . . ,Kp) into
even and odd parts with respect to the variables Ki for which no symmetry is assumed.

3.5. Other results in depth two

In this section, we restrict to the case p = 2 and allow the variables K1, K2 to be permuted.
To make the statements simpler, we consider only monomials P in the numerator. However,
the possible diophantine applications would come from suitable linear combinations of these
monomials (with fixed parity conditions on e and f ).

Theorem 3.4. Let A,n, r, e, f be non-negative integers such that e + f � A(n + 1) − 2.
Let S = A if r � n + 1, and S = 2A otherwise. Then the series

∑
k1�k2�1

(k1 + k2 + n + r)e(k1 − k2 + r)f

(k1 + r)An+1(k2)
A
n+1

(19)

is a linear combination with rational coefficients of 1, ζ(s) with 2 � s � S, and:

• if e and f are even, ζ(s, s′) + ζ(s′, s) with 2 � s � s′ � A and s′ ≡ s mod 2;
• if e is even and f is odd, ζ(s, s′) − ζ(s′, s) with 2 � s < s′ � A and s′ �≡ s mod 2;
• if e is odd and f is even, ζ(s, s′) + ζ(s′, s) with 2 � s < s′ � A and s′ �≡ s mod 2;
• if e and f are odd, ζ(s, s′) − ζ(s′, s) with 2 � s < s′ � A and s′ ≡ s mod 2.

The identity ζ(s, s′)+ζ(s′, s) = ζ(s)ζ(s′)−ζ(s+s′) may be used (when f is even) to express
in a different way the conclusion of this theorem. We obtain for instance the following corollary:

Corollary 3.5. Under the assumptions of Theorem 3.4, if e is odd, f is even and r � n + 1, then
(19) is a linear combination over the rationals of :
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• 1,
• ζ(s) with 2 � s � A,
• ζ(s) with A + 1 � s � 2A − 1 and s odd,
• ζ(s)ζ(s′) with 2 � s < s′ � A and s′ �≡ s mod 2.

If A = 3, this corollary yields linear forms in 1, ζ(2), ζ(3) and ζ(2)ζ(3) − ζ(5).
When f is odd, Theorem 3.4 yields antisymmetric multiple zeta values of depth 2 (as defined

in [4]), that is ζ(s, s′) − ζ(s′, s). According to the parity of e, we know whether s and s′ have
the same parity or not. But even when e is odd (so that s′ ≡ s mod 2), s may be even or odd
(however, see Corollary 3.6 below). This is an important difference with Théorème 3 of [4],
where ζ(s, s′) − ζ(s′, s) appears only when s and s′ are odd. Another difference is that ζ(s)

appears in Theorem 3.4 for any s � S, whereas it does in Théorème 3 of [4] for odd values of
s � 2A − 1.

Proof of Theorem 3.4. Let τ ∈ S2 be the transposition, and H be the subgroup of (Z/2Z)2 �S2
generated by (1,1, τ ) and (−1,−1, Id). Let χ :H → {−1,1} be the character defined by
χ(1,1, τ ) = (−1)f and χ(−1,−1, Id) = (−1)e+f . The rational function

R(K1,K2) = (K1 + K2)
e(K1 − K2)

f

(K1 − n
2 )An+1(K2 − n

2 )An+1

satisfies the symmetry properties

R(K2,K1) = (−1)f R(K1,K2) and R(−K1,−K2) = (−1)e+f R(K1,K2). (20)

This means exactly that �(g)(R) = χ(g)R holds for the two above-mentioned generators of H ;
therefore this relation holds for any g ∈ H , and Theorem 3.1 applies (with K = Q).

Let

x =
∑
s1,s2

λ[s1, s2]ζf(s1, s2)

be an element of W ′
Q

: the rational number λ[s1, s2] vanishes as soon as s1 = 1. The rela-

tions �̃(1,1, τ )(x) = (−1)f x and �̃(−1,−1, Id)(x) = (−1)e+f x mean, respectively, λ[s1, s2] =
(−1)f λ[s2, s1] and λ[s1, s2]((−1)e+f − (−1)s1+s2) = 0 for any s1, s2. They imply λ[s1, s2] = 0
when s1 + s2 �≡ e + f mod 2, so that x is a linear combination of ζf(s1, s2) + (−1)f ζf(s2, s1)

with s1 ≡ s2 + e + f mod 2 and s1, s2 � 2. This concludes the proof of Theorem 3.4. �
Remark 4. In the statement of Theorem 3.4, one could have replaced the specific form of
P(k1, k2) by the assumption (20).

When e = f in (19), one may apply either Theorem 3.4 or Theorem 3.3. Since the linear
combination in the conclusion of both is the same (namely the one constructed in the proof of
Theorem 2.1, see Remark 1), we derive the following corollary.

Corollary 3.6. Let A,n, r, e be non-negative integers such that 2e � A(n + 1) − 2.
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Let S = A if r � n + 1, and S = 2A otherwise. Then the series

∑
k1�k2�1

((k1 + k2 + n + r)(k1 − k2 + r))e

(k1 + r)An+1(k2)
A
n+1

(21)

is a linear combination with rational coefficients of 1, ζ(s) with 2 � s � S, and:

• if e is even, ζ(s, s′) + ζ(s′, s) with 2 � s � s′ � A and s′ ≡ s ≡ A(n + 1) mod 2;
• if e is odd, ζ(s, s′) − ζ(s′, s) with 2 � s < s′ � A and s′ ≡ s ≡ A(n + 1) mod 2.

This corollary could be deduced directly from Theorem 3.1, by considering the subgroup H

generated by (Z/2Z)2 × {Id} and (1,1, τ ).
From a diophantine point of view, this corollary seems to be more interesting when A(n + 1)

is odd. In this case, when e is odd, we get a linear form in 1, ζ(s) with 2 � s � S, and ζ(s, s′) −
ζ(s′, s) with 2 � s < s′ � A and s, s′ odd. This looks like Théorème 3 of [4], with a major
difference: in Corollary 3.6, ζ(s) appears (in general) for both even and odd values of s, whereas
in Théorème 3 of [4] only odd values of s are involved. For instance, when A = 3, n = 1, r = 2
and e = 1, the series (21) is equal to − 43

16 + 2ζ(2) − 1
2ζ(3) = 0.001339 . . . .

Remark 5. When A � 3 and e is odd, Corollary 3.6 proves that the double sum (21) is a linear
form in 1, ζ(2), ζ(3), . . . , ζ(S): no multiple zeta value of depth 2 appears.

3.6. A property involving cyclic permutations

This section is the only one where a field K other than Q is used.

Theorem 3.7. Let p � 1 and A,n, r1, . . . , rp � 0 be integers, and ξ ∈ C∗ be such that ξp = 1.
Let K = Q(ξ), and P ∈ K[k1, . . . , kp] be such that (9) holds and

P(K2,K3, . . . ,Kp,K1) = ξP (K1, . . . ,Kp). (22)

Then the series

∑
k1�···�kp�1

P(k1, . . . , kp)

(k1 + r1)
A
n+1 . . . (kp + rp)An+1

is a linear combination over K as in Theorem 2.1, of which the depth p part is a linear combi-
nation over K of

p∑
i=1

ξ i−1ζ(si , si+1, . . . , sp, s1, s2, . . . , si−1)

with s1, . . . , sp � 2.

This theorem can be used with ξ = 1, and also if p is even with ξ = −1; in both cases K = Q.
When p = 2, A = 3, and ξ = −1, it reduces to Theorem 1.7 stated in the Introduction. In the
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general setting, as soon as K contains all pth roots of 1, any polynomial P ∈ K[k1, . . . , kp] can
be written as a linear combination over K of products

∏
ηp=1

(
K1 + ηK2 + · · · + ηp−1Kp

)fη ,

where η ranges through the set of pth roots of 1. Then (22) means that such a product appears
with a zero coefficient as soon as

∏
η ηfη �= ξ−1.

Proof of Theorem 3.7. Let γ0 ∈ Sp be the cyclic permutation that maps 1 to 2, 2 to 3, . . . ,
p to 1. Denote by H the subgroup of G generated by (1, . . . ,1, γ0); obviously H is cyclic of
order p. The assumption on P means �(1, . . . ,1, γ0)(R) = ξR since n1 = · · · = np = n and
A1 = · · · = Ap = A. This implies �(g)(R) = χ(g)R for any g ∈ H , where χ : H → K∗ is the
(unique) character defined by χ(1, . . . ,1, γ0) = ξ .

Therefore Theorem 3.1 applies; let us translate its conclusion. Let

x =
∑

s1,...,sp

λ[s1, . . . , sp]ζf(s1, . . . , sp)

be an element of W ′
K

, with λ[s1, . . . , sp] ∈ K and λ[s1, . . . , sp] = 0 as soon as s1 = 1. Then

�̃(1, . . . ,1, γ0)(x) =
∑

s1,...,sp

λ[s1, . . . , sp]ζf(sp, s1, s2, . . . , sp−1).

Therefore the equality �̃(g)(x) = χ(g)x, for g = (1, . . . ,1, γ0), means

λ[s2, s3, . . . , sp, s1] = ξ λ[s1, . . . , sp]

for any s1, . . . , sp . This implies, for any s1, . . . , sp:

p∑
i=1

λ[si , si+1, . . . , sp, s1, s2, . . . , si−1]ζf(si , si+1, . . . , sp, s1, s2, . . . , si−1)

= λ[s1, . . . , sp]
p∑

i=1

ξ i−1ζ(si , si+1, . . . , sp, s1, s2, . . . , si−1),

the coefficient λ[s1, . . . , sp] being zero if si = 1 for at least one i. This concludes the proof of
Theorem 3.7. �
Example 2. With p = 3 and ξ = (−1 + i

√
3)/2, this theorem provides linear combinations over

Q(ξ) of which the depth 3 part involves

ζ(s1, s2, s3) + ξζ(s2, s3, s1) + ξ2ζ(s3, s1, s2)

with s1, s2, s3 � 2.
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4. Conjectures on the depth p − 1 part

An interesting generalization of the results proved in Section 3 would be to describe the
part in depth � p − 1 of the linear combination given by Theorem 2.1, under suitable sym-
metry properties of the rational function R(k1, . . . , kp). In the special case where H = G and
χ(ε1, . . . , εp, γ ) = ε1 . . . εpεγ , this was done in [4] (see Example 1 in Section 3.2). It could be
useful to obtain such a statement for other pairs (H,χ); in particular, if H is smaller then the
conditions to be imposed on R are weaker, so that it is more reasonable to hope for diophantine
applications.

Maybe such a result could be obtained considering colored multiple zeta values, and series

∑
k1�···�kp�1

P(k1, . . . , kp)

(k1 + r1)
A1
n1+1 . . . (kp + rp)

Ap

np+1

ξ
k1
1 . . . ξ

kp
p

where ξ1, . . . , ξp are roots of unity. The algorithm described in [3] could enable one (theoreti-
cally) to compute this kind of sums. However, the implementation [5] has been done only for
ξ1 = · · · = ξp = 1, so that we could not proceed to any experiment in the general setting.

In the situation of Theorem 2.1 with p = 3, we have found some examples of pairs (H,χ)

for which the linear combination involves neither ζ(2,2) nor ζ(2,2,2). This is shown by the
following theorem, that we have proved by computing all series (23) thanks to [5].

Theorem 4.1. Assume A = 3 and n ∈ {0,1,2}. We let

K1 = k1 + 5n

2
+ 2, K2 = k2 + 3n

2
+ 1, and K3 = k3 + n

2

and consider a polynomial P(K1,K2,K3) among one of the following four families (where the
exponents are non-negative integers):

1. Ke
1K

f

2 K
g

3 with e ≡ g ≡ A(n + 1) + 1 mod 2,
2. Ke

2(K1 −K3)
f (K1 +K3)

g(K1K3)
h with e ≡ A(n+ 1)+ 1 mod 2 and g ≡ A(n+ 1) mod 2,

3. Ke
1(K2

2 − K2
3 )f (K2K3)

g with f ≡ g ≡ A(n + 1) + 1 mod 2,
4. Ke

3(K2
1 − K2

2 )f (K1K2)
g with f ≡ g ≡ A(n + 1) + 1 mod 2.

If the series

∑
k1�k2�k3�1

P(K1,K2,K3)

(k1 + 2n + 2)An+1(k2 + n + 1)An+1(k3)
A
n+1

(23)

is convergent, then it is a linear combination (over the rationals) of multiple zeta values
ζ(s1, . . . , sq) with q ∈ {0, . . . ,3}, 1 � si � 3 for any i, s1 � 2, in which neither ζ(2,2) nor
ζ(2,2,2) appears.

If, in addition, (12) holds then it is a linear combination with rational coefficients of 1, ζ(2),
ζ(3), ζ(2,3), ζ(3,2), ζ(3,3), ζ(2,2,3), ζ(2,3,2), ζ(2,3,3), ζ(3,2,2), ζ(3,2,3), ζ(3,3,2),
ζ(3,3,3).

The computations were too heavy for n = 3, but we propose the following conjecture.
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Conjecture 4.2. Theorem 4.1 holds for A = 3 and any integer n � 0.

As in Theorem 3.4, any diophantine application of this conjecture would involve suitable
linear combinations of the peculiar polynomials P defining each of the 4 families in Theorem 4.1.

For each of these four families, there is a pair (H,χ) such that Theorem 3.1 applies, and gives
some properties of the depth 3 part of the linear combination (which imply that ζ(2,2,2) does
not appear). Since Theorem 4.1 does not say more than Theorem 2.1 about the depth 1 part, the
open problem in Conjecture 4.2 is to prove that ζ(2,2) does not appear.

It is likely that Theorem 4.1 (and Conjecture 4.2) can be generalized to other values of
r1, r2, r3 satisfying (11), but we did not try to prove it. Another generalization would be the
case A � 4.

It would be interesting to obtain an analog of Theorem 4.1 with p = 4, in which ζ(2,2),
ζ(2,2,2) and ζ(2,2,2,2) disappear. It should be noted that we did not succeed in obtaining an
analogous statement, with p ∈ {2,3}, in which ζ(2) disappears.

At last, another direction would be to study, in Theorem 2.1, the maximal weight part. We
have found many examples in which it vanishes (as in depth 1 when R(−n − k) = −R(k) and A

is even, see Section 3.1). It is likely that a general statement can be proved, in the same spirit as
the present text.
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